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Electrospray sample deposition was explored for matrix-assisted laser desorption/ionization time-

of-flight mass spectrometry (MALDI-TOFMS). In this method, nanoliter volumes of matrix/analyte

mixture were electrosprayed from a high voltage biased (1–2kV) fused-silica capillary onto a

grounded MALDI plate mounted 100–500mm from the capillary outlet. Electrospray deposition

with these conditions produced sample spots 200–300mm in diameter thus matching the laser spot

size. Varying spray voltage and distance resulted in different crystal sizes and volatilization rates

for a-cyano-4-hydroxycinnamic acid matrix. Best results were obtained when the sample was depos-

ited as wet droplets as opposed to deposition as dried solid. Under ‘wet-spray’ conditions, 2–4mm

diameter crystals were formed and detection limits for several neuropeptides were 0.7–25 amol.

Samples could be pre-concentrated on the plate by spraying continuously and allowing sample

to evaporate in a small spot. Sample volumes as large as 580nL were deposited yielding a detection

limit of 35 pM for neurotensin 1-11. Electrospray sample deposition yielded similar results when

using atmospheric pressure-MALDI coupled with a quadrupole ion trap mass spectrometer, except

that the sensitivity was �seven-fold worse. Copyright # 2004 John Wiley & Sons, Ltd.

Matrix-assisted laser desorption/ionization (MALDI) is a

powerful ionization method for mass spectrometric (MS)

analysis of proteins and peptides. Sample preparation is cri-

tical for achieving high sensitivity and reproducibility by

MALDI-MS. The most common way to prepare samples for

MALDI is the dried-droplet method.1 While this method is

simple and adequate for many applications, it suffers from

poor shot-to-shot and sample-to-sample reproducibility.

This problem, which can be partially overcome by use of iso-

tope-labeled internal standards, is attributed to heteroge-

neous sample distribution and crystal formation within

sample spots. The dried-droplet method is also not applic-

able to analyses where sample is limited and high mass sen-

sitivity is required. The relatively poor mass sensitivity is due

to the large mismatch between sample spot size, 1–4 mm, and

laser irradiation spot, 50–200mm, resulting in only a small

fraction of the sample being exposed to the laser for ion gen-

eration. This arrangement allows preservation of sample, but

is inefficient and results in detection limits (low fmol for

peptides) that are worse than that achievable by the mass

spectrometer.

Mass sensitivity and reproducibility can be improved if the

sample spot size is comparable to the laser spot size.2,3

Methods for creating sample spots that match the laser spot

size can be classified into two general approaches: (1) use of

target plates that confine samples, and (2) controlled

application of sample to the surface. Examples of the first

approach include use of silicon vials,4 hydrophobic plates

with hydrophilic sample wells,5 and hydrophobic surfaces.6

In all of these approaches samples of 250 pL to 1.5 mL can be

placed on the target, and as solvent evaporates, the sample is

confined to a small surface, typically 100–400 mm diameter.

Such confinement has led to detection limits of 0.3–100 amol

and improved reproducibility when compared with dried-

droplet sample preparation.4–6

Specialized dispensers have also been used to deposit

small volumes and thereby create a well-defined sample spot.

A microspot sample preparation technique that utilized a

capillary tube to deposit 80–150 mm diameter spots onto

ultraclean plates yielded a limit of detection (LOD) of 45 zmol

for substance P by MALDI-MS.7 A piezoelectric flow-through

microdispenser8 has been used to eject droplets with volumes

of 60–100 pL collected at the target plate resulting in sample

spots �400 mm in diameter and LOD of 100 amol for a 1 nM

solution of peptides. Another approach has been to apply an

electrical field pulse across the gap between a capillary with

flowing sample (actually LC effluent) and the MALDI target.

The voltage pulse causes the droplet at the outlet to be pulled
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down to the surface. Application of the pulse at specific times

allows controlled deposition of sample. Detection limits of 50

amol were achieved using MALDI-FT-MS for analysis.9

Continuous deposition from a flowing stream (e.g., a

capillary electrophoresis separation) within a vacuum onto

a membrane target pre-coated with MALDI matrix10 or the

sample mixed with matrix11 is also a form of confined sample

deposition that enables low amol LOD.

In addition to confining samples, samples may be depo-

sited by spraying them onto the MALDI target plate

using a heated nebulizer,12 heated droplet interface,13 aero-

spray (pneumatic spraying),14 or electrospray.15–19 Electro-

spray deposition was shown to yield improved sample

uniformity and smaller crystal size,15–17 leading to improved

reproducibility, sensitivity and increased signal intensity.

Several applications of electrospray for MALDI sample

preparation have been reported, including its use as a

method of applying matrix for imaging tissues20 and TLC

plates21 by MALDI-MS.

While electrospray deposition has shown promising

performance, it has not been used in a microscale format

that may be expected to improve mass detection limits. In this

work we utilize electrospray deposition to create sample spot

sizes of 200–300 mm in diameter for use with MALDI and AP-

MALDI. The small size allows mass LOD as low as 0.7 amol

and concentration LOD as low as 35 pM by MALDI-TOFMS.

In addition, the effects of electrospray conditions on the

sample preparation are characterized.

EXPERIMENTAL

Materials
All organic solvents and water were obtained from Burdick &

Jackson (Muskegon, MI, USA). a-Cyano-4-hydroxycinnamic

acid (CHCA) and peptide standards were purchased from

Sigma (St. Louis, MO, USA). Trifluoroacetic acid (TFA) was

obtained from Fisher Scientific (Chicago, IL, USA) and hydro-

fluoric acid (HF) was supplied by Acros Organics (Morris

Plains, NJ, USA). Fused-silica capillary was from Polymicro

Technologies (Phoenix, AZ, USA). C18 Ziptips were pur-

chased from Millipore (Billerica, MA, USA).

Electrospray emitter
The electrospray emitter was made by pulling a fused-silica

capillary (50 or 75 mm i.d., 360 mm o.d.) using a CO2 P-2000

laser puller (Sutter, Novato, CA, USA). The capillary tip

was sanded slightly with a porcelain capillary cutter (Alltech

Associates, Inc., Deerfield, IL, USA) to obtain a flat end and

etched by 50% aqueous HF for a few seconds. This procedure

yielded a tapered capillary with 10–15mm i.d. at the tip.

Motorized XY stage
A motorized XY stage was assembled in-house by mounting

two MicroStage MS25 linear guides (Thomson Industries,

Ronkonkoma, NY, USA) on top of each other to create inde-

pendent X- and Y-motions. Each lead screw was connected to

a 200 step per revolution stepper motor GBM 42BYG228

(Jameco Electronics, Belmont, CA, USA) to move its axis.

With a 2 mm lead screw pitch, each motor step resolution

was 10mm. The motors were controlled by a unipolar stepper

motor driver WTSMD-M (Weeder Technologies, Ft. Walton

Beach, FL, USA). This driver converts high-level commands

sent from a computer serial port into motion with appropriate

acceleration profiles. The complete system was capable of

moving between two spots separated by 4.5 mm in less than

1 s. Application of the high voltage was controlled by the

computer parallel port connected to the power supply. The

entire system was operated by a LabVIEW software program

(National Instruments, Austin, TX, USA) which controlled

the spot motion sequence, dwell time at each spot, and timing

of the deposition on the plate. The deposition capillary was

mounted in a clamp on a manual XZ-translation stage next

to the motorized XY stage and positioned at the center of

the first spot before the automatic sampling was started.

Deposition device
The system used for electrospray sample deposition con-

sisted of a syringe pump (Harvard Apparatus, So. Natick,

MA, USA), a fused-silica capillary with the electrospray emit-

ter mounted on an XZ-translation stage (Newport, Irvine,

CA, USA), a MALDI plate mounted on the motorized XY

stage, a high voltage power supply (Spellman CZE 1000R,

Hauppauge, NY, USA), and an in-house built microscope

(200�magnification) mounted on another XYZ-translation

stage (Newport, Irvine, CA, USA), as depicted in Fig. 1. The

tubing connecting the syringe to the emitter was a 5 cm length

of 50mm i.d. fused-silica tubing. This tubing was connected

by a microfilter (85 nL dead volume) to the emitter which

was also made from 5 cm of 50 mm i.d. tubing. The resulting

Figure 1. Overview of the electrospray deposition system.

The MALDI plate is mounted on a motorized XY-translation

stage. High voltage is applied through a syringe needle as the

solution is pumped through a capillary system to the

electrospray emitter. A home-made microscope is used to

observe the spray.
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volume of the entire system was 285 nL. The target plate was

mounted on the motorized XY stage.

Mass spectrometry
A MALDI TOF Spec 2E (Micromass, Milford, MA, USA)

mass spectrometer equipped with a delayed extraction

source and 337-nm pulsed (4 ns) nitrogen laser was used in

the reflectron mode. All mass spectra were obtained in posi-

tive ion mode with 20 kV source voltage, 2.2 kV extraction

pulse voltage, 19.98 kV extraction voltage, 16 kV focus vol-

tage, and suppression mass of m/z 500. The size of the laser

spot was 150� 250 mm. The MALDI plate was stainless steel

with 96 wells. Mass spectral data were generated by sum-

ming 5 to 20 ‘‘scans’’, where each ‘‘scan’’ corresponds to 5

laser shots accumulated into a single spectrum. All experi-

ments were performed using this instrument in positive ion

mode unless indicated otherwise.

For AP-MALDI-QIT, a ThermoFinnigan (San Jose, CA,

USA) LCQ Deca XP Plus mass spectrometer integrated with a

MassTech Inc. (Columbia, MD, USA) AP-MALDI ion source

was used with the following settings: automatic gain control

off, injection time for MS mode 200 ms and for MS2 300 ms,

laser frequency 10 Hz (337 nm), capillary temperature 3508C,

spray voltage 2.8 kV, tube lens 40 V and capillary voltage

46 V. The settings of the ion optics were for multipole 1–0.5 V,

lens voltage �33.0 V, multipole 2–11.0 V, multipole RF

350.0 V and entrance lens �64.0 V. No auxiliary or spray gas

was used. The size of the laser spot was 300� 900 mm. The

plate for the AP-MALDI analysis was a 96-position gold-

plated steel target. The spectra presented were the averages

of 10 scans where one scan was the sum of five microscans for

MS and three for MS2. All AP-MALDI experiments were

performed in positive ion mode. Pre-activation experiments

were performed in MS2 mode with neurotensin 1-11 (NT 1-

11). The precursor ion was set to m/z 1446, isolation width

50 Da, activation time 300 ms, activation q 0.25 and normal-

ized collision energy 0 or 15%.

Scanning electron microscopy
A Hitachi S3200N scanning electron microscope (SEM)

(Hitachi Ltd., Tokyo, Japan), operated in high-vacuum

mode with 3.5 nm resolution using the secondary electron

scintillator detector, was used to collect images of MALDI

samples. SEM images were obtained using medium beam

current and 20 kV accelerating voltage with 2000�magnifica-

tion. Samples were carbon-coated before analysis.

Deposition methods

Electrospray deposition
Electrospray sample deposition was performed by pumping

sample solution through the electrospray emitter at 100 nL/

min. A potential difference of 1.0–1.4 kV was applied

between the syringe pump and the target plate. The target

plate was mounted on a grounded motorized XY stage and

voltage was applied at the needle of the syringe pump. The

distance between the tip and the plate was 100–500mm.

Each sample spot contained 17 nL (flow rate 100 nL/min,

dwell time 10 s) of sample unless indicated otherwise. Spots

began to form after a few seconds of operation, resulting in

sample waste estimated to be <50 nL.

Pull-down deposition
Pull-down deposition or electric-field-mediated liquid

deposition was performed as previously described.9 Briefly,

sample was pumped through a capillary tube over the

MALDI target (2–5 mm capillary-to-plate distance) and a

negative potential pulse (�2 kV for 300 ms) was applied to

the MALDI plate to polarize a sample droplet and pull it

down to the target plate. The same instrument was used for

the pull-down as for the electrospray deposition, except that a

flat capillary instead of a tapered one was used. Each

sample spot contained 17 nL sample defined by a flow rate

of 100 nL/min and dwell time of 10 s.

Dried-droplet deposition
Dried-droplet deposition was performed by spotting 1mL of

sample onto the MALDI target plate using a 10-mL micro-

pipette. The resulting droplet was allowed to air dry before

analysis.

Sample preparation
CHCA was recrystallized in ethanol/H2O (50:50, v/v) and

dissolved in acetonitrile/0.1% aqueous TFA (50:50, v/v) to

yield a stock solution of 10 mg/mL that was stored at

�808C. This stock was diluted with the same solvent to

2.5 mg/mL before use. The peptides were made up as

1 mg/mL stock solutions in water, frozen in aliquots, and

further diluted in methanol/0.1% aqueous TFA (50:50, v/v)

before use. Peptide solutions were mixed with 2.5 mg/mL

CHCA solution (50:50, v/v) unless indicated otherwise.

Monitoring peptide breakdown in CSF
Monkey cerebral spinal fluid (CSF), obtained from James

Woods’ laboratory, was centrifuged at 2000 rpm for 10 min

and the pellet discarded. 40mL of supernatant were removed

by pipette and spiked with 4mL of neurotensin (pGlu-

LYENKPRRPYIL) dissolved in water to generate a final con-

centration of 6.0 mM. Samples were analyzed before and after

incubation in a water bath at 368C for 24 h. For analysis, sam-

ples were mixed with 40mL 0.1% TFA (all TFA solutions were

aqueous) and concentrated and desalted using a Ziptip. The

Ziptip was initially wetted by aspirating with acetonitrile/

water (50:50, v/v) twice followed by rinsing with 0.1% TFA

solution twice (10 mL each rinse). Sample was then aspirated

into the tip and dispensed out 7 to 10 times to bind the pep-

tides. The sample on the Ziptip was desalted by aspirating

and dispensing to waste 10mL of 0.1% TFA three times. Pep-

tides were eluted by aspirating and dispensing 10mL of acet-

onitrile/0.1% TFA (50:50, v/v) through several cycles into a

sample tube. The resulting 10mL peptide sample were diluted

four-fold with methanol/0.1% aqueous TFA (50:50, v/v), and

then mixed with 2.5 mg/mL CHCA (50:50, v/v) before

deposition onto a MALDI plate by electrospray.

RESULTS AND DISCUSSION

Electrospray sample deposition conditions
The objective of this work was to evaluate electrospray for

preparation of small sample spots for MALDI. In electrospray

deposition, the sample flows through a capillary that is

positioned over the MALDI plate such that application of a
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voltage between the capillary and MALDI plate generates a

spray of sample onto the surface. Several factors must be con-

sidered in determining the best conditions for electrospray

sample deposition. The droplet size, d, formed by electro-

spray is given by the following:

d � 2r2
c�

"0V2
c ln 4l

rc

� �h i2

where rc is the radius of the emitter capillary, g is the surface

tension of the solution liquid, e0 is the permittivity of

vacuum, Vc is the voltage applied at the emitter tip and l

is the distance between the emitter tip and the ground (in

this case the MALDI plate).22–24 As shown by this expres-

sion, for a given solution and emitter tip, increasing Vc

and l will generate smaller droplet sizes. Droplets erupting

from the end of the Taylor cone will evolve into even smal-

ler droplets due to solvent evaporation and Coulomb explo-

sions25 before being deposited onto the plate. If the initial

droplet size is small enough, it is anticipated that sample

will be deposited in a solid form as all the solvent evapo-

rates before reaching the plate. In contrast, sample may be

deposited as a solution by increasing the droplet size, which

can be achieved by decreasing the spray potential and spray

distance.

To determine the effect of controlling droplet size, we

examined the effect of electrospray voltage and distance

while pumping a 50:50 (v/v) mixture of matrix solution

(2.5 mg/mL CHCA) and sample solvent (50:50 (v/v) metha-

nol/0.1% TFA) at 100 nL/min. By varying potential and

distance we found that samples could be deposited with

varying amounts of solvent that resulted in different crystal

sizes (see Fig. 2) and analytical performance. For l¼150 mm

and Vc¼ 1.0 kV, samples were deposited as relatively large

droplets that built up visibly on the plate as a hemispherical

drop. With l¼ 280 mm and Vc¼ 1.1 kV, relatively smaller

droplets were produced with sample depositing on the

MALDI plate as a shallow hemisphere. Using l¼ 380 mm and

Vc¼ 1.3 kV resulted in a fine mist that deposited on the

surface as a viscous liquid layer with no obvious build up of a

hemispherical droplet. Using l¼ 500 mm and Vc¼ 1.4 kV, the

sample appeared completely dry as it deposited on the plate.

We refer to these four conditions as wet spray, damp spray,

mist spray and dry spray, respectively. As shown in Fig. 2,

wet spray produced 2–4mm sized crystals, damp spray

produced 1–2 mm sized crystals, mist spray produced

crystals of <1mm diameter, and dry spray resulted in an

amorphous layer of sample with no visible crystals formed.

For comparison, we found that using the same solution in the

pull-down method produced crystals of 3–7 mm, and the

dried-droplet approach produced aggregates of crystals

ranging from 15–40 mm in diameter.

The effect of these different deposition conditions on the

efficiency of matrix volatilization during MALDI was

evaluated by exposing samples to multiple laser shots and

monitoring the production of the highest peak intensities

between m/z 10 and 600. These peaks were taken as an

indicator of the amount of matrix available on the plate. As

shown in Fig. 3(a), matrix signals decreased faster with drier

spray conditions. These results demonstrate that smaller

crystals desorb faster than larger crystals and therefore are

volatized more efficiently, as predicted.17 A practical draw-

back of the highly efficient volatilization of the dry spray and

mist spray was the short sample lifetime for limited volume

samples.

The effect of the different spray conditions on signal

generation was also evaluated. The signal intensity for NT 1-

11 (69 amol/sample) was strongly affected by the electro-

spray sample deposition such that conditions that produced

small or no crystals also produced the weakest signals (see

Fig. 3(b)). Possible reasons for the lack of strong signals for the

mist and dry spray include poor ionization efficiency or

Figure 2. SEM images of sample spots deposited by electrospray onto a stainless steel MALDI plate using four

different conditions: (a) wet spray, (b) damp spray, (c) mist spray, and (d) dry spray. Each scale bar corresponds to

10 mm. Above each SEM image is a side-on depiction of the samples as they appear during deposition for each of the

conditions used.
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inefficient capture of the miniscule crystals formed onto the

MALDI plate.

Based on these results, the wet spray condition was used

for all further experiments. The exact distance and voltage

required to obtain a wet spray varied day-to-day, possibly

due to variations in the ambient temperature, humidity, and

the geometry of the capillary tip; therefore, Vc and l were

adjusted to yield the formation of a visible hemispherical

droplet on the surface at 100 nL/min sample flow rates. The

Vc and l values required were 0.8–1.2 kV and 100–200mm,

respectively.

Electrospray sample deposition compared with
pull-down and dried-droplet
The signal-to-noise (S/N) and reproducibility for detection of

a 1.5 nM solution of NT 1-11 by MALDI-TOFMS, and of a 5.0

nM solution of NT 1-11 by AP-MALDI-QITMS, were

obtained for the electrospray, pull-down, and dried-droplet

methods (see Table 1). Electrospray deposition samples pro-

vided the highest S/N on both instruments and the best

reproducibility by TOFMS.

One explanation for the improved performance is that the

electrospray sample spots (0.2–0.3 mm in diameter) were

smaller than the pull-down (0.3 mm in diameter) and dried-

droplet sample spots (2 mm in diameter). As discussed in the

introduction, if the sample spot is small enough to match the

laser spot in size, then the whole sample can be irradiated

simultaneously and therefore sample can be more efficiently

used. In our case, the size of the laser spot on the MALDI-

TOFMS instrument was 150� 250mm and on the AP-

MALDI-QITMS instrument it was 300� 900 mm.

Improved performance by electrospray sample deposition

may also be due to increased homogeneity of resulting

sample spots. The small crystals formed by electrosprayed

samples tended to be uniformly distributed within the spot.

Dried-droplet samples were more heterogeneous in distribu-

tion and the formation of crystal aggregates increased size

and heterogeneity of crystals. Sample spots formed by pull-

down deposition tended to have crystals form along the edge

of the spot. In addition, with increasing dwell time, crystals

tended to adhere to the outlet of the capillary tip causing

sample loss during deposition.

The majority of previous reports describing electrospray

sample preparation used higher voltages of 2–8 kV and

longer spray distances of 2–4 cm than what were used

here.15–17 The new conditions lead to much smaller sample

spots than those produced using the larger tip-to-plate

distances, thus allowing sample to be used more efficiently

and producing detection limits in the attomole range (see

below). At the same time, the smaller spot sizes retain the

improved relative standard deviation (RSD) previously

demonstrated for electrospray sample deposition; however,

in our experiments it is unclear whether the improved RSD is

due to the smaller spot size or the uniformity of the sample

deposition.

While electrospray deposition provided the best S/N for

both types of instrument used, the S/N was significantly

worse using the AP-MALDI-QITMS system. It has previously

been suggested that S/N for MALDI can be enhanced by

using a pseudo-MS2 experiment in which low-energy

collision-induced dissociation is used to reduce the back-

ground arising from clusters formed by MALDI.26 Using this

approach, the S/N could be improved two-fold over those

shown in Table 1.

Analytical figures of merit for electrospray
sample deposition
The linearity, sensitivity, and reproducibility of the MALDI-

TOFMS signal for electrospray and dried-droplet samples

Figure 3. (a) Comparison of lifetimes for 17 nL samples

deposited by different electrospray conditions. The Y-axis

represents the average intensity of the highest peak within

the range m/z 10–600 (n¼ 5). (b) Comparison of average

signal intensities for 69 amol of NT 1-11 [MþH]þ ions under

different electrospray conditions (n¼ 4). The error bar

corresponds to �1 standard deviation.

Table 1. Comparison of S/N and reproducibility for

electrospray, pull-down and dried-droplet deposition

methods. S/N is the average from six repetitions of

depositing the amounts shown

Deposition
methods

MALDI-TOF AP/MALDI-QITMS

NT1-11
(amol) S/N

RSD
(%)

NT1-11
(amol) S/N

RSD
(%)

Electrospray 25 20 27 85 10 39
Pull-down 25 12 44 85 7 48
Dried-droplet 1500 7 80 5000 4 38
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were evaluated by preparing external calibration curves for

bradykinin samples. As shown in Fig. 4, samples deposited

by electrospray had a linear response (R2> 0.99) in the tested

range (35–345 amol), whereas poor reproducibility pre-

vented a reasonable linear correlation for the dried-droplet

samples (R2¼ 0.63). The RSD over this range of deposited

amounts for electrospray deposition was 10–30%, which

was typical for all peptides tested. The calibration curve slope

for samples deposited by electrospray (480 ion counts/nM)

was somewhat higher than that of the samples deposited

by the dried-droplet method (300 ion counts/nM), implying

greater sensitivity for electrospray deposition. Linear calibra-

tion with R2> 0.99 was also obtained for several other pep-

tides, as summarized in Table 2. LODs for all of these

peptides were in the low attomole range. An illustration of

the high sensitivity possible with this sample deposition

method was demonstrated by the MALDI-TOF spectrum of

a 17 nL sample mixture containing 50 amol each of six neuro-

peptides, shown in Fig. 5. All of the peptides were detected

with S/N> 10.

Sample pre-concentration by electrospray
deposition
An advantage of electrospray deposition is that sample can

be continuously deposited into a small area to pre-concen-

trate dilute samples directly on the MALDI plate. We inves-

tigated this possibility by extending the sample deposition

time to 350 s resulting in a deposition of a total volume of

580 nL. The spot size was not affected by the longer deposi-

tion time because of the rapid evaporation of solvent as

droplets approached the plate; however, the concentration

detection limit was improved by 200-fold. For example, using

this condition, spectra with S/N of 4� 1 (n¼ 5) were obtained

for NT 1-11 at 35 pM (20 amol deposited), as shown in

Fig. 6. For pre-concentration it was beneficial to use a lower

matrix concentration (0.125 vs. 1.25 mg/mL) to reduce chemi-

cal noise. The ability to pre-concentrate and analyze dilute

Table 2. LOD and calibration curves for four 17 nL

neuropeptide samples using electrospray deposition and

MALDI-TOFMS. At least four concentrations were used for

each curve resulting in the range of amounts shown. Each

concentration was repeated five times. (R2 denotes linear

correlation coefficient.)

Peptide
LOD

(amol) R2
Slope (ion

counts/amol)
Range
(amol)

NT1-11 10 0.998 123 6–69
Bombesin 20 0.999 99 26–103
[Arg8]-vasopressin 0.7 0.997 440 0.8–38
Bradykinin 25 0.999 29 35–345

Figure 4. External calibration curves for bradykinin

deposited by (a) electrospray and (b) dried-droplet method

(n¼ 5 for each concentration). The error bar corresponds to

�1 standard deviation.

Figure 5. MALDI-TOF mass spectrum of a 17 nL sample

deposited by electrospray that contained 50 amol each of the

following peptides: (1) bradykinin (m/z 1060.6), (2) [Arg8]-

vasopressin (m/z 1087.4), (3) angiotensin I (m/z 1296.7), (4)

substance P (m/z 1347.7), (5) neurotensin 1-11 (m/z 1447.8),

and (6) bombesin (m/z 1620.8). The spectrum is a sum of 10

‘‘scans’’.
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solutions is significant for biological samples where concen-

tration detection limits are often more important than abso-

lute mass detection limits.

Biotransformation of neurotensin in CSF
In order to demonstrate the utility of electrospray sample

deposition for more complex samples, we used this method

to determine the degradation products of neurotensin in CSF.

Peptide degradation in CSF is a potentially important route

for metabolism of hormones, neurotransmitters, and pepti-

dergic drugs. Knowledge of degradation products and the

time scale of their appearance is useful in determining the

active fragments of peptides as well as their pharmacody-

namics. CSF also represents a complex matrix for testing a

method as it contains a variety of proteins, peptides, metabo-

lites, and salts. Typical mass spectra of CSF spiked with 6mM

neurotensin, obtained before and after 24 h incubation, are

shown in Figs. 7(b) and 7(c) compared with the spectrum

for a blank sample, i.e. CSF with no neurotensin added, in

Fig. 7(a). For all spectra in Fig. 7, 17 nL of sample were depos-

ited, corresponding to 40 fmol of neurotensin. After incu-

bation, several new masses are observed including those

that correspond to neurotensin fragments 1-12, 1-11, 1-10

and 1-8. These results indicate that a significant degradation

path for neurotensin in CSF is by cleavage at the C-terminus,

an action likely mediated by a carboxypeptidase.

CONCLUSIONS

Electrospray sample deposition for MALDI is demonstrated

to yield low attomole detection limits for peptides, and RSDs

of 10–30% for a variety of peptides in the 10–500 amol range.

The method was demonstrated for analysis of the biotrans-

formation of neurotensin in CSF. The excellent detection lim-

its and good reproducibility are attributed to producing a

small, relatively homogeneous sample spot (<300mm in dia-

meter) with crystallite size of a few micrometer diameter. By

continuously delivering sample to the same spot, electro-

spray deposition can also pre-concentrate samples enabling

low pM detection limits. The good performance of the elec-

trospray method requires that sample is deposited with

some solvent as overly dry deposition results in small or no

crystals that are efficiently volatilized but produce weak sig-

nals or are inefficiently captured on the target plate. The wet

electrospray method is in principle similar to the pull-down

method, and the experiments where direct comparisons were

made reveal similar results with a slight sensitivity advan-

tage to electrospray (Table 1). The slightly more complicated

design for electrospray deposition (i.e., it requires a pulled

tip) may negate its apparent sensitivity advantage; however,

it is unknown at this time how the pull-down method would

compare with electrospray deposition with respect to other

figures of merit and for pre-concentration experiments.

While mass detection limits reported here refer to sample

consumed, it is apparent that the present system requires

somewhat more sample (approximately 285 nL to load

capillaries) to generate 17 nL sample spots. This volume

could be reduced by using smaller bore tubing, filling just a

portion of the capillary with sample (either from the tip or the

back), or using a microfluidic system to manipulate the

samples. The efficiency based on sample used can also be

increased by taking advantage of the pre-concentrating effect

since the larger volumes utilized in pre-concentration are

more easily manipulated. In addition, the method is, in

principle, compatible with coupling to microscale separation

techniques like capillary liquid chromatography because of

the compatibility with continuous sample deposition and

low flow rate, where the inherent mass sensitivity of the

approach could be readily utilized to full advantage.

Figure 6. MALDI-TOF mass spectrum of 35 pM NT 1-11

deposited by electrospray over 350 s (580 nL). The spectrum

is a sum from 10 ‘‘scans’’.
Figure 7. MALDI-TOF mass spectra of (a) CSF blank, (b)

neurotensin (40 fmol) in CSF without incubation, and (c)

neurotensin (40 fmol) in CSF after 24 h incubation. Peaks

marked with ? and * are due to unknowns and impurities,

respectively. 20 ‘‘scans’’ were added to obtain each spec-

trum.
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