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Dynamic Field Map Estimation Using a Spiral-In/

Spiral-Out Acquisition

Bradley P. Sutton,” Douglas C. Noll, and Jeffrey A. Fessler

The long readout times of single-shot acquisitions and the high
field strengths desired for functional MRI (fMRI) using blood
oxygenation level-dependent (BOLD) contrast make functional
scans sensitive to magnetic field inhomogeneity. If it is not
corrected during image reconstruction, field inhomogeneity
can cause geometric distortions in the images when Cartesian
k-space trajectories are used or blurring with spiral acquisi-
tions. Many traditional methods to correct for field inhomoge-
neity distortions rely on a static field map measured with the
use of images that are themselves distorted. In this work, we
employ a regularized least-squares approach to jointly estimate
both the undistorted image and field map at each acquisition
using a spiral-in/spiral-out pulse sequence. Simulation and
phantom studies show that this method is accurate and stable
over a time series. Human functional studies show that the
jointly estimated field map may be more accurate than standard
field map estimates in the presence of respiration-induced
phase oscillations, leading to better detection of functional
activation. The proposed method measures a dynamic field
map that accurately tracks magnetic field drift and respira-
tion-induced phase oscillations during the course of a func-
tional study. Magn Reson Med 51:1194-1204, 2004.
© 2004 Wiley-Liss, Inc.
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Functional imaging using blood oxygenation level-depen-
dent (BOLD) contrast is performed by acquiring T,-
weighted images using gradient-echo acquisitions during
task and rest (1). The gradient-echo acquisitions typically
are fast, single-shot techniques such as EPI or spiral imag-
ing. Single-shot techniques allow high temporal resolution
and avoid the mixing of respiratory phases or subject mo-
tion between the shots in a multishot acquisition. How-
ever, the long readout times of single-shot acquisitions
make them sensitive to magnetic field inhomogeneities
that can lead to severe distortions in the images. Magnetic
field inhomogeneities exist around regions where materi-
als with different magnetic susceptibility come into con-
tact, for example at air/tissue interfaces. When these ef-
fects are not corrected, they can cause geometric distor-
tions when EPI scans are used, and blurring with spiral
acquisitions. The artifacts due to field inhomogeneity can
cause problems when functional results are obtained from
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areas near air/tissue interfaces. Spatial distortions can also
degrade the accuracy of image registration algorithms for
motion correction, or for aligning functional results to
anatomical images.

Many image reconstruction methods have been pro-
posed to correct for field distortions in spiral imaging (e.g.,
Refs. 2—6). There are two steps involved in most field
inhomogeneity correction schemes. The first is to measure
the spatial variation of the magnetic field (this is referred
to as “estimating the field map”). The second step is to use
that field map to compensate for field inhomogeneities
during the reconstruction. Several methods have been pre-
sented that bypass the first step. For example, Noll et al. (3)
used an autofocusing criterion based on the assumption
that the phase is locally smoothly varying in a field-cor-
rected image. However, most field correction methods rely
on obtaining a good estimate of the field map.

Conventionally, the field map is measured by acquiring
two images at slightly different echo times (TEs) and di-
viding their phase difference by the difference in TEs (7).
The difference in TEs must be kept small (a few millisec-
onds) to avoid problems with 2w phase wraps when the
phase differences between the two images are calculated.
Determining the difference in TEs for a specific pixel from
two separate acquisitions is not completely straightfor-
ward. If the same pulse sequence is used to acquire the
image twice with only a difference in TE, then the effective
TE difference for the two images is that difference in TEs.
If a different sequence is used to acquire the data at two
different TEs, then the influence of underlying gradients of
the field inhomogeneity must be taken into account to
determine the effective TE (i.e., the time at which the
origin of k-space is acquired) (8). This effective TE may
vary on a pixel-by-pixel basis (8).

To acquire images at two closely spaced TEs, a multie-
cho gradient-echo pulse sequence could be used. This
would result in relatively undistorted images, but it could
also require a significant amount of scan time. More often,
a faster technique that acquires two single-shot images is
used to acquire a field map just prior to acquisition of the
functional study. This eliminates the problem of register-
ing the field map to the functional images. We will refer to
this method as the “standard field map estimation
method.” The standard field map estimation method as-
sumes implicitly that all of the off-resonance phase accrual
occurs at the TE, and ignores dephasing during the data
readout, which may be longer than the TE. If the images
used to measure the field map are taken with the same
acquisition parameters that are to be used in the imaging
study, they are distorted by field inhomogeneities and the
resulting field map suffers from the image distortions.

For a standard field map estimation, the TEs of the two
reference images must be within a few milliseconds of
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each other to avoid ambiguity in the field map measure-
ment that would result from 27 phase wraps. Given that
the total acquisition time for a single-shot image is tens of
milliseconds, one must use two separate acquisitions (TR
intervals) to acquire two images with slightly different
TEs. Respiration-induced phase variations in the two ref-
erence images, other physiological noise, or subject mo-
tion between the two acquisitions can lead to errors in the
standard field map estimate. For example, in our scans, the
center frequency of an axial slice can vary by 1 Hz depend-
ing on the position in the respiratory cycle. This could
result in a phase difference of as much as (2nTE X 1 Hz)
radians between the two acquisitions, even in the absence
of additional field inhomogeneity. This phase difference
divided by the difference in TEs could induce a 15-Hz
error in the field map estimate for a TE of 30 ms and a TE
delay of 2 ms. For the spiral scans used in this work, the
PSF amplitude is reduced by one-half for an off-resonance
of 32 Hz, but substantial blurring occurs for off-resonance
values of roughly 15 Hz or larger. Therefore, errors in the
standard field map estimate due to respiration can lead to
significant artifact in the reconstructed image.

Field maps resulting from standard estimates are usually
assumed to be static over the course of a functional study
because an additional scan with a delayed TE is required.
This additional scan is usually performed at the beginning
or end of a functional study. This one measured field map
is used to correct the entire time series of images. How-
ever, dynamic changes in the field map for a slice can
occur during the course of a functional study. These
changes can be due to respiratory-cycle-induced phases,
main field drift, and subject motion. When field-corrected
image reconstruction algorithms are used, these dynamic
changes can lead to further distortions in the images for a
time series. Nayak et al. (9) and Nayak and Nishimura (10)
presented a method to form standard, dynamic estimates
of a low-resolution field map by delaying TEs of subse-
quent shots in a multishot experiment. However, these
estimates are sensitive to the differences in reference im-
ages discussed in the previous paragraph, whereas the
method we will propose here estimates the field map
within a single acquisition.

This work describes a new way to combine the two steps
employed for field inhomogeneity correction used in con-
junction with a certain pulse sequence. We propose to
reconstruct an undistorted image and its associated dy-
namic, undistorted field map from a spiral-in/spiral-out
acquisition. This method retains the time resolution and
other benefits of single-shot methods while it corrects for
distortions caused by the changing field map. The spiral-
in/spiral-out pulse sequence can acquire the same number
of slices per TR as a spiral-out sequence (11), and thus
should not change the setup of current functional MRI
(fMRI) studies.

THEORY

We approach the simultaneous estimation problem by
forming a cost function based on the signal equation for
MRI and then minimizing it over the image and field map
simultaneously. First we present our cost function based
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on the signal equation in terms of the unknown image and
field map, and then we discuss our minimization process.

Nonlinear Least-Squares Joint Estimation

In MRI, the equation for the complex baseband signal,
ignoring relaxation effects, is given by

S(t) — f f(r)e—im(r)te—iz-:r(k(t)-r) dl‘, [1]

where s(t) is the signal at time ¢ during the readout, f(r) is
a function of the object’s transverse magnetization at loca-
tion r, w(r) is the field inhomogeneity, and k(t) is the
k-space trajectory. In an MR scan, the raw measurements
are noisy samples of this signal,

Vm=58ty) +t€, m=1,...,M, [2]
and from these samples we would like to simultaneously
estimate the image, f(r), and the field map, w(r).

This is clearly an ill-posed problem, since there is an
infinite collection of solutions, flr) and w(r), that closely
match the data y = (y,.. . .,y,n). We proceed by parameter-
izing the object and field map in terms of basis functions as
follows:

f(r) = 2 fubs(r —1,)
o(1) = D, w,b,(r — 1,). [3]

n=0

For the results presented here, we use the voxel indicator
function &, (r) = ¢b,(r) = rect(r1/Ar]) ce rect(rp/A,P] for
the P-dimensional problem. This choice is natural for the
object, flr), since the display device will use square areas
of nearly constant luminance; however, better choices for
the field map, w(r), may exist that would allow for the
modeling of within-voxel nonuniformity of the magnetic
field intensity. Alternative basis functions will be explored
in a future work. Substituting Eq. [3] in Eq. [1] yields

N-1
s(t) =~ DK(D) 3, fre e 0, (4]

n=0
where ®(k(t)) results from the Fourier transform of ¢(r),
ie., Sinc[kl(t)A,l] ce Sinc[kp(t]ArP). We express the noisy

measured samples of this signal in matrix-vector form as
follows:

v =A(o)f + ¢, [5]

where f = (f,,. . ..fa_1) and the elements of the M X N
matrix A(w) are

am,n((ﬂ) — (I)(k( tnl))e*l’u)nfme*I‘ZTI']((tm)'I‘n. [6]
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Our goal is to estimate the image, f, and the field map, w,
from the k-space data y, accounting for the statistics of the
noise e.

In Ref. 12, we used the formulation in Eq. [5] as part of
an inverse problem approach to field-inhomogeneity-cor-
rected image reconstruction (i.e., estimate the image f
given the field map, w). We showed that in regions with
large field inhomogeneity, the iterative reconstruction
method results in more accurate images than the standard
conjugate phase approach. However, this accuracy may be
limited by errors in the estimated field map. In Ref. 12, a
static field map from an additional scan was used. Because
of the size of the system matrix A, it is impractical to
directly calculate its inverse, and it is usually ill-condi-
tioned anyway. Instead, we used the iterative method of
conjugate gradients (CG). The main operations involved in
the CG method are computing Ax and A*y, i.e., evaluating
Eq. [4] and a complex conjugate transpose version of that
equation. We developed accurate approximations to speed
the computation of these two matrix-vector products: the
nonuniform fast Fourier transform (NUFFT) (13) and a
min-max optimal interpolator for time segmentation (12).
In this work, we propose to estimate both the image and
the field map, and we will use both of these speed-up
methods extensively.

Since the dominant noise in a single image for MRI is
white Gaussian (14), we can estimate f and w by minimiz-
ing the following penalized least-squares cost function:

1
Y(f, w) = 2 ly — A(w)f|I* + B:.R(f) + B,R(w) so that,
f, & = arg min ¥(f, w). [7]
fo

The second half of the equation for ¥(f, ) includes
regularization terms, R(f) and R(w), that penalize the
roughness of the estimated image and field map. The pa-
rameter B, is chosen to control noise but not to signifi-
cantly affect the resolution of the problem. For the regu-
larization of the field map, B, is chosen to result in a
relatively smooth field map, similar to the standard field
map estimates obtained after smoothing. For simplicity,
we used a quadratic regularization, R(f) = ;||Cf|* for a
matrix C that takes differences between neighboring pix-
els.

Implementation: Nonlinear Estimation Problem

The minimization problem (Eq. [7]) requires an iterative
algorithm. We alternate between updating f and &. First we
update the image given the current estimate of the field
map, and then we update the field map given the new
estimate of the image. To update the image, we exploit the
linear relation between the image and the data, and apply
the iterative conjugate gradient (CG) algorithm for minimi-
zation of Eq. [7] over f. Once we have updated our estimate
of the image, f, we use gradient descent on the cost func-
tion W from Eq. [7] to update the estimate of the field map,
®. The gradient of ¥ with respect to o is given by

9 1 1, 9
Ja, V(w) = 7 Gulw) + 7 gn(w) + TBzR(u)), [8]

Wy,
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where we define g,(w) as follows:

gul®) = =i 2 tuf5®*(k(t,,) @ tmrront) (y, — [A(w)fl).

m=1

(9]
We formulate the gradients based on the vector g given by,

g(w) = —IiD(f*)A*(@)DD)(y — A(w)f), [10]
where D(x) denotes a diagonal matrix with the elements of
the vector x on its diagonal. Inserting the vector g and
using our chosen regularization function R(w), we can
express the gradient of ¥ with respect to o as follows:

V¥ =, (g(0) + g () + BiC Co

= Real{g(w)} + B,C’' Co, [11]
Using the gradient in Eq. [11], we update our estimate of
the field map, *, by gradient descent:

0*"1 = wf — a(Real{g(w")} + B,C' CoX). [12]

The step size o is chosen such that the cost function, ¥,
decreases.

MATERIALS AND METHODS

In principle, one could apply the estimation method de-
scribed above to any k-space trajectory. However, the qual-
ity of the results will certainly be trajectory-dependent.
The spiral-in/spiral-out sequence was chosen because it
provides efficient coverage of k-space and a close spacing
of TEs. A spiral-in/spiral-out pulse sequence was used in
simulation, phantom, and human experiments with the
following parameters: TE/FA/FOV = 30 ms/60°/24 cm,
matrix size = 64 X 64, and a 1-ms gap between the end of
the spiral-in part of the pulse sequence and the beginning
of the spiral-out portion. We performed all field-corrected
image reconstructions using the fast, iterative technique
described in Ref. 12 on the entire spiral-in/spiral-out data.
This was done so that differences in the reconstructed
images would be due only to differences in the field maps,
and not to differences in the reconstruction or regulariza-
tion. We reconstructed the uncorrected images using a fast
gridding operation on the spiral-in and spiral-out portions
separately. The resulting images were then combined via a
square root of the average of the squares of the images.
The computations of Ax and A*yin Eq. [10] were carried
out with the NUFFT and time segmentation algorithms
described in Refs. 12 and 13. These methods dramatically
speed computation of the iterative methods while they do
not explicitly store the system matrix, which can be large.
Time segmentation is used to calculate the phase due to
field inhomogeneities at the endpoints of a limited number
of time segments over the readout interval and interpolate
to get the phase at intermediate points, as described in Ref.
2. The NUFFT is used to compute the signal equation at
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arbitrary k-space locations using the fast Fourier transform
(FFT) and local interpolation. Time segmentation was per-
formed with the use of L = 8 time segments. The NUFFT
used a 5 X 5 interpolation neighborhood and two times
oversampling for the FFT. Standard estimates for the field
maps are usually smoothed to reduce noise. We performed
a small amount of smoothing of the standard field map
estimates within the object being imaged, and extended
the field map beyond the object using a penalized,
weighted least-squares smoothing function (15).

Simulation Study

Simulation data sets were formed from a high-resolution
brain scan with its associated field map at a matrix size of
256 X 192 X 128, and then reconstructed at a lower reso-
lution (matrix = 64 X 64) for the reconstructed slice. Noise
was added to the data to give an SNR (||datal/[noise|) of
approximately 100.

First, a simulation study was performed to determine
the number of subiterations needed to update the image
and the field map. This simulation study was performed
with slight perturbations of either the image or the field
map. First, the image was shifted vertically by one pixel
and scaled by 0.9. This initial image, along with the true
field map, was fed to the CG algorithm, and 100 subitera-
tions were performed for the image update. The normal-
ized root mean squared error (NRMSE) was used to eval-
uate accuracy of the reconstruction. The number of subit-
erations needed to update the image was chosen by finding
the point at which the NRMSE reached within 15% of its
value at 100 subiterations (near convergence). A similar
procedure was used to determine the number of subitera-
tions needed to update the field map. We perturbed the
field map by shifting it vertically by one pixel and globally
subtracting 2 Hz. The number of subiterations needed to
update the field map was chosen as the number at which
the NRMSE reached 15% greater than its value at conver-
gence.

Next, we performed a simulation study to determine the
number of iterations of the joint estimation algorithm to
account for small, dynamic changes in the field map and
image that occur between time points in a functional time
series. Using the numbers of subiterations for the subloops
of the algorithm found above, we performed perturbations
on both the image and the field map, and determined the
total number of iterations of the joint estimation algorithm
by finding the point at which the maximum of the NRMSE
in the field map and image estimations dropped to within
15% of its value at 100 iterations. This will be the number
of iterations used between time points for the reconstruc-
tion of a time series of images.

For the first time point in a functional time series, the
standard field map estimate and image reconstructed using
that estimate may have a large error. Therefore, a larger
number of total iterations may be necessary for the joint
estimation method to approach convergence. To deter-
mine the number of total iterations required to reconstruct
the first time point, we started the algorithm with two
initial conditions. First, the algorithm was started with an
initial estimate of the field map of zeros. This was used to
test how fast the algorithm would converge to the correct
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field map when starting from a distant point. Second, the
algorithm was initialized with the standard estimate of the
field map. The standard field map estimate we are using is
from two acquisitions at slightly different TEs, as de-
scribed in the Introduction. For the standard estimate, an
additional scan was simulated at a TE delayed by 2 ms.
The time of 2 ms was chosen because it is short enough to
prevent 2w phase wrap, but is long enough to allow for
significant phase accrual due to off-resonance. We used
the average of the standard field maps from the spiral-in
sequence at the two TEs and the spiral-out sequence at the
two TEs as the standard field map. This convention was
used in both the simulations and the human experiments.
We examined the performance of our joint estimation over
iteration using the NRMSE from the true field map.

Human Studies

The human data sets were collected on a GE 3T Signa
Scanner (GE Medical Systems, Milwaukee, WI) in accor-
dance with the Institutional Review Board of the Univer-
sity of Michigan. A standard 3D spoiled gradient-recalled
(SPGR) sequence was used to acquire a T,-weighted refer-
ence image of each slice examined. Three normal human
subjects performed a functional task consisting of four
cycles of on/off bilateral finger-tapping, with each cycle
lasting 40 s. The subjects were instructed to keep their
head still during the functional studies. One human study
(subject 1) was performed with a TR of 2 s, yielding 80
time points. Two other human studies (subjects 2 and 3)
were acquired with a TR of 0.5 s to allow for good resolu-
tion of the respiratory waveform, which causes small shifts
in the field map of axial slices. A respiratory bellows was
used to acquire the respiratory waveform for these two
subjects. Reconstructions using the dynamic, jointly esti-
mated field maps were qualitatively compared to the re-
constructions using the static, standard estimates of the
field maps. In addition, we compared functional results
using the time series of images reconstructed with each
field map estimate using the number of active voxels at a
given threshold (i.e., the number of voxels with a correla-
tion coefficient with the sinusoidal task waveform that
exceeded a given threshold). The time series of the field
map estimates were also examined. We scanned a phan-
tom using the same sequence with a TR of 2 s and com-
pared it to the human study to examine variance of the
estimate and drifts in the magnetic field. The time series of
the higher temporal resolution human studies were com-
pared to the respiratory waveform as measured by the
respiratory bellows. A correlation test was performed to
assess whether the proposed joint estimation method ac-
curately reflected the respiration-induced phase varia-
tions.

RESULTS
Simulation Study

Figure 1 shows the axial and sagittal slices used in the
simulations and their associated field maps. The axial slice
was used to determine the optimal number of subiterations
for the image update and field map update subroutines.
Figure 2 shows the NRMSE over subiteration after either
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the image or the field map was perturbed as described in
Materials and Methods. The number of subiterations to use
for each update was set to the level at which the NRMSE
reached within 15% of its value at 100 subiterations. The
number of subiterations of the conjugate gradient method
needed to update the image was found to be 6. The number
of subiterations of steepest descent needed to update the
field map was found to be 19.

Using these numbers of subiterations, we perturbed both
the image and the field map as described in Methods and
Materials (the NRMSE vs. iteration is shown in Fig. 3 for
the image and the field map). The number of total itera-
tions of the simultaneous estimation method needed to
account for small dynamic changes was set to be the point
at which the NRMSE reached within 15% of its value at
100 iterations. This was found to be 5.

To examine the number of iterations needed to get an
initial accurate estimate of the image and field map for a
time series, a simulation study was performed with two
different initialization conditions and both the axial and
sagittal simulation objects from Fig. 1. Figures 4 and 5
show the NRMSE in the field map estimate over iteration
for the axial and sagittal studies, respectively, for both of
the initialization conditions discussed in Materials and
Methods. Both of these sets of curves show that the simul-
taneous estimation algorithm converges quickly: in about
20 iterations, its NRMSE is <15% greater than its value at
100 iterations. The stability of the joint estimation method
is also shown by these figures (i.e., when the algorithm
reaches an estimate close to the local minimum, it stays
near that minimum). This suggests that an efficient way to
implement the simultaneous estimation algorithm for time
series data is to initialize the field map for the first time
point with the standard, static estimate of the field map,

|
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FIG. 1. Objects used for simulation study: (a)
axial slice, (b) axial field map (Hz), (c) sagittal
slice, and (d) sagittal field map (Hz).

0 50 100
Iteration

Q

NRMSE

0.1

0.05

0 50 100
b Iteration

FIG. 2. NRMSE over subiteration for the image and field map,
updating subroutines of the joint estimation code. a: Perturbing the
image by a vertical shift of one pixel and a scaling, but providing the
true field map. b: Perturbing the field map by a vertical shift and an
intensity shift, but providing the true image.
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FIG. 3. NRMSE over iteration for perturbed image and field map
using five subiterations of CG to update the image and 19 subitera-
tions of steepest descent to update the field map.

and run 20 iterations to account for errors in the standard
estimation. Then for each subsequent time point, five iter-
ations are run to account for dynamic changes.

Figures 4 and 5 include the standard field map estimate
for reference. The error for the simultaneous estimation
algorithm is approximately half that of the standard field
map estimate. This is despite the use of two acquisitions of
spiral-in/spiral-out for the standard estimate compared to
one for the simultaneous estimation. Figure 6 shows the
map of the error in our estimate for the sagittal simulation.
Comparing this error to the sagittal slice in Fig. 1, we can
see that the error occurs near a peak in the field map at the
edge of the object. Since the field map outside of the object
is initialized to a low value, the quadratic regularization
has smoothed out the peak at the edge of the object. The
use of a regularization scheme (other than quadratic), such
as a Huber penalty (16) or a spatially varying penalty (17),
may improve estimation in those regions by preserving the
edges in the field map.

0.21 v -
0.15
=
<
0.1
(21
Z o—0 D
0.05
0 . . ) .
0 20 40 60 80 100
Iteration

FIG. 4. NRMSE in Hz vs. iteration number for the field map estima-
tion in the axial slice simulation. The solid line (—) indicates the
simultaneous estimation initialized with a zero field map, the circles
(O) are the simultaneous estimation initialized with the standard field
map, and the plus sign (+) is the standard field map estimate, which
is not iterative but is shown as a constant value vs. iteration.
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FIG. 5. NRMSE in Hz for the field map estimation in the sagittal slice
simulation. The solid line (—) indicates the simultaneous estimation
initialized with a zero field map, the circles (O) are the simultaneous
estimation initialized with the standard field map, and the plus sign
(+) is the standard field map estimate, which is not iterative but is
shown as a constant value vs. iteration.

Human Study

A data set was collected during a functional experiment, as
described for the human study (subject 1) in the Materials
and Methods section, with a TR of 2 s and 80 time points.
Field inhomogeneity distortions are generally worse for
lower slices of the brain that are closer to the air/tissue
interfaces of the sinus cavities. We show results for both a
slice low in the brain and a slice containing pixels with
significant correlation to the motor task. Figure 7 shows
the uncorrected image, the standard and jointly estimated
field maps, and the reconstructions obtained with those
field maps for a low axial slice at the 10th time point. The
T,-weighted anatomical scan is given for reference. Al-
though the two field maps look similar, the arrows in the
reconstructed images indicate positions at which the im-
ages show differences in the degree to which inhomoge-
neity correction was successful. The image reconstructed
with the standard field map shows blurring and signal loss
at the indicated positions, whereas the increased accuracy

FIG. 6. Error in Hz for the sagittal slice.
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of the jointly estimated field map allows for adequate
compensation and artifact reduction.

Figure 8 gives the results for the field map estimations
and the reconstructed images for a slice containing pixels
correlated to the bilateral finger-tapping task. The results
for the jointly estimated image and field map are shown for
the 10th time point. The standard field map differs con-
siderably from the jointly estimated field map for this
slice. Along the edge indicated by the arrow, the recon-
structed image with the standard field map shows signifi-
cant blurring due to field inhomogeneity. The jointly esti-
mated field map and image are largely free of this distor-
tion.

The reduced artifacts obtained with the jointly esti-
mated field map are also evident in the functional results.
Figure 9 shows the functional results from reconstructions
using the standard and dynamic field maps for all three
human subjects examined. Figure 9a—f show the func-
tional activation maps thresholded at a correlation coeffi-
cient of 0.5. The reference image shown under the func-
tional map is the image reconstructed using the corre-
sponding method. For subject 1 in Fig. 9a and d, both
methods show similar activation on the left-hand side, but

FIG. 8. Results of reconstruction
and estimation on a slice of inter-
est for a functional study of sub-
ject 1: (a) uncorrected image, (b)
standard field map estimate, (c)
jointly estimated field map, (d) T,
anatomical image for reference,
(e) image reconstructed using the
standard field map, and (f) image
reconstructed using the jointly
estimated field map.

b. n
e. f.
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160
40

20 FIG. 7. Results of reconstruction
and estimation on a slice lower in
the brain of subject 1: (a) uncor-
rected image, (b) standard field
map estimate, (c) jointly esti-
mated field map, (d) T, anatomi-
cal image for reference, (e) image
reconstructed using the standard
field map, and (f) image recon-
structed using the jointly esti-
mated field map.

only the joint-estimation method shows a comparable
number of active voxels on the right-hand side. The in-
creased bilateral detection corresponds with the increased
artifact correction (arrow in Fig. 8). Figure 9g shows the
number of pixels with correlation coefficients higher than
various thresholds for the two reconstructions for subject
1. The trend seen in Fig. 9a and d for a threshold of
0.5 holds for all the other thresholds examined, i.e. a larger
number of activated pixels result from correctly compen-
sating for the undistorted, dynamic field map. Figure 9b
and d show the functional maps for subject 2 (TR = 0.5 s),
and 9c and e show the functional maps for subject 3 (TR =
0.5 s). All maps were thresholded at a correlation coeffi-
cient of 0.5. Again we see with both of these subjects that
accurate compensation for the dynamic, jointly-estimated
field map results in a larger number of activated voxels.
The plots of the number of active voxels vs. the threshold
level for the two subjects are shown in Fig. 9h and i,
respectively.

We can examine the time course of the dynamic, jointly
estimated field map at a pixel of interest to study the
variance of our field map estimate and identify any main
field drift in the scanner. Figure 10 shows the time courses
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FIG. 9. Functional results for the
two reconstructions for all three
human subjects. Reconstruction
using the standard field map for
(a) subject 1, (b) subject 2, and (c)
subject 3. Reconstruction using
the jointly estimated field map for
(d) subject 1, (e) subject 2, and (f)
subject 3. Plot of number of pixels
with  correlation  coefficients
higher than the threshold for var-
ious thresholds for (g) subject 1,
(h) subject 2, and (i) subject 3.
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of the field map estimate of a voxel in the interior region of
a phantom and a voxel inside the brain of subject 1. A field
drift over the course of the time series exists in both the
human and phantom scans (a positive shift in the field of
about 2.5 Hz over the course of the 160-s scan). A similar
drift in the field map was seen for all pixels inside the
phantom and the brain. Such field drifts are seen routinely
in our stability scans, and may be due to heating of the
passive shims. The field map estimates in the human study
have higher oscillations than in the phantom. Regressing
out a second-order polynomial fit to the time courses
shown in Fig. 10 gives a residual standard deviation (SD)
of 0.34 Hz, averaged over the brain, compared to 0.12 Hz
averaged over the phantom. Thus our estimation algorithm
is fairly stable over the course of a time series, and dy-
namic estimation allowed us to track a 1-Hz/min drift in
the main field strength.

The higher variance in the time series of the field map
from the human study compared to the phantom study
(Fig. 10) may be due to respiration-induced field changes
during the course of the time series. To examine this effect
further, two of the subjects were scanned with a TR of 0.5 s
to allow for good resolution of the respiratory effect, and a
respiratory bellows was used to acquire the respiration
waveform. We performed a correlation analysis between
the measured respiratory waveform and that from the time
course of the estimated field map after we regressed out a
second-order polynomial fit to remove the main field drift
component. We found that for subject 2, there was a mean
correlation coefficient of 0.37 over the brain region be-
tween the field map values (after a second-order polyno-
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FIG. 10. Time course of a jointly estimated field map for a typical
pixel inside (a) a phantom and (b) a brain.
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FIG. 11. Plot of the time course of a field map for a pixel inside the
brain of subject 3 after a second-order polynomial fit was regressed
out to remove the main field drift component. Shown also for
reference is a scaled version of the waveform measured from the
respiratory bellows.

mial fit was removed) and the respiratory waveform. For
subject 3, the mean correlation coefficient over the brain
was 0.40. A plot of the time course of the field map for a
pixel inside the brain of subject 3 is shown in Fig. 11. This
pixel was near the center of the brain and had the highest
correlation coefficient with the respiratory waveform
(0.79). Also shown in this figure, for reference, is a scaled
version of the respiratory waveform as measured from the
respiratory bellows. The variations in the field map values
are a good fit to the scaled measurements from the respi-
ratory bellows.

Noniterative Dynamic Estimation

At first glance, it might appear that one could form a
dynamic field map estimate by first reconstructing uncor-
rected images from the spiral-in and spiral-out parts of the
sequence separately. Since these acquisitions were spaced
by 1 ms in our studies, we were able to form a field map by
taking the phase difference of these two images and divid-
ing by the difference in TEs. Figure 12 shows the field
maps estimated in this manner for the simulation and
human experiments. These field maps have shapes that are
fairly consistent with the truth (refer to Figs. 1 and 8), but
the scaling is wrong, and even results in phase wraps in
the field map. The problem with this noniterative dynamic
method is that the point spread function of a spiral-in
sequence with field inhomogeneity differs greatly from
that of a spiral-out acquisition. A possible explanation is
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offered in Ref. 8: gradients in the field map distort the local
k-space trajectory, which may cause a shift in the timing of
the sampling of the center of k-space (the effective TE) that
may differ greatly from the planned TE. In the usual case,
when spiral-out sequences of the same slice at two differ-
ent TEs are compared, this effective TE shift is the same for
both, which keeps the difference in effective TEs the same
as the planned TE delay. However, the time at which the
origin of k-space is sampled for spiral-in and spiral-out
sequences is affected differently by gradients in the field
map. This results in an effective difference in TE between
the spiral-in and spiral-out sequences that varies spatially.
Without advance knowledge of the true field inhomogene-
ity distribution or its gradients, we cannot determine this
spatially-variant difference in effective TEs. Hence, in ad-
dition to the previously mentioned problems associated
with the standard field map estimation, field map esti-
mates based on phase differences between spiral-in and
spiral-out images are additionally degraded by a spatially-
variant scale factor. Note that the simultaneous estimation
method presented here is not significantly affected by
these gradients.

DISCUSSION

The simulation studies show that our joint estimation
technique can estimate a field map that is more accurate
than the standard field map estimate. The standard field
map estimate requires two acquisitions at slightly different
TEs, and assumes that the field map remains static over the
course of a time series. Our joint estimation technique uses
a spiral-in/spiral-out sequence to estimate an undistorted
field map and image at each acquisition. This dynamic
estimate was formed with the use of a penalized, least-
squares joint-estimation algorithm and a spiral-in/spiral-
out acquisition, which does not decrease the scan effi-
ciency from a spiral-out sequence.

The joint estimation algorithm is very stable. For each
time point, the algorithm yields an estimate of the field
map. By looking at the variance in the time series of the
estimated field maps, we can examine the stability of the
estimations. In the phantom experiment, the average SD
for the time course of the field map was only 0.12 Hz after
trends were removed to account for the drift of the mag-
netic field. The mean SD from the human results was
0.34 Hz. This higher variation resulted from respiration-
induced phase variations during the time series. The time
series of pixels inside the brain in a slice from two subjects
exhibited significant correlation with the respiratory

FIG. 12. Field maps estimated from the
phase differences of spiral-in and spiral-out
images reconstructed separately. a: Simula-
tion field map (Hz). b: Human field map (Hz).
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waveform as measured with a respiratory bellows. A mean
correlation coefficient of 0.4 was observed for the time
course of the field map with the measured respiratory
waveform in a slice high in the brain in two subjects. This
respiration effect should be even more significant for slices
lower in the brain.

For this work, the accurate measurement of respiratory
effects in the time course of the field map attests to the
stability and sensitivity of our method. In future studies,
the ability of our proposed method to accurately estimate
and correct for respiratory noise should be compared with
other physiological noise-correction schemes. For exam-
ple, a technique called dynamic off-resonance in k-space
(DORK) assumes that respiration-induced phase is con-
stant over the slice (18). This assumption essentially re-
stricts the application of DORK to axial slices. Although
our method does use spatial regularization, it does not
enforce a uniform shift for the slice. Therefore, our method
is applicable to any slice orientation.

Besides the fact that the proposed method is able to track
dynamic changes in the field map, the simulation and
human experiments suggest that our method results in a
more accurate estimate of a single field map. Although the
dynamic changes in the field maps over the time series for
the human studies were relatively small (<5 Hz), the func-
tional results were dramatically different when the jointly
estimated field map was used instead of the standard field
map. The jointly estimated field map resulted in an image
with less artifact and a higher number of activated voxels
in the functional studies. The standard field map estima-
tion method suffers from the use of reference images that
are distorted by field inhomogeneity effects, physiologically-
induced phase differences, and motion between the refer-
ence images.

The joint estimation algorithm can accurately and dy-
namically track and correct for changes in the field map
during the course of the functional study. These changes
may be due to respiration-induced phase changes, head
movement, and drifts in the center frequency of the mag-
netic field. These effects will become even more significant
at higher field strengths, so dynamic estimation of the field
map may be crucial for success of fMRI at high fields. In
this work, the subjects were instructed to hold their head
still. In patient and pediatric populations, the subjects may
not be able to remain still for the time required for a
functional study. In these cases, dynamic field map esti-
mation may be necessary for adequate artifact correction
and proper estimation of motion-correction parameters. In
future studies, we will examine the impact of dynamic
field map estimation on motion correction.

Our proposed joint estimation algorithm can be used
with any pulse sequence that provides adequate sampling
of k-space with diversity in TEs to give information about
phase accrual. It has also been used with a four-echo
spiral-out sequence to jointly estimate the image, field
map, and T, relaxation map (19). The spiral-in/spiral-out
sequence was chosen for this work because it provides an
efficient coverage of k-space and allows for a close spacing
of TEs. Subsampling strategies, such as those using vari-
able-density spirals (9) or radial lines (10), may allow for a
reduction in the acquisition time.
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One drawback to the proposed method is computation
time. On a 2 GHz Pentium workstation running Matlab,
five iterations of the proposed method to estimate an image
and a field map took approximately 2 min. Recall that one
iteration of our proposed method includes six subitera-
tions of CG on the image and 19 subiterations of gradient
descent. Considering that most functional runs have hun-
dreds of time points and multiple slices, this method is
computationally expensive for large studies. Multiple pro-
cessors and dedicated equipment may be necessary to
ensure that data can be processed in a timely manner.
Some improvement in computation time can be traded for
a decrease in accuracy, i.e., reducing the total number of
iterations or reducing the number of subiterations for the
image and field map updates would decrease the total
reconstruction time. A small savings in computation time
may be realized by limiting the joint estimation to pixels
inside a mask of the brain. It may also be possible to reduce
the number of unknowns to be dynamically estimated by
limiting the spatial frequencies of the dynamic portion of
the field map, similar to the DORK method. Finally, steep-
est descent is used to update the estimate of the field map.
A better algorithm for this nonlinear minimization could
significantly reduce computation time.

CONCLUSIONS

We have presented a method to accurately estimate an
undistorted image and field map for each acquisition of a
spiral-in/spiral-out sequence. This method results in sta-
ble field map estimates that are able to track field drift and
respiration-induced phase variations over the course of an
fMRI time series. In addition to producing dynamic esti-
mates, we have shown that our method can result in better
single field map estimates than the standard estimation
technique, which is sensitive to differences between the
reference images due to subject motion and respiration.
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