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SUMMARY

Due to the staggered entry of subjects in phase I trials, some subjects will only be partially through the
study when others are ready to be enrolled. Nonetheless, many phase I designs focus solely upon whether
or not subjects experience toxicity, thereby determining the maximum tolerated dose (MTD) with a
binomial likelihood using data from fully observed subjects. The time-to-event continual reassessment
method (TITE-CRM) was the �rst attempt to incorporate information from partially observed subjects
by using a weighted binomial likelihood in which the weights are based upon the actual toxicity time
distribution. Unfortunately, it is di�cult to accurately estimate the toxicity time distribution because only
a small proportion of enrolled subjects will experience toxicity. Creators of the TITE-CRM propose the
simple alternative of weighting subjects by the proportion of time observed, as well as two adaptive
weights to adjust for late-onset toxicities. As a alternative to these approaches, we suggest assuming
the toxicity times, as a proportion of the total time under observation, have a Beta distribution with
parameters 1:0 and �; we also allow � to vary by dose. The value of � allows us to re�ect the occurrence
of early- or late-onset toxicities without correctly specifying the actual distribution of toxicity times.
Through this model, we do not necessarily expect to improve identi�cation of the MTD, but rather
hope to reduce the exposure of subjects to overly toxic doses. Through simulation, we examine how
well our model identi�es the MTD and allocates dose assignments in three scenarios investigated by
previous publications. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The continual reassessment method (CRM) [1] was a signi�cant contribution to the statistical
methodology of phase I trials and was followed by later modi�cations [2]. The CRM assumes
that the probability of toxicity increases monotonically with dose, d, via a function p(d;�).
Most applications of the CRM apply Bayesian methods and assign a prior distribution to �,
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although maximum likelihood methods have been proposed [3]. Each enrolled subject is fol-
lowed for a �nite maximum amount of time de�ned by the interval in which toxicity may
occur. Based upon the toxicity experience of enrolled subjects and the prior placed upon �,
the CRM computes a posterior distribution for �.
The posterior mean of � is then used to estimate the probability of toxicity seen at each

dose. The next subject is subsequently entered into the trial at the dose whose estimated
probability of toxicity is closest to a desired threshold. This algorithm is repeated as each
subject enters the trial, and when the pre-speci�ed stopping criteria have been met, data from
all the subjects are used to de�ne the maximum tolerated dose (MTD) as the dose whose
toxicity rate is closest to the optimal threshold rate.
Although competing phase I designs have been proposed [4–6] those designs share a com-

mon limitation with the CRM: censored subjects, i.e. subjects without toxicity who have
not reached the end of their observation period, do not contribute to estimation of the MTD
until they are fully observed. When partially observed subjects exist, the authors of some
designs suggest that the newest subject be enrolled on the current estimate of the MTD
instead of delaying enrolment altogether [1, 4]. However, such an allocation scheme is still
ine�cient because it completely ignores the partial information collected on censored
subjects.
The time-to-event CRM (TITE-CRM) was developed to incorporate censored subjects when

estimating the MTD [7]. In its simplest form, the TITE-CRM weights each subject without
toxicity by the proportion of time each subject has been observed and fully weights each
subject with toxicity. The weights are applied to the computation of the posterior mean of �
that determines the updated estimate of the MTD. As a result, each subject can be entered
into the study as soon as each is eligible, thereby shortening the duration of the entire trial
and e�ciently using patient information throughout the study.
Selecting the appropriate weight for each subject is not trivial because the actual weights

depend upon the distribution of toxicity times in those who experience toxicity. For example,
subjects with very little follow-up should receive less weight if toxicities are expected to occur
near the end of the observation period rather than near the beginning of the observation period.
Furthermore, it is reasonable to assume that the average toxicity time varies by dose, i.e. higher
doses are associated with earlier toxicity times. Thus, the appropriate weights should be a
function of dose and correctly re�ect when toxicities are expected to occur during the study.
Unfortunately, estimation of the toxicity time distribution is di�cult because only a small

proportion of enrolled subjects will experience toxicity, and a non-parametric estimate of the
toxicity time distribution will be infeasible. As an alternative, we suggest using a parametric
model and assume the toxicity times, as a proportion of the total time under observation,
have a Beta distribution with parameters 1:0 and �, allowing � to be a function of dose d.
Although this parametric model is unlikely to re�ect the true distribution of toxicity times, the
model is �exible enough to capture the pattern of early- or late-onset toxicities for a number
of distributions. Through this model, we expect the TITE-CRM to assign more subjects at the
correct MTD and away from doses above the MTD, while still estimating the MTD as well
as when using the simple weighting scheme mentioned earlier.
We present a justi�cation for our model in Section 2. In Section 3, we compare the

performance of our proposed design to the performance of the TITE-CRM with other weight-
ing schemes in terms of correctly identifying the MTD and dose allocation during the study.
We present summarizing comments in Section 4.
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2. NOTATION

2.1. Dose and probability of toxicity

We have a phase I study designed to determine which of J doses is the MTD. Each of the
doses is represented by a numeric value Xj; j=1; 2; : : : ; J . We will enrol a maximum of N
subjects, and we denote X[i]; i=1; 2; : : : ; N , as the dose assigned to subject i. We observe
each subject for a �xed period of time T , during which we measure the binary outcome

Yi=

{
0 no toxicity by time T

1 toxicity by time T

which occurs with probability p(X[i];�), a function describing the association of dose and
toxicity. For example, if we believe dose and toxicity follow a logistic model, we could use

p(X[i]; �)=
exp(−a+ �X[i])

1 + exp(−a+ �X[i])
where a is a known constant selected so that the probability of toxicity at X[i] = 0 is su�ciently
low. Some investigators may instead prefer the assumption that dose e�ects are additive on
a logarithmic scale, i.e. p(X[i];�)=X[i]�. A third possibility is p(X[i];�)= {(1+ tanhX[i])=2}�
originally suggested by O’Quigley et al. [1]. Note in all three examples of p(X[i];�), the
value given to each dose Xj may need to be re-scaled to appropriately �t the chosen model
for p(X[i];�).

2.2. Dose and time to toxicity

For those subjects experiencing toxicity during the study, we assume that the time to tox-
icity Ui follows a conditional distribution Fc(u|Yi=1; �). As a result, Ui has the marginal
distribution

Fm(u;�; �|X[i])=p(X[i];�)Fc(u|Yi=1; �)
and marginal survivor function

Sm(u;�; �|X[i])= [1− p(X[i];�)] + p(X[i];�)Sc(u|Yi=1; �)
which is a mixture of Sc(u|Yi=1; �i), the survivor function for subjects who experience tox-
icity, and unity, the survivor function for subjects who never experience toxicity. This mix-
ture model is commonly known as a cure model because we assume there is a proportion
of subjects who will never experience toxicity and are considered to be ‘cured’; the value
[1− p(X[i];�)] is typically known as the cured fraction [8].
It has been shown that in situations where the likelihood function for the parameters (in

our case � and �) is quite �at, there will be a degree of non-identi�ability between the
parameters [9]. Furthermore, a relatively small proportion of subjects in a phase I trial will
experience toxicity, and it will be di�cult to pinpoint the actual distribution for toxicity times
without strong prior information. As a result, non-identi�ability between � and � will impede
estimation of the MTD.
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2.3. Proposed model

One solution to the non-identi�ability of � and � is to assume that all subjects who experience
toxicity do so uniformly over [0; T ] regardless of dose, i.e.

Fc(u|Yi=1)=
{
u=T 06 u6T

0 otherwise
(1)

as presented by Cheung and Chappell [7]. However, they also demonstrate that if toxicities
are likely to occur near the end of the interval [0; T ], the TITE-CRM with uniform weights
tends to be liberal, meaning dose escalation occurs too quickly, being based on partial infor-
mation gathered before the toxicities are observed. Cheung and Chappell proposed an alternate
function to equation (1) that adaptively adjusts for the number of observed toxicities. If tox-
icities occur near the end of the observation period, the data from partially observed subjects
are weighted less than they would be with uniform weights. However, this adaptive function
pools information from all subjects regardless of dose and does not allow for the distribution
of toxicity times to vary by dose.
As an alternative to Cheung and Chappell’s adaptive weight function, we propose that the

uniform distribution in equation (1) be generalized to a Beta distribution, i.e. Fc(u|Yi=1; �i)=
[u=T ]�i ; �i¿0, with uniform weights occurring when �i=1. We pool information across
subjects by adopting the model �i=Z�[i];−∞¡�¡∞, where Z1; Z2; : : : ; ZJ are transformed
values of X1; X2; : : : ; XJ constrained to the interval [0; 1], and Z[i] is the transformed value
corresponding to the dose assigned to subject i. If we model the probability of toxicity as
p(X[i];�)=X

�
[i], then the dose values will already be con�ned to [0; 1] and no additional

transformation is needed. If a di�erent toxicity probability model were used, the dose values
could simply be divided by a constant Cx¿XJ . The selection of Cx should be motivated by
the desire to keep Z1 su�ciently above 0, keep ZJ su�ciently below 1, and maintain su�cient
variability among the transformed values.
By placing a prior N(0; �2) distribution on �, with �2 known, we allow the distribution

of toxicity times to vary by dose, although �i ≈ 1 on average for all doses, coinciding with
equation (1). Non-zero values of �(�i �=1) describe the degree to which the toxicity time distri-
bution deviates from a uniform distribution. If �¿0, the parameter �i¡1 and Fc(u|Yi=1; �i) is
a right-skewed Beta distribution, indicating that toxicities occur relatively early in the interval
[0; T ]. In contrast, if �¡0, the parameter �i¿1 and Fc(u|Yi=1; �i) is left-skewed, indicating
that toxicities occur relatively late in the interval [0; T ]. Although these Beta distributions
are unlikely to exactly describe the toxicity time distributions, our model allows the study to
continually adapt to early- and late-onset toxicities without forcing the a priori assumption
that one is more likely than the other.

2.4. Likelihood for � and �

When investigators wish to enrol subject k + 1 in the study, the prior information from all
k currently enrolled subjects is used to estimate the MTD, which is assigned to the new
subject. Each currently enrolled subject will have been followed for an amount Ti6T at
which subject i has either been observed with toxicity or is censored without toxicity. If we
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denote

�i=

{
0 censored without toxicity at Ti

1 observed with toxicity at Ti

subject i has a likelihood contribution of

Li(�; �|X[i]; Ti; �i)= [p(X[i];�)(Ti=T )�i ]�i [1− p(X[i];�)(Ti=T )�i ]1−�i (2)

where �i=Z�[i] and Z[i] is the transformed value of X[i]. We compute �̃, the posterior mean
of � by assuming � has a prior N(0; �2) distribution and � has a general prior distribution
g(�). For each dose j, we compute p̃j=p(Xj; �̃), the estimated probability of toxicity for a
subject receiving dose j. We de�ne the MTD as that dose for which d(p̃j; p

∗) is a minimum,
where p∗ is the desired rate of toxicity and d(x; y) is a function used to measure the distance
between p̃j and p

∗. However, other criterion for the MTD are possible [10].
Note that the likelihood contribution for subjects with toxicity (�i=1) can be factored

directly into separate functions of � and �. As a result, the weight placed on subjects with
toxicity is irrelevant for the computation of �̃, and the value of �̃ impacts the computation of �̃
only through the subjects without toxicity. Furthermore, Theorem 1 of Cheung and Chappell’s
paper regarding the consistency of the TITE-CRM applies to our model as well. Although
based upon a maximum likelihood approach, the theorem states that, under certain regularity
conditions, the probability of correctly identifying the MTD converges to unity as the sample
size increases to in�nity as long as the weights do not depend upon �. But, as we have
argued, our proposed weights were not designed to improve estimation of the MTD. Instead,
our weights were designed to improve the sequential assignment of doses by assigning more
subjects to the MTD and fewer subjects to toxic doses than other proposed weighting schemes.

3. NUMERICAL EXAMPLES

3.1. Background

In the following section, we use Monte Carlo simulations to examine the performance of
our model in terms of: (1) how often the correct MTD is identi�ed; (2) the number of
subjects assigned to each dose; and (3) the pattern of dose assignment in an average study.
The results from our model, which we denote TITE-B, are compared to two applications of
the TITE-CRM: (1) using uniform weights, which we denote TITE-U; and (2) using adaptive
weights corresponding to equation (3) of Cheung and Chappell, which we denote TITE-A.
We have six doses under consideration in the trial, and we wish to identify the dose with a

probability of toxicity closest to 0.20. Our prior estimates of the probabilities of toxicity for
subjects receiving each dose are 0.05, 0.10, 0.20, 0.30, 0.50, and 0.70, respectively. A total
of 30 subjects are enrolled in the trial, and subjects are simulated to be eligible for entry at a
rate of one subject every 0.5 months. Each subject is followed for a maximum of 6 months.
To promote patient safety, all the designs begin enrollment at the lowest dose. Furthermore,
all three designs forbid escalation to a dose until all doses below it have been assigned to at
least one subject. For example, if an algorithm recommends escalating from dose 2 to dose 4,
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Table I. Actual toxicity probabilities; boldface indicates MTD.

Dose

Scenario 1 2 3 4 5 6

1 0.05 0.10 0.20 0.30 0.50 0.70
2 0.06 0.08 0.12 0.18 0.40 0.71
3 0.00 0.00 0.03 0.05 0.11 0.22

the study will only permit escalation to dose 3 if no subjects had yet been assigned to dose 3.
Dose de-escalation is unconstrained.
The three scenarios of actual toxicity probabilities are displayed in Table I and are a subset

of those investigated previously [1, 7]. In scenario 1, the probabilities of toxicity are identical
to their prior estimates; thus, dose 3 is the MTD. In scenario 2, the true probabilities vary
from their prior values and no dose has an exact probability of toxicity equal to 0.20; dose 4
is the MTD. In scenario 3, all six doses are safe, and the last dose is closest to the true
MTD. We also ran simulations under a setting where all six doses were toxic (scenario 2
of Reference [7]), but results for that setting are not presented because all three weighting
schemes performed equally well.
The actual toxicity times for subjects who experience toxicity are simulated with three

di�erent models. The �rst model simulates a uniform random variable in the interval [0,6]
for all subjects who experience toxicity. Note that in each scenario, times to toxicity have
the same uniform distribution for all six doses. The second model simulates times to toxicity
using a Weibull distribution with shape parameter �xed at 4 and scale parameter selected for
each dose such that the cumulative distribution function at 6 months equals the probability of
toxicity for each dose. The third model simulates times to toxicity using a Pareto distribution
with a mode of 10 days and scale parameter selected for each dose such that the cumulative
distribution function at 6 months equals the probability of toxicity for each dose. The Weibull
distribution will simulate settings with late-onset toxicities, while the Pareto distribution will
simulate settings with early-onset toxicities.
We use the power model p(Xj;�)=X

�
j to describe the relationship of dose and toxicity,

and we assume that � has a prior exponential distribution with mean 1:0. Based upon the
power model evaluated at �=1, the re-scaled values assigned to each dose are X1 = 0:05,
X2 = 0:10, X3 = 0:20, X4 = 0:30, X5 = 0:50, and X6 = 0:70. In the TITE-B model, we set �2,
the prior variance for �, at 0:5. Therefore, we assume that 99 per cent of plausible values for
� are in the range [−1:8; 1:8], which we found contained su�cient variability in � but still
allowed for stable estimates of the MTD. Further discussion regarding the selection of �2 is
relegated to Section 3.2.4.

3.2. Results

3.2.1. Identifying the MTD. Table II displays how well each of the three approaches cor-
rectly identi�es the MTD in each of the three scenarios. In the �rst scenario, there are three
doses above the MTD and the prior toxicity probabilities match the actual toxicity proba-
bilities. All three models correctly identify the MTD in about 50 per cent of simulations,
regardless of the underlying toxicity time distribution. With late-onset toxicities, the TITE-U
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Table II. Summary of the abilities of three methods to identify the MTD.

Number of simulations MTD identi�ed

Scenario Dist’n Model Below MTD At MTD Above MTD

1 W TITE-B 305 479 216
TITE-U 241 511 248
TITE-A 314 478 208

U TITE-B 266 541 193
TITE-U 279 509 212
TITE-A 265 510 225

P TITE-B 283 535 182
TITE-U 341 484 175
TITE-A 264 514 222

2 W TITE-B 340 576 84
TITE-U 277 641 82
TITE-A 350 565 85

U TITE-B 387 544 69
TITE-U 391 542 67
TITE-A 373 558 69

P TITE-B 425 502 73
TITE-U 479 476 45
TITE-A 362 563 75

3 W TITE-B 758 242 n=a
TITE-U 812 188 n=a
TITE-A 812 188 n=a

U TITE-B 811 189 n=a
TITE-U 851 149 n=a
TITE-A 845 155 n=a

P TITE-B 821 179 n=a
TITE-U 860 140 n=a
TITE-A 843 157 n=a

Note: Time-to-toxicity distribution: W=Weibull; U=uniform; P=Pareto.
Results are based upon 1000 simulations.

model tends to identify the MTD at toxic doses more often than the other two models. With
early-onset toxicities, the TITE-A model tends to identify the MTD at toxic doses more often
than the other two models. With uniform toxicities, there is relatively little di�erence between
the three models.
In the second scenario, there are two doses above the MTD, and the prior toxicity prob-

abilities do not equal the actual toxicity probabilities. All three approaches correctly identify
the MTD slightly more frequently than they do in the �rst scenario. With late-onset toxicities,
the TITE-U model tends to outperform the other two models, and with early-onset toxicities,
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the TITE-A model tends to outperform the other two models, although by assigning more
subjects to toxic doses than TITE-U does (see Figure 1). As in scenario 1, all three models
perform similarly with uniform toxicities. One might believe that the slightly weakened ability
of the TITE-B model in this scenario might be explained by the lower toxicity probabilities
and the relative dearth of toxicities from which to determine �̃. We postpone discussion of
this conjecture to Section 3.2.4. In the third scenario, all six doses are either at or below the
MTD, and the TITE-B model is more likely than the other models to correctly identify the
MTD at dose 6, even though the rate of toxicity is extremely low.

3.2.2. Number of subjects assigned. Figures 1 and 2 correspond to scenarios 2 and 3, re-
spectively, and display the average numbers of subjects assigned to each dose across all 1000
simulations for the three approaches. A plot of the results for scenario 1 is omitted, as they
mimic the results for scenario 2. In Figure 1, we hope to see a majority of subjects assigned
to the �rst four doses, and in particular, the fourth dose. With late-onset toxicities, we �nd
that the TITE-B model assigns more subjects than the others to the fourth dose and that
the TITE-B model assigns fewer subjects than the others to the last two toxic doses. These
�ndings concur with published results that the TITE-CRM with uniform weights can expose
subjects to highly toxic doses in the presence of late-onset toxicities [7]. The TITE-B model
continues to perform better than the other models with uniform and early-onset toxicities,
although in less magnitude than with late-onset toxicities.
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Figure 1. Number of subjects assigned by TITE-B, TITE-U and TITE-A when the fourth of six doses
is the MTD (scenario 2). Each bar represents the average number of subjects assigned to each dose
over 1000 simulations. Top horizontal axis represents the toxicity probabilities (× 100) of each dose.

Toxicity time distribution: (a)=Weibull; (b)=Uniform; and (c)=Pareto.
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Figure 2. Number of subjects assigned by TITE-B, TITE-U and TITE-A when all six doses are at or
below the MTD (scenario 3). Each bar represents the average number of subjects assigned to each dose
over 1000 simulations. Top horizontal axis represents the toxicity probabilities (× 100) of each dose.

Toxicity time distribution: (a)=Weibull; (b)=Uniform; and (c)=Pareto.

In Figure 2, all six doses are at or below the MTD, and all four approaches assign few
subjects to the sixth dose. Moreover, the TITE-U and TITE-A models tend to assign more
subjects to the �fth dose, while the TITE-B model assigns more subjects to the fourth dose,
exemplifying a slightly conservative nature of the TITE-B model in this scenario. Nonetheless,
from Table II, we saw that the TITE-B model was more likely than the other models to
correctly identify the MTD. Thus, our results suggest there is a trade-o� between estimation
of the MTD and allocation of subjects to the MTD when the �nal dose is the MTD and the
toxicity probabilities are relatively low. This fact is further exempli�ed in Figure 4, which
we discuss next and shows the average pattern of dose assignment of the three designs in
scenario 3.

3.2.3. Pattern of dose assignment. Figures 3 and 4 correspond to scenarios 1 and 3, re-
spectively, and display the mean dose assigned to each of the 30 subjects across all 1000
simulations of the three approaches. A plot of the results for scenario 2 is omitted, as it was
similar to that for scenario 1. Figures 3 and 4 emphasize the consistency of the TITE-CRM,
as both show dose assignment converging to the true MTD. However, Figure 4 does indicate
that a sample size of 30 subjects may not be su�cient for scenario 3, as all the models tend
to remain below the MTD at the last subject.
Nonetheless, as we have emphasized, our focus is not on the �nal result of the study, but

rather on the path taken to reach that �nal result. Figure 3(a) demonstrates how the TITE-B
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Figure 3. Pattern of dose assignment by TITE-B, TITE-U and TITE-A when the third of six doses is the
MTD (scenario 1). Each point represents the mean dose assigned to each subject over 1000 simulations.
Right vertical axis represents the toxicity probabilities (× 100) of each dose. Toxicity time distribution:

(a)=Weibull; (b)=Uniform; and (c)=Pareto.

model weights tend to limit dose escalation above the MTD with late-onset toxicities better
than the other models. Although all three models have escalated beyond the MTD to the fourth
dose after 7 or 8 subjects, the TITE-B model begins de-escalating near the thirteenth subject.
In contrast, the TITE-U and TITE-A models actually escalate at this point to the �fth dose.
Figure 3(a) also demonstrates how the TITE-A model responds to late-onset toxicities sooner

than the TITE-U. By the end of the study, the TITE-A model has de-escalated faster than
the TITE-U model and has reached the same point as the TITE-B model; the TITE-U model
remains noticeably above the others at the end of the study. The TITE-B model continues
to limit dose escalation better than the other models with uniform toxicities; with early-onset
toxicities (Figure 3(c)), the TITE-B weights and TITE-U weights lead to similar results, while
the adaptive weights of the TITE-A model are less responsive.
Figure 4 concurs with the �ndings reached earlier with Figure 2: by estimating the additional

parameter � to re�ect the nature of the toxicity times, the TITE-B model tends to be more
conservative than the other models. Although all three models are similar in the early part of
the study, the TITE-B model tends to remain at the fourth dose longer than the other models.
As a result, the TITE-A and TITE-U models escalate sooner than the TITE-B model, which
is acceptable in this scenario as all six doses are at or below the MTD.

3.2.4. Re�ecting toxicity time distribution. For each simulation in each scenario, we com-
puted �̃, the posterior mean for �, as well as the bounds of the 95 per cent posterior credible
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Figure 4. Pattern of dose assignment by TITE-B, TITE-U and TITE-A when all six doses are at or
below the MTD (scenario 3). Each point represents the mean dose assigned to each subject over 1000
simulations. Right vertical axis represents the toxicity probabilities (× 100) of each dose. Toxicity time

distribution: (a)=Weibull; (b)=Uniform; and (c)=Pareto.

interval for �. Those values help us to assess the ability of our model to properly re�ect
the toxicity time distribution. Speci�cally, with late-onset (early-onset) toxicities, we would
expect �̃ to be negative (positive), with a 95 per cent credible interval that is skewed to-
ward negative (positive) values. With uniform toxicities, we expect �̃≈ 0, with a 95 per cent
credible interval nearly symmetric about zero.
In scenario 1, the average values of �̃ were −0:82, −0:01, and 0:24, respectively, with

Weibull, uniform, and Pareto toxicity times, and the average bounds on the corresponding
95 per cent credible intervals were (−1:37;−0:20), (−0:50; 0:57), (−0:23; 0:81), respectively.
Thus, the TITE-B model does a good job of re�ecting the appropriate pattern of toxicities.
However, it does least well with early-onset toxicities, as the 95 per cent credible interval
does overlap with zero, and although the interval is skewed toward positive values, it is also
wide enough to encompass a signi�cant range of negative values.
In scenario 2, we found similar average values of �̃ to those in scenario 1. However, we

also found that the 95 per cent posterior credible intervals tended to be much wider than
those in scenario 1. This added variation in �̃ is likely due to the lower toxicity probabilities
in scenario 2 as compared to scenario 1 (see Table I), and with fewer toxicities observed,
computation of �̃ is more di�cult.
This conjecture is further supported by the results of scenario 3, which had even lower

probabilities of toxicity. In scenario 3, the average values of �̃ were −0:43, 0:00, and 0:19,
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respectively, with Weibull, uniform, and Pareto toxicity times, and the average bounds on the
corresponding 95 per cent credible intervals were (−1:62; 0:77), (−1:07; 1:09), (−0:83; 1:22),
respectively. Thus, �̃ tended to remain closer to its prior mean of 0, and the resulting con�-
dence intervals were much wider.
As we stated earlier, 30 subjects may be an insu�cient sample size for the third scenario

or we may need to re�ne the prior variance of �. More speci�cally, for a given prior variance
of �, estimating � requires the observation of a ‘su�cient’ number of toxicities. We can
derive a benchmark for ‘su�cient’ from the TITE-B results displayed in Figures 1 and 2
by multiplying the probabilities of toxicity for each dose by the average number of subjects
assigned to each dose. By doing so, we compute an average number of expected toxicities and
the degree of ‘information’ supplied for �. Using this approach, we found that there were 4–5
expected toxicities in scenarios 1 and 2, depending upon the distribution of toxicity times, and
this value dropped to 2 expected toxicities in scenario 3. Therefore, one might conservatively
propose a doubling of the sample size in scenario 3 to have the same information as that in
scenarios 1 and 2.
We also performed a sensitivity analysis of the in�uence of �2, the prior variance of �, on

the performance of the TITE-B algorithm in scenario 3 with a sample of 30 subjects. With
the increased value �2 = 1, the average values of �̃ over 1000 simulations were −0:62, −0:01,
and 0:25, respectively, with Weibull, uniform, and Pareto toxicity times, and the average
bounds on the corresponding 95 per cent credible intervals were (−2:06; 0:92), (−1:31; 1:38),
(−0:99; 1:58), respectively. Thus, by increasing the prior variance, we place less emphasis on
the prior and the posterior values of � are pulled further from 0. The consequence of this
result is that dose escalation is less aggressive and, in our simulations, we found that an
average of 2 fewer subjects were assigned to doses 5 and 6 (the MTD) and were instead
assigned to dose 4.
In contrast, a decreased value �2 = 0:25 lead to average values of �̃ over 1000 simulations

of −0:27, 0:00, and 0:13, respectively, with Weibull, uniform, and Pareto toxicity times, and
the average bounds on the corresponding 95 per cent credible intervals were (−1:20; 0:64),
(−0:85; 0:83), (−0:69; 0:92), respectively. Thus, by decreasing the prior variance, we place
more emphasis on the prior and the posterior values of � are closer to 0. The consequence of
this result is that dose escalation is more aggressive and, in our simulations, we found that
an average of 2 fewer subjects were assigned to dose 4 and were instead assigned to doses 5
and 6.

4. CONCLUDING REMARKS

We have developed a model for the TITE-CRM that maintains the consistency properties
acknowledged by its creators, yet is able to adaptively adjust for late- and early-onset toxicities
while the study is running. Although requiring an additional parameter, our model worked
as well as the other TITE models in a reasonable sample size of 30 subjects and permits
the weights to vary by dose. As noted by a reviewer, the adaptive weights of Cheung and
Chappell (TITE-A) are a non-parametric estimate of the toxicity time distribution that requires
the estimate of a quantile for each observed toxicity. As our approach requires the estimate
of a single parameter rather than multiple quantiles, the TITE-B model may provide a more
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e�cient estimate of the toxicity time distribution than the TITE-A model. However, we did
�nd indications that the TITE-B model may require additional subjects in some settings to
reach its full potential.
If investigators are willing to enrol additional subjects, our model is also �exible enough to

allow the modelling of toxicity times on other patient characteristics, such as prior therapy. For
example, our model �i=Z�[i] can be re-written as the log-linear model log(�i)= � log(Z[i]) +
SWi, where Wi is a vector of covariates for subject i and S is the vector of corresponding
regression parameters.
We assumed a prior normal distribution for � that essentially made no assumption about

whether early- or late-onset toxicities were more likely; investigators could easily incorporate
other prior distributions to re�ect other prior beliefs. Moreover, traditional Bayesian approaches
(for use with large sample sizes) may promote the use of ‘non-informative’ priors, but
the small sample sizes of most phase I trials require some degree of ‘informativeness’ in
the prior distributions used. In our design, ‘informativeness’ is quanti�ed by the value of the
hyper-parameter �2. As implied by our results in Section 3.2.4, investigators should evaluate
several values for �2 before running the actual study, as there will certainly be a trade-o�
between the value of �2, the number of subjects enrolled, and the number of doses that will
be used in the �nal study design.
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