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Large displacement FEM modelling of the cone penetration test
(CPT) in normally consolidated sand
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SUMMARY

A new finite element model based on a large strain formulation has been developed to study cone
penetration in normally consolidated sand. An auto-adaptive remeshing technique was utilized for
handling the very large distortion of sand surrounding the cone tip. A frictional contact interface utilizing
Mohr—Coulomb’s theory was chosen to represent interactions between the surface of the cone and sand. To
model the sand behaviour, the non-associated Drucker—Prager constitutive model was selected. ABAQUS,
a commercial finite element software package, was used to implement the model. The explicit solution
algorithm was chosen due to its effectiveness for complicated contact problems. Analysis results proved
that the model successfully captured the cone penetration behavior in sand. In addition, a chart to predict
internal friction angles based on cone tip resistance for different vertical effective stresses was provided.
This paper also shows a typical distribution of sleeve resistance, tip resistance—penetration relationship,
and typical contours of vertical, horizontal, and shear stresses in normally consolidated sand. Finally, a
non-uniform resistance was found along the length of the friction sleeve. Copyright © 2003 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Various analytical methods have been used to study cone penetration in sand, including: bearing
capacity theories by limit plasticity [1-4], cavity expansion theories [5—7] and the strain path
method [8]. Laboratory studies using calibration chamber tests have also been performed to
study cone penetration [9—12]. Numerically, Kiousis et a/l. [13], Van Den Berg et al. [14] and
Abu-Farsakh et al. [15] used the finite element method to study cone penetration in soils.
Developments in computer technology that have led to higher computational speeds and
greater memory have reduced the cost of complicated analysis. The finite element method can
easily implement any type of constitutive model, solve problems with difficult geometries, and
provide solutions with a high degree of accuracy. For cone penetration modelling, the finite
element method has many advantages: soil stiffness and compressibility can easily be modelled,
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initial stresses may be prescribed, increases in stress during the penetration can accurately be
determined, failure modes do not have to be assumed, both equilibrium equations and yield
criterion are satisfied, and various constitutive models can be utilized.

However, cone penetration modelling by finite elements has hitherto been plagued by very
large mesh distortion in zones of high strain concentration around the cone tip. When
penetration distances are large, mesh distortion leads to a severe loss of accuracy, a reduction in
the stable time increment and numerical divergence. Furthermore, the inherent CPT geometry
and the boundary condition along the center line below the CPT add to the modelling
difficulty.

Kiousis et al. [13] presented a large strain formulation and used the strategy of changing the
boundary conditions around the cone tip with each penetration step. However, since boundary
nodes have to be relocated, the soil displacement pattern does not develop naturally. Van den
Berg [16] pointed out that the changing boundaries also complicate the modelling of cone
penetration when a frictional interface is implemented.

Today’s finite element technology offers two techniques for solving very large mesh
distortions such as found in problems of extrusion, forging, rolling, metal forming and cone
penetration. The first technique is called the Arbitrary Lagrangian Eulerian (ALE) formulation
while the second approach uses adaptive remeshing strategies based on a Lagrangian
formulation [17]. In the first technique, the evolution of the mesh and material particles are
uncoupled and the mesh evolution is constrained so that excessive mesh distortion is avoided
[17]. Van Den Berg et al. [14] used this method to study cone penetration. The second approach
uses a Lagrangian formulation and when the mesh distorts, it is ‘adapted’ using a special
remeshing technique [17]. The remeshing technique that is used in this analysis is the ALE
technique. The model involves: (1) re-discretizing the deformed boundaries and generation of a
new mesh, and (2) transfer of the field variables that define the mechanical state to the new mesh
[17]. Hamel et al. [17] stated their belief that the adaptive remeshing technique has advantages
for problems which are very dependent on the geometrical and material parameters and the
complexities of the contact interface. However, comparison has not yet been made to determine
which technique would be more suitable for cone penetration simulation.

In this paper, the auto-adaptive remeshing technique is used because it maintains a high-
quality mesh throughout an analysis. The commercial finite element software ABAQUS was
utilized to employ the technique. Frictional contact, instead of smooth interfaces, is used to
model the interaction between the cone and soils. This decision was prompted by studies
[3,4, 15] which showed that the interface friction had a significant effect on cone resistance.
Finally, instead of a rigid body assumption, the cone steel is modelled by elastic elements so that
the cone may deform and thus, sleeve friction can be evaluated.

An explicit iteration technique is used based on the studies by Rebelo et al. [18], Sun et al. [19]
and Hibbitt ez al. [20] which concluded that for very complex analyses with large domains and
very fine meshes, the explicit techniques are more efficient than implicit ones. The reason is that
the analysis cost (run time) of the explicit procedure increases in direct proportion to the size of
the mesh. By contrast, the analysis cost for the implicit procedure increases with the square of
the wave-front times the number of degrees of freedom [18]. The effectiveness of the explicit
solution for complicated problems allows us to develop a very fine mesh, especially in the area
which is in contact with the cone elements. To assure accurate solutions, the ratio of soil element
size to cone radius was kept small. Finally, infinite elements were prescribed at the base and
perimeter of the model to minimize the effects of boundaries.
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The goal of this research is to develop a rigorous method to simulate cone penetration into
sands. If proven successful, the method could be utilized to study geologic situations that cannot
be solved using closed-form methods. These include stratified soils and complex stress states.
This paper demonstrates the proposed method by parametrically studying the effects of the
angle of internal friction (¢) of normally consolidated sands and the initial effective overburden
stress (d,) on cone tip resistance (¢g.). A chart correlating ¢, to ¢ as a function of o, is
developed. The chart is compared with results of earlier studies. This paper will also present
typical g. vs penetration data, a typical sleeve friction vs penetration plot, the distribution of
sleeve friction along a cone shaft and typical soil stress contours.

2. EXPLICIT SOLUTIONS FOR QUASI-STATIC ANALYSIS

The explicit technique was developed to solve the inefficiency of the implicit solution for
complex problems. Rebelo e al. [18] and Hibbit ef al. [20] have utilized explicit techniques to
simulate quasi-static problems in the metal forming processes and compared the results with
implicit technique solutions. Sun et al. [19] also performed a study to compare implicit and
explicit techniques for dynamic problems. The study by Rebelo ez al. [18] concludes that the
explicit algorithm is better suited to complex problems dominated by highly discontinuous
non-linearity. In the implicit solution, the cost of analysis increases much faster than the size of
the model due to the increasing wave-front size, the number of increments, and iterations [18].
For very complex problems, in which the time increment continuously decreases, the
computational cost of the implicit technique will dramatically increase and can cause divergence
[19]. By contrast, the size of the time increment in the explicit technique is only dependent on the
element dimensions and material properties, not on the complexity of the analysis. The solution
time in the explicit technique is therefore generally not affected by complex contact conditions
[21].

The explicit integration rule together with the use of diagonal or lumped element mass
matrices are used in the explicit dynamic analysis procedure [21]. The equations are integrated
using the following explicit central difference integration rule:

. . At i+1 + At .
U1/2) = Ui—1/2) T —D =0 )2 0 Uiy

U1y = Uy + Ayt )

where i is the increment number, u the displacement, and Az the time increment.

The key to the computational efficiency of the explicit procedure is the use of diagonal mass
matrices [21]. The accelerations at the beginning of the increment can be computed by inverting
the mass matrix:

iy = M~ (Ko — 1)
Where M is the diagonal lumped mass matrix, F is the applied load vector, and 7 is the internal
force vector.

Conditional stability is a requirement of the explicit technique. It is achieved by assigning
the time-step, Az, to be less than a critical value based on the highest eigenvalue in the
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model:
2

Mmax

At<

where wmay 1s the highest eigenvalue in the system.

Analysis acceleration (using mass/density scaling, load factoring, and speed scaling) was not
used to assure a small kinetic energy compared to the strain energy. Using the chosen FE model
and given the material properties, it was believed that the analysis was still inexpensive without
analysis acceleration. The ratio between the kinetic energy and the strain energy, which in this
analysis was on the order of 1073, assured that the inertia effects would be small.

3. AUTO-ADAPTIVE REMESHING

Auto-adaptive remeshing is utilized to preserve a high quality mesh during penetration of the
cone, to maintain calculation accuracy, and to assure converging calculations. Several
remeshing techniques have been used, such as h-adaptivity, p-adaptivity, and r-adaptivity
[22]. The ALE technique that is used to adapt the mesh in this analysis can be considered as an
r-adaptive scheme [23]. The r-adaptivity scheme changes the distorted mesh by relocating nodes
without adding or deleting degrees of freedom. Mesh density and mesh gradation from the area
closer to the cone to the end boundaries are controlled by creating a high quality mesh at the
beginning of the analysis. The mesh gradation is maintained during remeshing throughout the
analysis.

Remeshing involves several steps. First, the element formulations, boundary conditions,
external loads, contact conditions, etc. are handled in a manner consistent with a pure
Lagrangian analysis. The process then continues by re-discretizing the deformed boundaries and
generating the new mesh [21]. ABAQUS requires a small enough geometrical mesh difference
between the old mesh and the new mesh to maintain numerical stability. An intermediate mesh
is therefore needed if the total accumulated movement of any node in the domain is large
compared to the characteristic length of any adjacent element [21].

Instead of using an error check control, remeshing is performed at a set frequency. Since
remeshing frequency is the most significant factor affecting the mesh quality and the
computational efficiency, the frequency must be chosen judiciously. Based on the suggestions
of Hibbit et al. [21], remeshing was performed every 10 increments. A smooth mesh is created by
iteratively remeshing the adaptive mesh domain several times. The final step is remapping of
variables from the old mesh to the new mesh, which is called an ‘advection sweep’.

The method for relocating nodes is called ‘weighted area smoothing’. In this method, each
surrounding element pulls the node toward its centre as shown in Figure 1. The movement
vector of node M will be the resultant of the summation of vectors v; times their areas, 4,
normalized by the summation of the areas of all the elements. Node M in Figure 1 will move
away from element center ¢; toward element center cs.

The advection sweep transfers element and material state variables from the old mesh to the
new mesh. The second-order advection method based on the work by Van Leer [25, 26] is chosen
for the sweep advection to remap the variables [21]. Using this method, advection is performed
by first developing a quadratic interpolation between adjacent elements. Since the elements are
the reduced integration elements, the quadratic functions are constructed at the integration
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Figure 1. Relocation of a node using weighted area method (after [21, 24]).

points located at the middle of the elements. Quadratic interpolation is then used to develop a
trial linear distribution by calculating the slope at the element centers. The final slope for the
next calculation is obtained by reducing the trial slope until the value is within the range of the
original constant values of the adjacent elements [21]. The slope, a linear distribution, is then
used to obtain the new variable for the new mesh.

4. CONTACT INTERFACE

A pure master—slave relationship is used to model contact between two surfaces. In this work,
the steel cone was chosen as the master and the soil as the slave. Nodes of the master surface can
penetrate the slave surface, but not vice versa. It is believed that this algorithm gives a relatively
accurate solution for cone penetration. A balanced master—slave model, which completely
prohibits penetration, was not chosen to avoid very expensive calculation. Penetration of the
master into the slave surface is minimized by refining the mesh of the slave.

The present model uses a kinematic, predictor/corrector contact algorithm as opposed to a
penalty method, which has a weaker enforcement of contact constraints. In the kinematic
predictor/corrector algorithm, the resisting force is based on the depth of a slave node’s
penetration, the mass associated with the penetration, and the time increment [21]. The resisting
forces of all slave nodes are distributed to the nodes on the master surface. The mass of the slave
nodes is also distributed to the master surface nodes. The total inertial mass of the contacting
surfaces can be calculated from the additional node mass of the slave and master surfaces [21].

The contact interface is modelled in such a way that it will not transmit contact pressure in
either the normal or tangential direction unless the nodes of the slave surface contact the master
surface. The magnitude of the transmitted contact pressure is not limited. Transfer of tensile
stress is not allowed across the interface. For the tangential direction, the classical isotropic
Coulomb friction model without a cap was chosen. The coefficient of interface friction is
assumed to be a function of the angle of internal friction [3,4] and the value is maintained
constant throughout an analysis.

For tracking contact nodes, this analysis uses a ‘finite sliding algorithm’ to ensure correct
pairing of nodes and elements of master and slave surfaces. This algorithm can guarantee better
quality results compared to a ‘small sliding algorithm’. The finite sliding algorithm tracks and
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pairs node and element pairs between master and slave surfaces until the calculation stops. By
contrast, a small sliding algorithm would have tracked and paired node and element pairs only
at the beginning of the first step [21].

5. FINITE ELEMENT MODEL

Figure 2 shows the finite element model for the analysis. Both the soil and the steel cone are
modelled using four node axisymmetric elements with one reduced integration point (CAX4R

Friction
Sleeve

700 mm

Infinite elements —

\

e e e S i e e A e S S S Pl

R

e 400mm ——

Figure 2. Finite element mesh, geometry, initial positions, and boundary conditions.
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ABAQUS element). Several reduced integration three-node eclements (CAX3R ABAQUS
element) are also used but only in the cone tip. Adaptive remeshing is applied only to soil
elements that are close to the cone. To minimize the effects of boundary conditions, ‘infinite
elements’ are utilized at the base and at a radial distance of 400 mm from the cone center line.
The infinite elements are only utilized well beyond the area where plastic deformation occurs.
This model can be expected to eliminate the effects of boundaries without requiring a prohibitively
large model size. Continuous penetration is simulated by imposing a standard CPT penetration
rate of 2 cm/s to the top of cone rod.

While Van Den Berg et al. [14] placed the cone into a ‘pre-bored’ hole, in this study the cone is
introduced at the top of the soil mesh as shown in Figure 2. The horizontal stress on the cone in
a pre-bored model could be significantly underestimated. The top soil elements are restrained
from vertical displacement. Therefore, in all simulations, the resistances are only considered
after the cone penetrates a sufficient distance such that the effects of the boundary at the top are
negligible.

6. PARAMETERS

Cocfficient of interface friction between steel and sand. Based on direct shear tests on various
surface materials, Durgunoglu and Mitchell [3-4] suggested using J/¢ = 0.50 for most
penetrometers used in practice, where ¢ = peak angle of effective internal friction and ¢ is the
angle of interface friction. In the present studies 6/¢ = 0.50 was used. Table I summarizes the
coefficients of friction that were used.

Initial stress. The CPT simulation was performed to a 400 mm depth at three effective
vertical stresses, o,,. A normally consolidated initial state is represented by the at rest
coefficient of lateral pressure K, =1—sin¢ [27]. TableI summarizes the coefficients of
lateral pressure used. Since the 400 mm vertical increment of soil being penetrated is small
compared to its simulated depth, a uniform initial state of stress was assumed prior to
penetration.

Dilation angle. Dilation angles for the non-associated model were calculated by adopting the
‘saw blade’ model of dilatancy:

b= ey +¥

Table I. Coeflicient of interface friction between cone and sands

Angle of internal Coeff. of interface friction, Coefficient of lateral earth
friction (¢) W =tand pressure at rest,
(deg) (where: 0 = 0.50 ¢) Ky=1-sin¢

32 0.287 0.470

34 0.306 0.441

36 0.325 0.412

38 0.344 0.384

40 0.364 0.357

42 0.384 0.331
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where ¢ is the peak angle of effective internal friction in degrees, ¢, the constant volume angle
of internal friction in degrees, and ¥ the dilation angle.

The empirical 0.8 factor was not applied to \ as suggested by Bolton’s [28] for plane strain
problems. The peak angle of internal friction (¢) was chosen as the basis for parametric analysis,
because it is the fundamental strength parameter used in practical geotechnical design. A
constant value of ¢, = 33° was utilized based on Bolton’s [28] observation for silica sands.
Ideally, the dilation angle (i) should be modelled as a function of soil strain. However, for
simplicity, a constant value for iy was used. The calculated dilation angles in the —¢ coordinate
system are shown in Table II. The dilation angles are then transferred to the p— coordinate
system which will be presented in the next section.

Shear strength and plasticity parameters. The non-associative Drucker—Prager model [29]
was implemented in this work. Since ABAQUS [21] requires parameters in the p—¢
coordinate system, calculations need to be performed to transfer soil parameters from the 7—
o to the p—t coordinate system. The following explanations will summarize References [21, 30]
which provide detailed explanation for obtaining parameters for the Drucker—Prager soil
model.

Figure 3 shows the yield surface criteria and the hardening rule in the p— coordinate system.
The linear Drucker—Prager criterion can be formulated as:

F=t—ptanf—d=0
While the flow potential is expressed as

G=t—ptany™ =0

Table II. Dilation angles in the p—¢ coordinate system and elastic drained Young’s modulus

Angle of Tl 01,  Soil strength parameters Parameters for Young’s modulus

internal (MPa) (MPa)

friction (¢) v B v* K Kz n Ry E, v

(deg)  (deg) (deg) (MPa)

32 0.05 0.02 0 52.2 0 0.778 380 0.66  0.900 4.4 0.30
0.16  0.08 0 9.6
0.35 0.17 0 16.0

34 0.05 0.02 1 54.0 2.0 0.778 480 0.64 0.874 5.8 0.30
0.16  0.07 1 12.2
0.35 0.15 1 20.2

36 0.05 0.02 3 55.6 6.1 0.778 600 0.62 0.825 7.8 0.30
0.16  0.07 3 16.1
0.35 0.14 3 26.1

38 0.05 0.02 5 57.2 10.2  0.778 750 0.60 0.782 10.4 0.30
0.16  0.06 5 20.9
0.35 0.13 5 334

40 0.05 0.02 7 58.6 143  0.778 915 0.58 0.743 13.4 0.30
0.16  0.06 7 26.3
0.35 0.13 7 41.4

42 0.05 0.02 9 59.9 183 0.778 1,110 0.56  0.707 17.0 0.30
0.16  0.05 9 32.7
0.35 0.12 9 50.7
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de?!

hardening

-V

p

where
el (06
p = s trace o
q=1/=5:S§

where S = o + pl is the deviatoric stress.

9 1/8
r= (§S~S.S>

p is the angle of the linear yield surface in the p—t stress plane, analogous to, ¢, d the t-axis
intercept in the p—t stress plane, analogous to cohesion, and K the ratio of the yield stress in
triaxial extension to yield stress in triaxial compression.

By matching with the Mohr—Coulomb criteria, Chen [30] obtained f using the following
equation:

6sin ¢

3 —sin¢
The effective cohesion intercept in the p— coordinate space, d and K can be calculated as:

6 cos ¢
3 —sin¢

tan f =

d=c

~3-—sing¢
- 3+sing

where, ¢ is the effective cohesion intercept in the 7—¢ coordinate space.
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By analogy to the equation to calculate § from ¢ above, the dilation angle in the p—¢
coordinate system can be expressed as

6 sin

tany* = ————
an 3 —siny

where, i is the dilation angle in the —o coordinate space and  *is the dilation angle in the p—¢
space.
Table II presents the calculated B, ¥* and K used in this study. In all cases, d = ¢ = 0.
Young’s modulus. Duncan and Chang’s hyperbolic model [31] was used to calculate the elastic
Young’s modulus. This elastic modulus is needed below the yield surface. Their formulation can
be expressed as follows:

E—|1— Re(1 — sin ¢p)(a) — 03)] ZKEPa (ﬂ)

2ccos ¢ + 203 sin ¢ P,

where E| is the tangent drained Young’s modulus, R; the failure ratio Ry = o¢/ayy, of the stress
condition at failure [31], oy the asymptotic value of stress [31], Kg the modulus number for
primary loading, n the modulus exponent, P, the atmospheric pressure (100 kPa), o the major
principal stress, and o3 the minor principal stress.

Ry was calculated as 0.9(¢.,/¢) based on the work of Byrne ez al. [32], where ¢, = 33° for
silica sand.

K was chosen as a function of ¢ in accordance with trends observed by Duncan and Chang
[31], Duncan et al. [33], and Boscardin et al. [34] as shown in Figure 4. The parameter n has
shown very little correlation to ¢ to previous studies. Fortunately, the results described in this
paper were not very sensitive to n, and thus, typical values of n = 0.56-0.66 were used. Table 11
summarizes all of the parameters used in this analysis.

3500

.
3000 —(0— OttawaSand by Duncan and Chang [31]
—@— Ottawa Sand by Duncan at. al. [33]

2500 + non Ottawa Sand by Duncan et al. [33) 4
—%— Boscardin, et. al. [34]
2000 —— Current mgxdel
¥
1500
1000 | *
500

0

28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
% (deg)

Figure 4. Ky parameter.
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7. RESULTS AND DISCUSSION

7.1. Deformed mesh

Figure 5(a) shows a deformed mesh after 20 cm of penetration using a pure Lagrangian method
without remeshing. By contrast, Figure 5(b) shows the deformed mesh after a steady cone tip
resistance has been reached and after auto-adaptive remeshing. Clearly, the quality of the
deformed mesh in Figure 5(b) is better than in Figure 5(a). This confirms the ability of the
adaptive remeshing to maintain a high quality mesh during penetration. Figure 5(b) also shows
that the chosen adaptive mesh domain was large enough to accomplish the task. The figure also
indicates that the volume weighted average remeshing method and the adaptive remeshing every
10 increments are appropriate choices for this analysis.

7.2. Tip resistance (q.) vs penetration

Typical results showing CPT tip resistance, ¢, vs penetration for several different ¢ and o/, are
shown in Figure 6. As seen in the figure, the penetration depth required to reach steady state
varies from approximately 90 and 130 mm for ¢ =32° (g),=0.05MPa) and 34°
(0%, = 0.35 MPa), respectively to approximately 330-350 mm for ¢ = 42° (0|, = 0.35 MPa).
Dense sand requires greater penetration distance to reach steady state than loose sand. The
reason is that the volumetric strain near the cone is greater for loose sand, therefore the radial
displacements decrease much sooner with distance for loose sand. Based on the result, we can
conclude that tip resistance (¢.) in dense sand would be affected by the soil approximately 300—
400 mm (811 cone diameters) above the cone tip. The present analysis does not allow for a
conclusion regarding the zone of influence below the cone tip. Nevertheless, it is likely that this
zone would be at least as large as the zone above. Using the same argument, the tip resistance
would be affected by the soil approximately 100 mm (3 cone diameters) above and below the
cone tip for loose sand under low initial stress.

7.3. Sleeve resistance

The typical friction resistance, f;, at the centre of the sleeve and a distribution of resistance
along its length are shown in Figure 7(a) and 7(b), respectively. The high frequency fluctuation
observed in Figure 7(a) is large due to the ABAQUS algorithm, the mesh size, the contact
interface, and the parameters of soil and steel. However, the average sleeve friction can still be
determined, which in this case is approximately 0.029 MPa. With ¢, of 2.05 MPa, the friction
ratio (FR) is 1.4%. Based on Robertson and Campanella [35], soil with FR = 1.4%, ¢. =
2.05 MPa, and ¢, = 0.05 MPa would be interpreted as silty sand to sandy silt and silt. Douglas
and Olsen [36] will interpret the soil by the unified classification system as SM & SP, non-
cohesive coarse-grained and fine-grained to non-cohesive coarse-grained.

From Figure 7(b) we note that the sleeve friction close to the cone tip is low but gradually
builds to a relatively uniform value at a distance of approximately 30 mm from the bottom of
the shaft (40 mm from the cone tip) for ¢ = 34° and o/, = 0.05 MPa. The observation by
Kiousis et al. [13] confirms this non-uniform sleeve friction distribution. They found that there
was a very thin separation between soil and cone shaft interface for approximately 35 mm above
the upper end of the cone tip. This finding suggests a possible need to move the sleeve location in
CPT probes away from the tip if a uniform frictional distribution is desired. Further research of
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Figure 5. (a) Deformed mesh without remeshing. (b) Deformed mesh using auto-adaptive remeshing.

this sleeve distribution is certainly needed especially for different soil types and strengths.
Additional research is also needed to reduce the fluctuation of friction along the sleeve in

numerical modelling.
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Plate 1. Typical normalized stresses around cone tip after steady state: (a) Vertical (¢, /%), (b) Horizontal
(0},/0%,), and (c) Shear (1'/d},) for ¢ = 34° and ¢/, = 0.05 MPa.
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Figure 6. Tip resistance (¢g.) vs penetration.

7.4. Contours of stress

/

Plates 1(a)-1(c) present the contours of normalized shear stress, t/d/,,

normalized effective
vertical stress, d’,/d’,,, and normalized effective horizontal stress, o} /d’,,, after tip resistance
attains a steady state. The contours show that ¢} /o, and ¢, /c,  surrounding the cone tip
increase greatly due to penetration. For example, the o}/’ increases from an initial o} /a’,, of
0.44 (at ¢/, = 0.05 MPa) to more than 14 (more than 25 times higher) right below the cone tip.
For higher initial stress (d/,,), the increase o7, /a/,, will be lower. While the ratio of ¢}, to o}, (K) is
initially higher in loose sand, as estimated by K, = 1 — sin ¢ [26], it becomes higher for dense
sand after penetration reaches a steady state.

Plate 1(c) also reveals an area of slightly lower horizontal stress immediately above the cone
tip. The lower horizontal stress may partly explain the lower sleeve friction resistance measured
on the sleeve friction elements just above the cone as shown in Figure 7(b). We can also see from
Plate 1 that the vertical, horizontal, and shear stresses are higher near the upper end of the cone
than near the tip. The main reason for this condition is the inherent corner geometry which
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Figure 7. (a) Typical sleeve friction at center of cone sleeve during penetration. (b) Typical distribution of
friction resistance along the sleeve (for ¢ = 34° and o/, = 0.05 MPa).

results in stress-build-up. The frictional interface between the cone and sand most likely also
contributes to the shifting of stresses to the upper end of the tip.

7.5. Cone resistance

Figure 8 shows the relationship between q., d/,,, and ¢ at steady state. In Figure 9, the present

analysis results are compared with other methods summarized by Yu and Mitchell [37] which
consist of: HH—average chamber correlation of Houlsby and Hitchman [11]; DM—bearing
capacity solution of Durgunoglu and Mitchell [3-4]; LI&C—cavity expansion solution of
Collins et al. [38] combined with bearing capacity factor correlation of Ladanyi and Johnston
[39]; and YH&C—cavity expansion solution of Collins et al. [38] combined with correlation of
Yasafuku and Hyde [40]; G—experimental chamber test for normally consolidated Ticino sand
by Ghionna [41]. The initial mean confining stress before penetration for the data in Figure 9(a)
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Figure 8. ¢. vs d/,, relation with ¢.

ranges from 0.037 to 0.047 MPa, while the mean initial stress in the present study ranged from
0.03 to 0.04 MPa depending on K,. In Figure 9(b) the mean initial stress in the referenced data
ranges from 0.189 to 0.237 MPa while the mean stress in the present study ranges from 0.19 to
0.23 MPa.

We can see from Figures 9(a) and 9(b) that the present analysis results compare very well with
other methods, especially with the experimental chamber test results for normally consolidated
Ticino sand [41]. The experimental tests using Ticino sand provide excellent comparison because
Ticino sand has ¢, = 32-34° [42] while quartz sand has ¢, = 33° [28]. Excellent agreement
with the experimental tests by Ghionna [41] can even be noticed at low initial mean stress as can
be shown in Figure 9(a). The difference of the predicted angle of internal friction between the
present study and other methods at low initial stress is approximately 0-2°, the exception being
Houlsby and Hitchman [11]. For high initial stress (o', = 0.35 MPa) cases, as shown in
Figure 9(b), the present analysis results also compare very well with all other methods especially
with Ghionna’s experimental results [41]. The difference of the predicted angles of internal
friction between this present study and other methods for high initial stress, is approximately
0-3°.
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Figure 9. Comparison between FE results with previous models (After Yu and Mitchell [37]).

8. SUMMARY AND CONCLUSIONS

A study of cone penetration into normally consolidated clean sands using an auto-adaptive
remeshing finite element model has been presented. The study shows that auto-adaptive
remeshing maintains a high quality mesh and avoids numerical problems that would otherwise
develop due to high distortion of soils surrounding the cone tip. The other significant
improvements are the modelling of a frictional interface; a special boundary which prohibits soil
from displacing across the axis-symmetric centre line; and the infinite elements at the periphery
of the model. Sand was modeled using a non-associative Drucker—Prager constitutive model.
Coulomb friction was chosen for the interface constitutive law between steel and sand. Despite
the usage of simple constitutive models both for sand and interface friction, the finite element
model was able to simulate cone penetration into sand with results in excellent agreement with
earlier analytical and experimental studies.

The ¢.-displacement curves suggest that dense sand requires greater penetration to reach
steady state. In dense sand, tip resistance (g.) is affected by the soil within a 600-800 mm (1622
cone diameters) zone above and below the cone tip while in loose sand the zone is approximately
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180-260 mm (5-7 cone diameters). The proposed chart for predicting angles of internal friction
based on tip resistance (¢c) and initial stress (o7,,) is in good agreement with other methods, only
differing by 0-3°. The present analysis also shows that the distribution of sleeve resistance along
the cone sleeve is not uniform. It is significantly lower close to the cone tip and becomes uniform
higher up along the sleeve. This finding may eventually result in a recommendation to move the
location of the cone sleeve further from the cone tip.
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