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Deletion and translocation mutations have been
shown to play a significant role in the genesis of
many cancers. The hprt gene located at Xq26 is a
frequently used marker gene in human mutational
studies. In an attempt to better understand potential
mutational mechanisms involved in deletions and
translocations, inverse PCR (IPCR) methods to am-
plify and sequence the breakpoints of hprt mutants
classified as translocations and large deletions
were developed. IPCR involves the digestion of
DNA with a restriction enzyme, circularization of
the fragments produced, and PCR amplification
around the circle with primers oriented in a direc-

tion opposite to that of conventional PCR. The use
of this technique allows amplification into an un-
known region, in this case through the hprt breakpoint
into the unknown joined sequence. Through the use of
this procedure, two translocation, one inversion, and
two external deletion hprt breakpoint sequences were
isolated and sequenced. The isolated IPCR products
range in size from 0.4 to 1.8 kb, and were amplified
from circles ranging in size from 0.6 to 7.7 kb. We
have shown that inverse PCR is useful to sequence
translocation and large deletion mutant breakpoints in
the hprt gene. Environ. Mol. Mutagen. 39:22–32,
2002. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

Cytogenetic studies have shown that tumors often have
chromosomal rearrangements, that is, translocations, inver-
sions, insertions, and large deletions [Tycko and Sklar,
1990; Rowley, 1994]. These rearrangements often involve
oncogenes or tumor suppressor genes, which are activated
or inactivated by these alterations, respectively [Rowley,
1994; Duro et al., 1996]. In some cases, a fusion protein is
created that has unique oncogenic properties [Ben-Neriah et
al., 1986; Walker et al., 1987; Golub et al., 1994]. For
example, the t(9:22)(q34;q11) rearrangement creates the
bcr-abl protein [Ben-Neriah et al., 1986; Walker et al.,
1987]. Molecular studies of the breakpoints have revealed
novel mechanisms of mutation such as illegitimate V(D)J
recombinase-mediated rearrangements, especially between
the T-cell–receptor (TCR) genes or immunoglobulin (Ig)
genes and oncogenes (e.g., TCRA/B locus with the BCR
gene, TCRA with MYC) although some involve two non-
TCR/Ig genes (SIL-TAL) [Tsujimoto et al., 1985; Fitzgerald
et al., 1991; Xia et al., 1991; Breit et al., 1993; Raimondi,
1993; Cline, 1994; Sato et al., 2001]. Other sequences have
been found at the breakpoints, including AT-rich palin-
dromes [Kurahashi et al., 2000; Edelmann et al., 2001],
unstable repeat region [Wiemels et al., 2000], Alu, topo-

isomerase II sites [Obata et al., 1999], minisatellite core
recombination [Wang et al., 1998], palindromic sequences
[Ishida et al., 1998], purine/pyrimidine tract [Thandla et al.,
1999], palindromic hexamer [Bhagirath et al., 1995], LINE1
insertion [Liu et al., 1997], IGH switch pentamers, and
translin binding sites [Jeffs et al., 1998].

Rearrangements are also seen as mutations in genetic
diseases [Bech-Hansen et al., 1987; Lehrman et al., 1987a,b;
Den Dunnen et al., 1989; Yen et al., 1990; Hu et al., 1991;
Capon et al., 1996; Chen et al., 1997; Amos-Landgraf et al.,
1999; Edelmann et al., 1999; Potocki et al., 2000; Valero et
al. 2000]. Usually these are a small percentage of mutations;
however, for some genes, such as Duchenne and Becker
muscular dystrophy, large deletions can be a major percent-
age of the mutations [Den Dunnen et al., 1989]. Sequencing
studies have often led to the finding of repeated sequences
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at the breakpoints [Streisinger et al., 1966; Schmucker et al.,
1996], including inverted repeats [Beauchamp et al., 2000].
Also, Alu-Alu recombination or insertion appears to be a
common mechanism of rearrangement [Myerowitz et al.,
1987; Muratani et al., 1991; Marcus et al., 1993; Lehrman et
al., 1997a,b; Ko et al., 1998; Hunt et al., 1999; Koda et al.,
2000], especially with involvement of the Alu core se-
quence [Harteveld et al., 1997; Hiltunen et al., 2000]. LINE
elements have also been found at breakpoints [Van de
Water et al., 1998]. For example, recent studies at several
contiguous gene syndrome loci have found common dele-
tions at repeated sequences [Capon et al., 1996; Chen et al.,
1997; Amos-Landgraf et al., 1999; Edelmann et al., 1999;
Potocki et al., 2000; Valero et al., 2000]. Other types of
sequences found at breakpoints include matrix attachment
sites or topoisomerase sites, B-cell switch sites, polymerase
sites, chi-like elements, simple purine-pyrimidine, homopy-
rimidine, or AT tracts, and Z-DNA (reviewed in Rainville et
al., 1995; Schmucker et al., 1996; Kehrer-Sawatzki et al.,
1997; Barr et al., 1998; Ueki et al., 1998). Retroviral se-
quences have also been shown to be involved in intrachro-
mosomal rearrangements on the Y chromosome [Kamp et
al., 2000]

The hprt gene is widely used as a model gene in both in
vivo studies of somatic mutation and in vitro studies of
mutation [Albertini et al., 1990; O’Neill et al., 1990b].
Constitutional mutation at hprt also causes Lesch–Nyhan
syndrome and X-linked gout [Lesch and Nyhan, 1964;
Jinnah and Friedman, 2000]. The hprt gene has shown itself
capable of capturing many mutation types and many muta-
tional mechanisms. This includes point mutations, dele-
tions, insertions, and translocations and such mechanisms as
illegitimate V(D)J recombinase-mediated deletion [Recio et
al., 1990; Fuscoe et al., 1991, 1992; Rainville et al., 1995].
Rearrangements (inversions, duplications, translocations,
large deletions) make up a small percentage of hprt somatic
mutations in normal individuals or of germinal Lesch–
Nyhan mutations (�15%) [Nicklas et al., 1989; O’Neill et
al., 2000]; however, they can rise to 60% of in vitro irradi-
ated cells or in radiation-exposed individuals [Nicklas et al.,
1990; O’Neill et al., 1990a; Albertini et al., 1997]. Specific
deletions have also been found in exposed cells or individ-
uals [Rainville et al., 1995; Pluth et al., 1996]. It is impor-
tant to determine the breakpoints of these rearrangements
because these mutations can reveal interesting new mecha-
nisms of mutation; however, this can be a difficult propo-
sition because of the large distances involved in deletions
and inversions and the unknown partner in translocations
and insertions.

Previously, we mapped linked markers around the hprt
gene [Nicklas et al., 1991; Lippert et al., 1995a,b] and
developed several methods to determine the breakpoints of
hprt deletions and other rearrangements [Lippert et al.,
1995a,b, 1997; Rainville et al., 1995; Van Houten et al.,
1998; O’Neill et al., unpublished observations]. We studied

the breakpoints of large deletions contained within the hprt
gene (internal deletions) by multiple PCR, to define the
breakpoint regions, followed by amplification across the
breakpoint and sequencing [Rainville et al., 1995]. We
developed long PCR methods to amplify across breakpoints
and define hprt breakpoint location [Van Houten et al.,
1998]. We used 3� RACE (rapid amplification of cDNA
ends) to amplify hprt fusion partners in large deletions
[Lippert et al., 1997]. In these latter studies, we found that
about 1/3 of deletions made a fusion transcript. We also
used pulsed-field gel electrophoresis to determine approxi-
mate deletion size by deletion mapping and by PCR for the
known linked markers [Lippert et al., 1995b]. Finally, we
performed karyotypic analyses on selected mutants and
found cytogenetic rearrangements involving Xq26.1, where
the hprt gene is located (O’Neill et al., unpublished obser-
vations). Although the preceding methods could isolate and
sequence the breakpoints of internal deletions and some
external large deletions and translocations, we were still
unable to determine the breakpoints of many rearrange-
ments.

Inverse PCR was described in 1988 [Ochman et al., 1988;
Triglia et al., 1988; Fu and Evans, 1992]. In this technique,
genomic DNA from a mutant is restricted and then circu-
larized. PCR is performed around the circle using primers
from the known gene across the breakpoint into the new,
unknown joined sequence of the translocation, deletion, or
insertion. Sequencing of this PCR product then allows de-
termination of the breakpoint sequence. Inverse PCR has
been used to sequence breakpoints of translocations or other
rearrangements [van Bakel et al., 1995; Forrester et al.,
1999; Akasaka et al., 2000], to sequence unknown flanking
regions [Li et al., 1999; van Heel et al., 2000], to determine
insertion points of viruses [Ohshima et al., 1997; Neves et
al., 1998; Tonjes et al., 1999], and to determine sequence of
cDNAs [Chowers et al., 1995; Huang, 1997]. This report
describes the application and adaptation of inverse PCR to
the sequencing of five hprt gene rearrangement mutations.
With the near completion of the genome project, the com-
plete sequence and location of the new sequence joined to
the hprt gene could be determined for each mutation.

MATERIALS AND METHODS

The mutant T-cell clones that were studied were isolated from human
peripheral blood using the in vivo hprt cloning assay, which selects hprt�

arising in vivo in blood, or through an in vitro hprt cloning assay, which
selects hprt mutant clones after an in vitro treatment with chemicals or
radiation [O’Neill et al., 1987, 1990b]. Briefly, hprt mutant T-lymphocytes
cells are selected by their ability to grow in the purine analog 6-thioguanine
in limiting dilution. These clones can be enumerated to determine a mutant
frequency and grown for molecular analyses of the hprt mutations. The
characteristics of the mutant clones chosen for study are shown in Table I.
Clones were chosen for analysis that had large deletions of the hprt gene
(missing exon fragments by Southern blot) or putative hprt gene rearrange-
ments (altered hprt fragments on Southern blot).

Based on the Southern blot and multiplex hprt PCR [Gibbs et al., 1990]
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information, a strategy was constructed to map the breakpoint to a specific
PstI or HindIII fragment, upon which IPCR could be performed. To
determine more closely the extent of deletion, an intronic primer flanking
a restriction enzyme site was paired with several downstream primers.
These PCR reactions were carried out by adding 100 ng of genomic
template to a solution of 10 mM Tris, pH 8.3, 50 mM KCl, 1.5 mM MgCl2,
0.2 mM dNTPs, 0.2 �M of each primer, and 2.5 U AmpliTaq. Cycling
conditions on the Perkin Elmer Cetus 480 thermocycler (Perkin Elmer
Cetus Instruments, Norwalk, CT) were as follows. a 5-min denaturation at
96°C, the addition of enzyme, 33 cycles of 96°C for 30 sec, 60°C for 30
sec, and 72°C for 4 min. A wild type size PCR product from such a reaction
indicated that the genomic sequence for both primers was present and that
they were on the same continuous DNA fragment. However, if a product
was not produced that is normally present in wild type DNA, it indicated
that one or both of the primers has been deleted or that one of the primers
may have been translocated such that the primer pair was no longer
contained on the same DNA fragment.

Once the approximate breakpoint locations were identified, appropriate
primers were designed (Oligo 4.1; National Biosciences, Plymouth, MN) to
perform IPCR. The method utilized for performing the IPCR is dia-
grammed in Figure 1. The enzyme and primers used for each mutant are
listed in Table II. The primer sequences are given in Table III. As shown
in Figure 1, the primers are oriented opposite to conventional PCR primers.
Genomic DNA samples (5 �g), both mutant and a wild type control, were
digested overnight at 37°C using 5 �l of the appropriate restriction enzyme
buffer, 37.5 �l of double-distilled water (ddH2O), and 2.5 U of enzyme.
After 4 hr, 2.5 U of additional enzyme was added. A phenol/chloroform
extraction was performed and the DNA was then resuspended in 45 �l of
T10E1.

Ligation was carried out overnight at room temperature at two different
concentrations. The first concentration contained 1 �l of digested DNA, 80
�l T4 DNA ligase buffer, 318 �l ddH2O, and 1 U of T4 DNA ligase. The
second concentration contained 10 �l of digested DNA, 80 �l T4 DNA
ligase buffer, 309 �l ddH2O, and 1 U of T4 DNA ligase. Before ligase was
added, the reaction was placed at 37°C for 2 min. This product was then
also phenol/chloroform extracted, and resuspended in 20 �l of ddH2O.
Two rounds of PCR were then performed using seminested primers. The
first round contained 10 �l of the mutant or wild type ligation product and
appropriate blank tubes were added to a solution of 10 mM Tris, pH 8.3,
50 mM KCl, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.2 �M each primer, and 2.5
U AmpliTaq. Cycling conditions for the first round involved a 5-min 98°C
denaturation to nick the circularized DNA and facilitate its amplification.
Thirty-three cycles of 96°C for 30 sec, 60°C for 30 sec, and 72°C for 4 min
followed. Second-round PCR used 1 �l first-round product as a template
and a 96°C 5-min denaturation followed by the same 33 cycles as the first
round. All PCR products were then run out on a 0.8% TBE gel, where

mutant and wild type products could be compared. The sizes of the PCR
products for each mutant are listed in Table II.

Reactions with a unique clean IPCR product were QIAquick spin col-
umn purified (Qiagen, Chatsworth, CA), and others were QIAquick gel
extraction purified (Qiagen). These products were sequenced in the Ver-
mont Cancer Center DNA Analysis Facility on an ABI 373.

The sequences near the breakpoints were examined for simple repeats,
known sequences found at other breakpoints (Table IV), human repeats
(e.g., Alu, LINE), and secondary structures (hairpins). The simple repeats
at the breakpoints were examined by eye, and the known breakpoint
sequences were searched using the program DM5 (University of Arizona),
allowing up to one mismatch [two for V(D)J recombinase consensus], the
human genome repeats using RepBase (www.girinst.org), and the second-
ary structure using the program Lasergene (DNA Star, Madison, WI).

RESULTS AND DISCUSSION

Table I describes five mutants that gave IPCR products.
All had either a large deletion extending external to the hprt
gene by Southern blot and/or multiplex PCR (i.e., including
at least exon 1 or exon 9) or showed fragment shifts on
Southern blot, indicating disruption of the gene but no
deletion. These latter were likely to be translocations, al-
though they could have been inversions or insertions. For
the large deletions, deletion size was estimated by analysis
of markers linked to hprt in Xq26.1.

Figure 1 depicts the inverse PCR method that was used to
amplify the rearrangement breakpoint. We first tested this
method with a wild type intron 3 PstI fragment and found
the appropriate size fragment (data not shown). Table II lists
the primers and restriction enzymes that were utilized dur-
ing the IPCR for each mutant. Figure 2 also shows PCR
results with one mutant (LS535G M3) using IPCR of a
HindIII fragment with hprt intron 5 antisense and intron 6
sense primers.

Table V lists the breakpoint sequences for the five mu-
tants. The near completion of the genome project has al-
lowed identification of all the genomic partners involved in
the rearrangements. Of note, the complete sequence of all
the non-hprt sequence in all the IPCR products was deter-

TABLE I. Characteristics of HPRT Mutant Clones

Donor’s characteristics Mutant name

Southern blot results

Multiplex PCR
results

Approximate
deletion size by
linked marker

analysisPSTI HINDIII

Individual worked on Manhattan
project (plutonium exposure)

LS535G M3 Del ex7–ex9 Del ex5–ex9 �ex7/8, �ex9 �50 kb

Father of a child with Prader–Willi
syndrome

LS252 A13C3 Del ex2, ex3, ex4, ex6,
ex7–ex9

ex1 larger?

Del ex2–ex3, ex4,
ex5–ex9

new 5.2 kb fragment

�ex2, �ex3, �ex4,
�ex5, �ex6,
�ex7/8, �ex9

�570 kb

Normal individual MF33 A4G5 Del ex4, ex6, ex7–ex9 Del ex4, ex5–ex9 �ex4, �ex5, �ex6,
�ex7/8, �ex9

�1.25 Mb

Normal individual MF38A A14C4 Del ex1 No change �ex1 �300 kb
Normal individual, cells exposed

to 300 cGy in vitro
LS323 M108 Del ex3

new 4.2-kb and
new 0.9-kb fragment

Del ex2–ex3
new 5.2-kb and

new 6.5-kb fragment

�ex3 NA
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mined including the restriction sites and corresponded per-
fectly to the matched sequence from the Human Genome
Project; for example, the proper restriction site sequence
was found in the genomic DNA for the region containing
that sequence.

For the putative exon 7–9 deletion, LS535G M3, the

sequence analysis shows that the mutation is a simple
22,292 basepair (bp) deletion starting in intron 6, reasonably
consistent with the estimate of about 50,000 bp from linked
marker analysis. The breakpoint shows no repeated se-
quence. Search for other possible breakpoint features
showed weak consensus V(D)J recombinase sites near the

Fig. 1. Inverse PCR method.
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breakpoints (Fig. 3). The hprt sequence had the sequence
tactgtt [two bases off the consensus cac(a/t)gtg] 13 bases 3�
of the breakpoint, but no obvious nonamer (consensus
acaaaaacc) either the expected 12 or 23 from the heptamer.
The new sequence had two possible heptamers (caacagac
and tactgtt, both two bases off the consensus) 3 and 15
bases, respectively 5� of the breakpoint. There is a nonamer-
like sequence, agcatttat 12 bases 5� of the putative heptamer
(consensus ggtttttgt).The hprt breakpoint is also within a
LINE sequence (L1MB5) and the other breakpoint is also

within a LINE element (L1MC5), although there is not
alignment of the two LINE elements.

The putative exon 2–9 deletion, LS252 A13C3, has a
breakpoint in intron 1 and deletion of approximately 500 kb
based on the genome sequence. This is a little less than the
estimate of about 570 kb from pulsed-field studies; how-
ever, there is an official gap in the Human Genome se-
quence between the two breakpoints that will underestimate
the distance. There is a 1-bp repeat at the breakpoint. Figure
3 also shows low homology V(D)J recombinase sites near

TABLE II. Inverse PCR: Restriction Enzyme for Circularization, Primers for Amplification, and Resulting PCR Product Size
for Each HPRT Mutant Clone

Mutant name
Restriction

enzyme for IPCR IPCR circle size PCR primers used PCR product size
Size of “new”
DNA inserted

LS535G M3 HindIII 7.7 kb 37184S 1.6 kb 712 bp
7747 bp 32124A 1638 bp

31075A
LS252 A13C3 PstI 2.8 kb 11975S 1.8 kb 1060 bp

3354 bp 11139A 2380 bp
11005A

MF33 A4G5 PstI 0.6 kb 24778S 0.54 kb 151 bp
1038 bp 25434S 507 bp

24902A
MF38A A14C4 PstI 1.4 kb 3261S 0.4 kb 131 bp

1364 bp 2380A 382 bp
2278A

LS323 M108 PstI 0.7 kb 17089S 0.4 kb 104 bp
673 bp 17028S 393 bp

16808A

TABLE III. Sequences of HPRT Primers Utilized

Sense primersa Sequence 5� � 3� Antisense primersb Sequence 5� � 3�

3621 GTGGCTGTTGTTTTTATTCAGTTG 2278 TCCTTAGTTCCTTCGTGTGTCAA
11975 CTTGAATGTGATTTGAAAGGTAAT 2380 GGTAAGGACCAGATTCTCATTTTC
12879 AGACTTCTAAGAGTTTGGGTTTTC 11005 GAACTCCCTTGAAATATACACTTG
12925 GGTGATTTTTCCCCCTTACTGTGA 11139 ATGCACCATTTTGTAGTGCTTTAA
17089 CTACATCGGTTTGTGGGGAGTCAA 16808 ACCTACTGTTGCCACTAAAAAGAA
24978 GTAGAGGAGAGGGTAGAGCAACTC 17028 AAAAAGTATCCCAAGTCCCAACAG
25434 AAAAAGCCTTGGGGCAAACAGGA 24902 AGAGCGTCACTGTCAACTACATCA
30598 TGCAAATACAAGTTTGAAGACTCA 31075 CCTCTCACCATAAACCCTCACTTC
31075 CCTCTCACCATAAACCCTCACTTC 32124 GAACCACATTTTGAGAACCACTGA
37184 CATTAGCAGTCATTCTCCCTTCTC 32396 TCACTAACAGCCTCTCTCTCTCTC

aNumbering is from 5� end.
bNumbering is from 3� end.

TABLE IV. Sequence Motifs Searched for at Breakpoints

Motif Sequence Reference

Vertebrate topoisomerase II cleavage site PNYNNCNNGYNGKTNYNY Spitzner and Muller, 1988
DNA pol frameshift hotspot TCCCCC CTGGCG Kunkel, 1985
DNA pol frameshift hotspot ACCCWR Kunkel, 1985
DNA pol frameshift hotspot TGGNGT ACCCCA Kunkel, 1985
Chi and chi-like sequences GCTGGTGG CCWCCWGC Dewyse and Bradley, 1989
Human deletion hotspot TGPPKM Krawczak and Cooper, 1991
Consensus Ig switch TGGGG Krawczak and Cooper, 1991
V(D)J recombinase consensus site CACWGTG Shuman, 1991
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the breakpoints. tactggg is found 16 bases 3� of the hprt
breakpoint with no obvious nonamer, and gactgtt is 8 bases
5� of the new sequence breakpoint, also with no obvious
nonamer. The hprt breakpoint is also within an Alu se-
quence and about 60 bp 5� from a series of ttttg repeats,
although the other breakpoint is not. The other breakpoint
sequence is in the 3�UTR of a gene, hypothetical protein
(GenBank accession number AL137163, XM010423.1
mRNA).

The results for the putative exon 4–9 deletion, MF33
A4G5, were unexpected, showing hprt intron 3 fused to a
sequence on 3q24. This indicates that rearrangement is a
translocation rather than a simple deletion. Since hprt exons
4–9 are not present by multiplex PCR, the rearrangement
must be both a translocation [probably der (Xpter-Xq26:
3q24–3qter)] and a deletion of hprt exons 4–9 to up to 1.25
Mb distal to hprt (based on pulsed-field analysis). Unfortu-
nately, it is not possible to check the orientation of the
breakpoint piece of 3q26.31with regard to the centromere,
given that the genomic contig (AC004081) consists of 25
unordered pieces. The disposition and arrangement of distal
Xq and proximal 3 are unknown. Given that the 3q24
proximal sequence is known, it would be possible to attempt
IPCR from that sequence into what would presumably be
distal Xq(27?). We did attempt IPCR from the known 3q24
sequence in wild type, nonmutant cells, before we were able
to obtain the full 3q24 sequence from the Genome Project.
We obtained several products; however, the one product
that gave a readable sequence gave uninterpretable results
(the best match was a “joining” of several short segments
proximal to hprt on Xq, suggesting a nonspecific amplica-

tion or that the sequence is not yet in the Human Genome
database). There is a 9-bp match of the sequences 3� to the
breakpoint, which must have occurred at hprt bp 68,739 and
AC061708 bp 31,530 because the starred base in Table V
matches the new sequence and not the hprt sequence. Re-
combination at this repeat match was probably the mecha-
nism of rearrangement. There are no known repeated ele-
ments at or near either breakpoint. Both breakpoints are
within 6-bp stems of stem/loop structures.

MF38A A14C4 also appeared to be a putative deletion of
exon 1; however, it gave a fusion of distal hprt intron 1 to
a sequence from 13q14. Because hprt exon 1 is not present
by multiplex PCR and the breakpoint itself would not dis-
rupt exon 1 amplification, the rearrangement must be both a
translocation (probably der 13pter-13q14: Xq26-Xqter) and
a deletion of exon 1. Unfortunately, it is not possible to
check the orientation of the breakpoint piece of 13q14 with
regard to the centromere because the genomic sequence
(AC061708) consists of 25 unordered pieces. The disposi-
tion and arrangement of distal 13q and proximal X are
unknown. Since the exon 1 deletion could be small, it might
be possible to perform long PCR from 5� hprt to 13q14 in
preference to IPCR from distal 13q14 to trap the other
breakpoint. Of interest, there was a 12-bp repeat at the
breakpoint and recombination at this sequence was probably
the mechanism of rearrangement. There are no known re-
peat elements at either breakpoint. The overlap at both
breakpoints spans a stem and loop.

LS323 M108 was predicted to be a translocation because
of the presence of new fragments on Southern blot. How-
ever, this mutation was also a surprise because the attached
sequence was from Xq23, indicating a probable paracentric
inversion involving Xq23 and Xq26. The hprt breakpoint
occurs in the middle of exon 3 near the run of six G’s, which
is a hotpoint for frameshifts; this is the reason that ampli-
fication of exon 3 fails in multiplex PCR. There is a 4-bp
repeat at the junction. The other breakpoint is within an
MLT1A element, although the hprt breakpoint is not near or
within any known elements. Both breakpoints are within
loops of a stem/loop structure.

Thus, in the five breakpoints we found three with direct
repeats at the breakpoints. The two without repeats had
possible V(D)J recombinase sites and in addition LS535G
M3 had LINE1 elements at both breakpoints. In our previ-
ous studies of hprt internal deletion breakpoint sequences
[Rainville et al., 1996] we found that 10 of 21 mutations had
2- to 5-bp repeats at the breakpoints, three mutants had
breakpoints at the bottom of hairpins, several occurred at
consensus topisomerase sites, and one breakpoint occurred
at the end of a Donehower element. We also found a cluster
of breakpoints in exon 6 that occurred near a stem/loop
structure. Osterholm et al. [1996] also studied16 hprt dele-
tions and found that most deletions involved short repeats at
the deletions and occurred in AT-rich regions. They found
a 9-bp palindrome and TGA direct repeat in the 5� region of

Fig. 2. PCR products from inverse PCR of HindIII cleaved and ligated
DNA from mutant LS535G M3. The hprt breakpoint is at 37594 [Edwards
et al., 1990, nomenclature]. The HindIII site is at 30555–30560. Lane 1:
1-kb ladder; lane 2: sense primer 37184, antisense primer 32124; lane 3:
sense primer 37184, antisense primer 31075; lane 4: sense primer 37184,
antisense primer 30598; lane 5: sense primer 37338, antisense primer
32124; lane 6: sense primer 37338, antisense primer 31075; lane 7: sense
primer 37338, antisense primer 30598.
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TABLE V. DNA Sequences of Breakpoints

Mutant name Breakpoint sequence
HPRT breakpoint

(�117.5 Mbp) Other breakpoint Comments

LS535G M3 HPRT intron 6*
ACATTTTGAGGAATTGCCCGACTATTTAACAAGGTATATGTACTGTTTTACACC
� � � � � � � � � � � � � � � � � � � � � � � � � � � �
ACATTTTGAGGAATTGCCCGACTATTTACACTGACTACTCAAATAATACATGAG

� � � � � � � � � � � � � � � � � � � � � � � � � �
CATTTATACTGTTTTCGACACAGACTACCACTGACTACTCAAATAATACATGAG

*AC004383

IVS6 �2221/�2220
AC004383
* � bp 80,724

Xq26 (�117.5 kbp)
AC004383
* � bp 103,027

Deletes 22,292 bp

LS252 A13C3 HPRT intron 1*
AACTCCTGACCTCAGGTGATACGCCCACCTGGGCCTCCCAAAATACTGGGATTA
� � � � � � � � � � � � � � � � � � � � � � � � � � �
AACTCCTGACCTCAGGTGATACGCCCAAACCAACCTCAGGCATACATTTGTGTT

� � � � � � � � � � � � � � � � � � � � � � � � � � � �
TTAGAAGCAGAGACTGTTTTCTGCAAAAACCAACTCCAGGCATACATTTGTGTT

*Z83826

IVS1 �1530/�1529
AC004383
* � bp 56,444

Xq26 (�117.9 Mbp)
Z83826
* � bp 21,680

Deletes �500 kbp,
one basepair repeat
at breakpoint

MF33 A4G5 HPRT intron 3*
TCTTGAATATTTTTTCCTTTATTCCTCTTGTCTCTGTAAAGACATCAACTGGAG
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
TCTTGAATATTTTTTCCTTTATTCATCTTGTCTCAGAGCATCCTCATCTCTTTC

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
AAAAAATTAGTTCACTCGGTTGGAATCTTGTCTCAGAGCATCCTCATCTCTTTC

*AC061708

IVS3 �2277/�2276
AC004383
* � bp 68,739

3q22.31 (�168 Mbp)
AC061708
* � bp 31,530

Probable translocation,
9-bp match at
breakpoint

MF38A A14C4 *HPRT intron 1
GAAAGCGACCACCTGGGAGGGCGTGTGGGGACCAGGTTTTGCCTTTAGTTTTGC

� � � � � � � � � � � � � � � � � � � � � � � � � � � �
AATTTCCAGTTTAATACTGCATCCATGGGGACCAGGTTTTGCCTTTAGTTTTGC
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
AATTTCCAGTTTAATACTGCATCCATGGGGACCAGGTAGAAGCACTGTTTACAT

*NT 024560

IVS1 �462/�643
AC004383
* � bp 45,359

13q14 (�43.5 Mbp)
NT_024560
* � bp 362,428

Probable translocation,
12-bp repeat at
breakpoint

LS323 M108 *HPRT exon 3
CACATTGTAGCCCTCTGTGTGCTCAAGGGGGGCTATAAATTCTTTGCTGACCTG

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
CATAAGGCATTGATTCCATTCGTGAAGGGGGGCTATAAATTCTTTGCTGACCTG
� � � � � � � � � � � � � � � � � � � � � � � � � � � �
CATAAGGCATTGATTCCATTCGTGAAGGCTCTATCCTCATGACCTTACCACCAA

AC004081*

exon 3 bp 208–209
AC004383
* � bp 59,812

Xq22.1 (�89.8 Mbp)
AC004081
* � bp 39,789

Probable inversion,
4-bp repeat at
breakpoint
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exon 2, which was involved in six of the seven exon 2
deletions.

An important concept to consider is that sequencing
across the hprt breakpoint in the IPCR product of the mutant
does not necessarily give the sequences of all the relevant
genomic sequences involved in the rearrangement. For ex-
ample, if the mutant is a translocation, then sequencing of
the other hprt breakpoint will be required to determine
whether bases were lost or added during the rearrangement.
However, since the sequences at the reciprocal event can be
inferred from the known breakpoint, it should be relatively
easy to design primer and amplify this second breakpoint.
Problems will arise only if large sequences were lost during
the rearrangement or if multiple chromosomes were in-
volved. We have seen several such complex mutations in
cytogenetic analyses (unpublished observations).

As discussed earlier, one of the major steps in sequencing
the breakpoints of mutants is determination of an approxi-
mate position of the hprt breakpoint. Although we used
regular PCR to determine breakpoint locations for the mu-
tants studied in this investigation, the ability to use long
PCR should simplify this process. Our group recently used
hprt long PCR methods we developed [Van Houten et al.,
1998] to trap and sequence hprt breakpoints [Brooks et al.,
2001].

There is difficulty in also obtaining products from some
mutants. In addition to the mutants with successful IPCR
reported here, we attempted IPCR on an additional nine
mutants. Two gave products but we were unable to obtain a
sufficiently clean sequence to identify the breakpoint; the
others did not give a product. This failure could be because

the restriction sites are such that the circle is too large or too
small. Other groups have combined IPCR and long PCR to
advantage [Willis et al., 1997; Akasaka et al., 2000], which
we will also attempt in future studies.

In conclusion, we have shown that IPCR is a valuable
technique for isolating and sequencing hprt rearrangement
breakpoints.
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