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SUMMARY

Hybrid "nite element methods (FEM) which combine the "nite element and boundary integral methods
have been found very successful for the analysis of conformal "nite and periodic arrays embedded on planar
or curved platforms. A key advantage of these hybrid methods is their capability to model inhomogeneous
and layered material without a need to introduce complicated Green's functions. Also, they o!er full
geometrical adaptability and are thus of interest in general-purpose analysis and design. For the proposed
hybrid FEM, the boundary integral is only used on the aperture to enforce the radiation condition by
employing the standard free space Green's function.

The boundary integral truncation of the FEM volume domain, although necessary for rigor, is also the
cause of substantial increase in CPU complexity. In this paper, we concentrate on fast integral methods for
speeding-up the computation of these boundary integrals during the execution of the iterative solver. We
consider both the adaptive integral method (AIM) and the fast multipole method (FMM) to reduce the
complexity of boundary integral computation down to O(Na ) with a(1.5. CPU and memory estimates are
given when the AIM and FMM accelerations are employed as compared to the standard O(N2) algorithms.
In addition, several examples are included to demonstrate the practicality and application of these fast
hybrid methods to planar "nite and in"nite arrays, frequency selective surfaces, and arrays on curved
platforms. Copyright ( 2000 John Wiley & Sons, Ltd.

1. THREE-DIMENSIONAL FINITE ELEMENT}BOUNDARY INTEGRAL
FORMULATION

The "nite element (FE)}boundary integral (BI) formulation for cavity backed antennas recessed
in a ground plane has been given in References [1}3]. Below we brie#y present the formulation
with particular emphasis for modelling cavity backed antennas as well as periodic arrays. The
di!erences between single elements and in"nite periodic arrays are in the Green's function and in
the necessity to apply periodic boundary conditions at the volume and surface boundaries to
reduce the in"nite periodic array to a single unit cell.
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Figure 1. (a) Finite array in the cavity, (b) in"nite periodic structure.

Let us consider the antenna/array structure illustrated in Figure 1. For time harmonic
electromagnetic "elds (e +ut time convention), the weak form of the vector wave equation is [5]
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where T is a weighting function, J*/5 denotes an excitation current within the FE domain,
S represents the boundaries of the FE domain, and n' is the unit surface normal directed out of the
FE domain. Also, k and Z are the free space wave number and wave impedance, respectively. The
magnetic "eld H must be treated as an independent quantity over the boundary S of the FE
domain. It is, therefore, necessary to introduce an additional equation over S for the unique
solution of E and H over the volume boundaries. In the context of the FE}BI this is obtained by
invoking the equivalence principle over S, allowing us to express H for a planar surface S as
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where g(r, r@) is the scalar free space Green's function given as

g(r, r@)"
1

4n
e~+kDr~r{ D

Dr!r@D
(3)

and H*/# is an incident wave. For BI surfaces S with small curvature, this explicit representation of
H can be utilized to obtain an approximate solution whereas for BI surfaces with strong
curvature a more general integral expression with implicit coupling of E and H must be used.

Equations (1) and (2) can now be discretized for a solution E within the volume cavity and on
the aperture S.

To construct a linear set of equations from Equations (1) and (2), we must "rst tessellate the
volume and introduce expansions for each of the tessellation elements. For meshing convenience,
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Figure 2. Right-angled prism.

we can choose tessellation elements that have constant height but must be more adaptable for
surface modelling. The edge-based prismatic elements presented in References [2}4] allow for
this type of #exibility. For doubly curved structures, distorted versions of the prismatic elements
are employed whereas planar con"gurations and in"nite periodic arrays can be discretized by
the right-angled version as displayed in Figure 2. Using this type of tessellation elements
(see Figure 2), the E "eld is expanded within the cavity volume as
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To generate a linear system for Ee
j
, Equations (4) and (5) are substituted into Equations (1) and (2)

and Galerkin's method (setting T"W) is employed to yield the assembled system

[A]G
MEVN
MESNH#C

[0] [0]
[0] [B]DG

MEVN
MESNH"G

MbVN
MbSNH (7)

In this system, MEVN denotes the "eld unknowns within the volume enclosed by S, whereas MESN
represents the corresponding unknowns on the boundary S. The excitation column MbVN is due to
internal antenna sources and MbSN is associated with the incident "eld excitations (for scattering
computations). When the above system refers to cavity backed antennas or "nite arrays in
a cavity backed con"guration, the boundary condition on the vertical/side walls of the cavity is
simply nL ]E"0. This condition is implemented during the assembly process of the "nite element
system and results in the elimination of all unknowns associated with the metallic walls.

In"nite periodic arrays are assumed to be periodic in the xy-plane and the (m, n) th cell of the
array is obtained by shifting the (0, 0) th cell through the relation
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Figure 3. Reduction of in"nite array to one unit cell.

Here, q
a
, q

b
are the lattice vectors parallel to the xy-plane. For periodic excitation of the array

with a linear phase factor, the "elds in the array obey the periodicity conditions
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with 0
0
, u

0
describing the scan direction of the array or the propagation direction of an incident

plane wave.
Using this periodicity condition and the boundary integral representation in (2), the computa-

tional domain can be reduced to a single unit cell of the array [6}8] (see Figure 3). This includes
that in (2), g(r, r@) must be replaced by the appropriate periodic Green's function and the periodic
boundary conditions (PBCs) must be explicitly enforced on the vertical side walls of the unit cell
mesh.

In the spatial domain, the periodic Green's function g
p
(r, r@) has the form [8]
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In the spectral domain, g
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where A"Dq
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D is the cross-sectional area of the unit cell,
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is the so-called reciprocal lattice vector, and
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where Re(k
zmn

)*0, Im(k
zmn

))0. In many cases, the spectral domain representation (13) has
satisfactory convergence behaviour if applied in a spectral-domain formulation of the integral
equation [6,7]. However, for arbitrary array con"gurations analysed in the space domain, having
strongly as well as weakly coupled array elements, it is necessary to have a representation that
converges faster than either Equation (11) or Equation (13). This can be achieved by employing
the so-called Ewald transformation originally proposed by Ewald for modelling optical and
electrostatic potentials in three-dimensional ion lattices [15]. The Ewald transformation starts
from the spatial domain representation of the periodic Green's function (11) and makes use of the
identity
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where s is a complex variable. In order that the integrand converges as sP0 for a wave number
k with an arbitrary amount of loss, the path is chosen so that arg(s)"n/4 as sP0. In order to
have convergence as sPR, the path is chosen so that !n/4)arg(s))n/4. Next, Equation (17)
is substituted into Equation (11) and the parameter E is introduced to split the integral into two
terms, as
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Upon applying some analytical manipulations [8,14,15], the two series can "nally be written as
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where erfc is the complementary error function. Equation (22) is essentially a &modi"ed' spatial
domain portion of the periodic Green's function and Equation (21) can be identi"ed as a &modi-
"ed' spectral domain portion of the periodic Green's function. The two expressions (22) and (21)
both converge exponentially (Gaussian convergence) and their computation is therefore very
e$cient requiring only a few terms of the series. The parameter E controls the convergence rate.
As E becomes larger, the spatial series (22) converges faster, while the spectral series (21)
converges slower. The optimum parameter is that which makes the two series converge at the
same rate, so that equal numbers of terms are required in the calculation of both series (assuming
the same calculation time for corresponding terms in each of the two series). By analysis of the
asymptotic behaviour of the series terms, the optimum parameter E

015
is found to be [14]

E
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Choosing this value for E and adjusting the summation limits so that the most dominant terms
are kept, in almost all practical cases it is su$cient to include only 9 summation terms in
Equations (22) and (21) (i.e., the summation limits are from!1 to#1), in which case the error
level is usually less than 0.1 per cent.

2. FINITE ELEMENT}FAST INTEGRAL METHODS

2.1. Introduction

The FE}BI system (7) is partly sparse and partly dense. More speci"cally, [A] is sparse, whereas
[B] is dense. Thus, although [B] is much smaller in rank than [A], it is usually responsible for
most of the CPU and memory requirements when an iterative algorithm is used for the solution
of Equation (7). To alleviate the CPU and memory needs, fast integral (FI) methods have recently
been introduced [16}19] to perform the matrix}vector product [B]MESN faster and using less
memory. Two of these approaches are the adaptive integral method (AIM) [17], and the fast
multipole method (FMM) [18,19]. Both FMM and AIM reduce the CPU time and memory
requirement from O(N2) down to O(Na) where a)1.5. The main feature of AIM and FMM is the
decomposition of the matrix as

[B]"[B]/%!3#[B]&!3 (24)

based on some threshold distance referred to as the near-zone radius. The matrix [B]/%!3 contains
the interactions between elements separated less than the threshold distance, whereas [B]&!3
contains the remaining interactions. The elements of [B]/%!3 are evaluated without approxima-
tion. However, the product [B]&!3MESN is evaluated in an approximate manner leading to a much
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Figure 4. Uniform AIM grid overlaying arbitrarily shaped irregular mesh.

faster execution. FMM achieves its CPU reduction by grouping the far-zone unknowns and
interacting their weighted contributions. In the case of AIM, the CPU reduction is achieved by
mapping the original method of moments (MoM) discretization onto a uniform rectangular grid
and exploiting the Toeplitz property of the Green's function on this grid. That is, the fast Fourier
transform (FFT) and the convolution theorem are invoked to compute the matrix}vector
products in an iterative solver. Next, we describe how the evaluation of [B]MESN is performed for
each of the fast algorithms.

2.2. Adaptive integral method

2.2.1 Theory and implementation. The basic idea of AIM is to split [B] in (24) as

[B]"[B]/%!3#[B]&!3 (25)

where [B]/%!3 contains the elements of [B] that are near the self-cell and correspondingly [B]&!3
contains the remaining &far-zone' elements of [B]. AIM reduces the CPU time and memory of the
iterative solver by exploiting convolutional properties of the Green's function for the evaluation
of the matrix}vector products associated with the mostly full matrix [B]&!3. That is, the far-zone
matrix is not explicitly generated and the matrix}vector products are performed in the discrete
Fourier domain (DFT) utilizing appropriate 2D-FFT algorithms [20]. However, the convolu-
tional properties can only be exploited on a uniform grid and therefore, the basis functions on the
original and usually irregular triangular mesh must "rst be mapped onto a uniform grid. To do
so, we introduce auxiliary basis functions on a uniform rectangular grid which is coincident with
the original triangular grid (see Figure 4). The auxiliary expansion for the magnetic surface
currents (equivalent to the tangential electric "eld intensities on the top and bottom BI surfaces of
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the unit cell) is given by
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mesh. Since we work with a mixed potential integral equation (MPIE) formulation for the BI
implementation, we introduce the additional expansion
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for the surface divergence of the surface currents.
To "nd an appropriate relationship between the uniform expansion (26) and (27) and the basis

functions on the original possibly irregular triangular mesh for evaluation of the far interactions,
we start with the common MPIE expression [9]
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for the calculation of an arbitrary coupling element for the original expansion. Here, f
n
and f

m
are

the source and testing basis functions on the triangles with the areas S
n
and S
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, respectively. Also,

the expression is given for a periodic Green's function g
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Without loss of generality, the evaluation of the coupling integrals can be performed in the plane
z"0. Based on this observation and introducing the Taylor series expansion
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which is equivalent to summing up the moments of the testing function q
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Taylor coe$cients a
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. In principle, the expansion point (x

1
, y

1
) can be chosen arbitrarily but it is
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Equation (33), B(2) can be calculated exactly by employing the equivalent basis functions on the
uniform grid if the moments of the equivalent basis functions are equal to the moments of q
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where the "lter property of the d-functions was utilized. In a numerical implementation, only
a "nite number of moments can be enforced to be equal. However, if the distance between source
and test subdomains is not too small, the function g (r) is well behaved and an accurate evaluation
of the coupling integrals can be achieved with a small number of the lowest-order moments. We
restrict ourselves to 3]3"9 moments, so that each basis function q

m
must only be related to

nine basis functions of the uniform grid. That is, Equation (34) is evaluated for indices
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uniform grid point which is closest to the centre of edge m. The resulting 9]9 linear algebraic
system can then be solved for the nine "Q,m
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coe$cients. The approximate expression for B(2)
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where again the "lter property of the d-functions in Equation (27) was utilized. A similar
procedure can be employed for the source integral in Equation (30). For this purpose, a Taylor
series expansion of the Green's function g

p
is introduced with respect to the source point r@ for

a "xed observation point r. The obtained approximate expression for g is

g(r)+
(kn`1)
+

k/(kn~1)

(ln`1)
+

l/(ln~1)

g
p
(r, (x

0
#k*x, y

0
#l*y))"Q,n

kl
(36)

where k
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are the indices of the closest uniform grid point with respect to the centre of edge n and
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are the equivalent amplitudes for the respective basis functions on the uniform grid for basis
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function n on the original irregular mesh. The combination of (35) and (36) results in
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in which x
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were omitted because of the shift invariance of g
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. In matrix form, we can write
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Expression (38) represents a matrix product of the two sparse "-matrices and the fully populated
Green's function matrix [g

p
] of Toeplitz form. B(1)
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in (28) is evaluated in a similar way as
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except that the x and y components of the magnetic currents must be considered. Therefore,
the resulting representation for B
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where ["]
x
and ["]

y
are sparse matrices containing the equivalent current amplitudes introduced

in Equation (26).
For the implementation of AIM, it is assumed that [B]

AIM
is su$ciently accurate for the

far-zone elements. For the near-zone interactions we keep the original matrix elements. There-
fore, we decompose the AIM matrix as

[B]
AIM

"[B]/%!3
AIM

#[B]&!3
AIM

(40)

and when this is combined with Equation (25), we can rewrite the original B matrix as
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With this representation of [B], the near-zone interactions are evaluated without compromise in
accuracy. However, since the majority of [B]!11309 consists of the Toeplitz kernel [g

p
], the

associated matrix}vector products can be performed using only O(n
s
) memory and O(n

s
log n

s
)

CPU time. In the "nal numerical implementation, a near-zone threshold is de"ned so that
[B]!11309 is a su$ciently accurate representation of [B]. The threshold distance is mostly
controlled by the quasi-static singularities of the Green's function. In the case of the in"nite
periodic Green's function, we must also account for image singularities in the neighbouring
periodic cells since they can be close to the test subdomains in the unit cell.

For calculation of matrix}vector products in an iterative solver, [B]
AIM

is not computed
explicitly. After mapping the actual source distributions onto the uniform grid through the
" matrices, the pertinent matrix}vector products are performed in the DFT domain using an
FFT algorithm for the corresponding transformations. After transformation of the results back to
the spatial domain, the "elds on the original mesh are obtained by reverse mapping between the
auxiliary unknowns and the original grid unknowns. However, for a computation of [B]/%!3

AIM
, it is

advantageous to collect the contributions of the uniform grid in the spatial domain before the
Toeplitz Green's function is transformed into the DFT domain.
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Figure 5. TM Plane wave re#ection from a dielectric slab (e
r
"4) with planarly

embedded periodic material blocks (e
r
"10) compared to reference values from

[10]. Slab height: 0.2 cm, period: 2]2 cm, block side length: 1]1 cm, u
0
"03.

2.2.2. Applications
Photonic bandgap materials. As an example we consider the dielectric slab in Figure 5 with
embedded periodic material blocks. These lattices are often referred to as photonic bandgap
materials. The diagram in Figure 5 shows the re#ection coe$cient of plane waves incident on the
slab with di!erent angles of incidence. The re#ection coe$cient curves exhibit the typical
resonances of photonic bandgap materials. Compared to calculations obtained by a volume
integral equation method [10], the "rst resonance is slightly shifted to a lower frequency whereas
the frequency shift for the second resonance is larger. For TM-waves with oblique incidence, the
resonances shift to higher frequencies, in agreement with Reference [10].

Arti,cal puck plate bandpass structure. Figure 6 shows the unit cell and the employed surface
mesh for the so-called &arti"cial puck plate'FSS screen which was presented in Reference [11] and
analysed in Reference [6]. The basic FSS element is a dielectric-"lled cylindrical waveguide with
metallic walls and circular metallic irises in its apertures. On the top and bottom of the metallic
plate, dielectric layers are placed for the optimization of the frequency behaviour of the bandpass
structure. Our calculations are given in Figure 7 and are compared to MoM data and FE/BI
results based on a tetrahedral mesh published in Reference [6]. As can be seen, our FE/BI curves
are closer to the MoM curves than the FE/BI results from Reference [6]. This is likely due to our
higher mesh density.

Noncommensurate multilayer frequency selective surfaces. Figure 8 gives the geometries and
results for an eight-layer low-pass FSS structure (normal incidence) as well as for a "ve-layer
con"guration (oblique incidence). Both structures have the non-commensurate periodicities
as given in the "gure. Since non-commensurate periods cannot be handled in a straightforward
manner approximate FE/BI models were used which assume that the "elds in the array
structure obey the varying geometrical periodicities. The FE/BI results are compared
to data published in Reference [12]. For the eight-layer FSS, the FE/BI curve is closer to
the measured results than the MoM curve. However, the oscillations of the transmission factor
in the pass-band are less pronounced than for both reference results from Reference [12].
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Figure 6. Geometry and mesh for unit cell of &arti"cial puck plate' FSS as presented in Reference [6].

Figure 7. TE Re#ection and transmission coe$cients for bandpass structure in Figure 6 compared to
reference values from Reference [6]. 0

0
"03, u

0
"03.

The transmission curves for the "ve-layer con"guration in Figure 8(b) were obtained for oblique
incidence with 0

0
"703, u

0
"03. Results are given for TE as well as TM polarization. For the

TM case, the FE/BI results agree very well with MoM results from Reference [12]; however, in
the TE case, the oscillations in the pass-band of the FE/BI results are again less pronounced than
in the MoM data.
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Figure 8. (a) Transmission coe$cient of eight-layer FSS for normal incidence (e
r
"2.3!j0.08), (b) transmis-

sion coe$cient of "ve-layer FSS for oblique incidence (0
0
"703, u

0
"03, e

r
"2.3!j0.08).

2.2.3. CPU timings and memory requirements. To illustrate the memory and CPU time savings of
the AIM acceleration, we analysed di!erent mesh con"gurations of a microstrip dipole array. All
meshes consisted of one volume prism along the depth of the array and a metallic backing on the
bottom surface. Di!erent meshes with increasing numbers of BI unknowns were generated by
grouping several array elements into the discretized unit cell. The largest mesh was a 4]4 array
and had 18208 BI unknowns (24448 volume mesh unknowns). The operation frequency was close
to the half-wave resonance of the dipole elements. The density of the uniform AIM grid on the BI
surface in the top of the unit cell mesh was chosen so that on average approximately 3.5 uniform
grid points were placed per triangle side. The near-zone threshold was set so that the original
matrix elements were used within 15 uniform grid samples in the x and y directions around the
source element centre. The near-zone threshold was kept constant for all frequencies. In Figure 9,
the number of matrix elements in the system matrix dependent on the number of BI unknowns is
depicted as a measure of the memory requirements of the algorithm (12 bytes per matrix element
for single precision and sparse matrix storage). In the conventional BI formulation, the number of
matrix elements increases with complexityO(n2

s
) whereas AIM results in an optimal complexity of

O(n
s
). Due to the relatively expensive series representation of the periodic Green's function,

the most time-consuming portion of our FE/BI approach was the BI "ll time which is given in
Figure 10(a) together with the total solution time. It can be seen that the AIM acceleration
reduces the complexity of the BI "ll from about O(n2

s
) to about O(n

s
) (constant number of terms in

the series representation of the Green's function assumed for both values). The complexity of the
CPU time per iteration for the conventional and AIM-accelerated BI approaches is depicted in
Figure 10(b). Results are given for the biconjugate gradient (BiCG) and generalized minimal
residual (GMRES) solvers. In all cases, the GMRES solver (restarted every 50 iterations) needs
approximately half the CPU time required by the BiCG solver since the GMRES solver needs
only one matrix}vector product per iteration whereas the BiCG solver needs two matrix}vector
products. As illustrated in Figure 10(b), the AIM acceleration reduces the CPU time complexity per
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Figure 9. Number of matrix elements in the system matrix (FE and BI near-zone).

Figure 10. (a) BI "ll time and total solution time for test problem of microstrip dipole array, (b) CPU time
per iteration for test problem of microstrip dipole array.

matrix}vector product from O(n2
s
) to O(n

s
log n

s
). However, the necessary AIM overhead leads to

increased CPU time requirements for very small numbers of unknowns.

2.3. Fast multipole method

2.3.1. Theory and implementation. The FMM [16,18,19] is based on two elementary
identities. One of them is the expansion of the scalar Green's function appearing in moment
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Figure 11. The geometry constructions used in FMM formulations illustrating the relation between source
point, "eld point and the group centres.

matrix elements as [23]

e~+k Dr#dD

Dr#dD
"!jk

=
+
l/0

(!1)l(2l#1) j
l
(kd)h(2)

l
(kr)P

l
(dK ) rL ) (42)

Here j
l
is the spherical Bessel function, h(2)

l
is the spherical Hankel function of the second kind,

P
l
is the Legendre polynomial, and d(r is the condition for the validity of the expansion. In the

FMM formulations, where the source point is denoted by x@ and the observation point by x, r will
be chosen to be close to x!x@ so that d will be small as depicted in Figure 11. The second identity
is the expansion of the product j

l
P
l
appearing in Equation (42) as a sum of propagating plane

waves (spectral integral):

(!1)l4njlj
l
(kd)P

l
(dK ) rL )"Pd

2
kK e~+k>dP

l
(kK ) rK ) (43)

Using this identity, expansion (42) can be rewritten as

e~+kDr#dD

Dr#dD
"

!jk

4n Pd2kK e~jk )d
=
+
l/0

(!j)l (2l#1)h(2)
l

(kr)P
l
(kK )rL ) (44)

where the orders of summation and integration were interchanged. The speed-up of FMM is
derived from the observation that the sum

¹
L
(kr, kK ) rL )"

L
+
l/0

(!j)l (2l#1)h(2)
l

(kr)P
l
(kK ) rL ) (45)

is independent of kd and can thus be computed for various values of kr which can be reused in the
computation of the Green's function. The number of terms, ¸#1, kept for approximating the
sum depends on the maximum value of kd, and the desired accuracy.

Noting that the direct path from the source to the "eld point can be decomposed into three
parts (see Figure 11) with

r
ji
"r

jm
#r

mm{
!r

im{
, (46)
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the dyadic Green's function can be rewritten as

4nG1 (r
j
, r

i
)"CI1!

1

k2
++@D

e~+krji

r
ji

+Pd2kK CI1!
1

k2
++@De~+k>(rjm~r

im{)¹
L
(kr

mm{
, kK ) rL

mm{
)

"Pd2kK [I1!kK kK ]e~+k>(rjm~r
im{)¹

L
(kr

mm{
, kK ) rL

mm{
) (47)

The BI matrix entries can then be approximated as

B
ij
"!2k2 P

s

dsS3
i
(r) ) P

s{

ds@CS3 j(r@)!
1

k2
+@ )S3

j
(r@)+D

e~+kR

R

+

!jk3

8n Pd2kK V
fmj

(kK ) )¹
L
(kr

mm@, kK ) r'mm{
)V*

sm{i
(kK ) (48)

with

V
sm{i

(kK )"P
S

ds@e~+k )rim{[I!kK kK ] )S
i
(r
i
),

V
fmj

(kK )"P
S

dse~+k )rjm{[I1!kK kK ] ) S
j
(r
j
) (49)

in which S3
i
and S3

j
denote the expansion and testing functions for the unknown magnetic surface

current density. For our computations, we use the well known Rao}Wilton}Glisson [24] basis
functions. Note also that &*' denotes complex conjugation.

To realize the FMM speed-up, the computational domain is divided into M groups. The total
memory storage needed is O(N2/M)#O(KN)#O(K¸M2) where K is the number of wave vector
directions used in the numerical evaluation of the outermost integral in (48). Using the propor-
tionalities KJ¸2, D2JN/M, and ¸JD, this expression can be simpli"ed to C

1
(N2/M)#

C
2
(NMJN/M), where C

1
and C

2
are machine (and implementation)-dependent constants. The

coe$cient C
2

is actually quite small compared to C
1

and thus the memory is dominated by the
O(N2/M) term.

The CPU requirement of this FMM implementation is O(NM)#O(N2/M) [16,19]. This can be

minimized by choosing M"JN and the result is an O(N1.5) algorithm. The memory required
for the FMM also becomes O(N1.5). In practice, both the operation cost and the memory
requirement of FMM are less than those of standard MoM formulation for problem sizes larger
than about 1000, making the FMM more suitable for the solution of large problems.

2.3.2. Results. One concern with the approximations introduced by FMM is accuracy for
antenna simulations. Thus, for validation FMM was "rst applied for the analysis of
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Figure 12. Microstrip patch antenna (3.5 cm]3.5 cm) on a cylindrical surface of radius 14.95 cm. The patch
is on a 0.3175 cm thick substrate having e

r
"2.32.

Figure 13. (a) Radiation pattern of the curved antenna in Figure 12, (b) input impedance for the circumferen-
tially polarized antenna in Figure 12.

a 3.5 cm]3.5 cm cavity backed patch mounted on a cylindrical surface of radius 14.95 cm.
The patch is placed on the aperture of a cavity 0.3175 cm deep "lled with a dielectric layer
having e

r
"2.32. Figure 12 shows the layout of the curved antenna obtained by wrapping

the #at antenna on the cylindrical surface and corresponds to the one considered in
Reference [13].

As explained in Reference [13], two di!erent radiation modes (axial and circumferential) exist
depending on the feed location. The radiation patterns for the axial and circumferential excitation
modes are shown in Figure 13(a). It is seen that the FMM calculations are in agreement
with measurements in the broadside region, but the agreement deteriorates towards the
shadow directions (around h"!903 and h"903), since the half-space Green's function is
used, whereas in Reference [13] the exact cylindrical Green's function was employed. In the
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Figure 14. Memory (a) and CPU time (b) estimates of the FMM as a func-
tion of boundary integral unknowns.

Figure 15. (a) Curved patch array geometry, (b) input impedance for patch element 1.

region !603)h)603, the measured and calculated patterns agree to within 1 dB. The input
impedance dependence on antennas curvature is plotted in Figure 13(b) for the circumferentially
polarized patch. The results are again in good agreement with those presented in Reference [13]
and the resonant frequency can be accurately predicted since it is a more local phenomenon.
Figure 14(a) and 14(b) show the comparison of the timings and approximate memory require-
ments for the conventional FE}BI method, with and without FMM. The complexity parameters
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Figure 16. (a) Input impedance for patch element 2, (b) input impedance for patch element 3.

for the "tted curves are also given. Figure 14(a) depicts the trend for the total solution
time indicating that the FMM is both robust and requires less resources for large-scale implemen-
tations.

Finite periodic arrays. The greatest advantage of the FMM implementation is its capability for
an e$cient computation of 3D problems. The necessity of using 3D-FFT's in AIM implementa-
tions may not render AIM as attractive without suitable optimizations on the implementation of
the FFT. Thus, for doubly curved arrays we consider implementation of the FE}FI methods with
FMM rather than AIM. Below, we show some results for the analysis of a "ve-element patch
array on a curved surface. The geometrical con"guration of the array is shown in Figure 15(a).
A comparsion of the imput impedances of the individual patches for a #at and a curved array with
a 10 cm radius of curvature is shown in Figures 15(b) and 16. An increased coupling between the
di!erent patches due to the curvature of the array can be especially seen in the input impedance of
patch 2.

3. CONCLUSIONS

The hybrid FE}BI method is a very powerful electromagnetic "eld calculation tool. Until
recently, the large CPU time and memory complexity of the BI restricted the FE}BI method to
moderately sized discretization models. In this paper, we considered speed-up and memory
reductions of the FE}BI method by introducing fast integral methods to carry out the BI-related
matrix}vector products. Among these methods, AIM has proven very attractive if planar BI
termination surfaces are involved. In this case, only two-dimensional FFTs need to be performed
and periodic Green's function can be included in a straightforward manner since they have the
required convolutional property. On the other hand, the concept of FMM is basically three
dimensional and, therefore, FMM is favourably used for non-planar termination surfaces. Both,
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AIM and FMM attain their speed-ups through an e$cient (approximate) computation of the BI
far interactions. However, since they keep the conventional BI formulation for the near-coupling
terms they can produce results without any compromise in accuracy. In this section, AIM was
applied to speed-up the BI termination of an FE}BI approach for in"nite periodic structures.
Also, a very e$cient evaluation of the periodic Green's function series by virtue of the Ewald
transformation was presented. Results were shown for the so-called photonic bandgap materials
as well as frequency selective surfaces with commensurate and non-commensurate periodicities.
Here, FMM was only used in conjunction with the modelling of antennas recessed in curved
metallic platforms.
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