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A statistical model is described for the prediction of reaching motions using motion capture

data on a variety of individuals performing reaches to a range of targets. The modeling

approach allows for various inputs such as the stature, age and the location of the target to

be specified and then computes the predicted trajectories of the kinematic chains of body

markers necessary to place an object exactly at the specified target. Functional regression

methods for modeling time-varying angles and other quantities as well as trajectories are

described. A new parameterization of posture is described that facilitates the satisfaction of

specific endpoints such as placing an object at a target. The methodology is illustrated with

an application to two-handed standing lifts. Copyright # 2003 John Wiley & Sons, Ltd.
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Introduction

Motion capture technology allows the collection of

databases of human motions. We can collect data on a

variety of individuals performing a range of motions.

Even so, no matter how large our database may be, we

may wish to see the motion of an individual with

specified anthropometry perform a motion to some

specified target and find that such a particular example

does not exist within our database. In this article I

describe how to use the observed data to build a

statistical model that can be used to predict motions

under a range of input conditions. Motion editing

techniques take a single motion and modify it to meet

requirements—see Gleicher1 for a survey of such meth-

ods. I will show how to combine information from a

larger number of observed motions to produce new

predicted motions that will have superior statistical

properties to a prediction based on a single motion.

See Wiley and Hahn2 for another approach to combin-

ing captured motions to produce new motions.

The application which motivated this work comes

from ergonomics. Many vehicle interiors and work-

places are first designed using a CAD system. Physical

prototypes are useful for evaluating the ergonomic

characteristics of the design but these are expensive and

time consuming, especially when a design must proceed

through several iterations. The ability to place an

authentically moving virtual human within software

such as Jack3 helps the designer detect problems with

the layout that can be rapidly corrected, thus speeding

the design process. In some other applications, it is

sufficient to produce motions that appear to be correct,

but our application demands that our predicted motions

be close to how people really move. Such demands

impose greater costs in terms of the quantity of motion

capture data required. Even so, the methodology pre-

sented below is generalizable and would be useful

across a wide range of applications.

Human motion is quite variable. The same individual

performing the same task will not move identically on

each repetition. Furthermore, even greater variation will

be observed between the motions of different indivi-

duals performing the same task, even if they have the

same height, weight or other personal characteristics of

interest. Given specified characteristics and a task, I

wish to predict the average motion. Regression model-

ing is a well-known statistical tool for predicting an

output in terms of several inputs. The inputs here are

quantities such as the height of the individual and the

coordinates of the target of a reach. The output, how-

ever, is not the usual scalar or vector seen in ordinary

regression models, but the whole motion. I describe an

extension of regression models to handle such a com-

plicated output.
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Although the main purpose of this article is to present

a statistical methodology for modeling motion, I also

demonstrate that the methods have been successfully

applied to build predictive models based on a large

amount of data collected on standing full body lifts with

two hands where an object is moved to a wide range of

locations. I describe how this data was collected below.

The dynamic posture can be described in terms of

angles that vary over time and the trajectories of the body

joints which can be represented as univariate functions

and curves in 3D respectively. I describe new regression

techniques that can predict such quantities in terms of

inputs such as the stature, age and gender of the subject. I

introduce a new representation of the posture, called

stretch pivot coordinates, which will allow us to combine

these angle and trajectory predictions to satisfy precise

endpoint constraints such as placing an object in a

specified location. These stretch pivot coordinates re-

place the joint angles used in most motion modeling. I

then demonstrate how these methods were applied to

our data and discuss how well they perform.

One important characteristic of my method is that no

numerical optimization is required—it is analytic in the

sense of Tolani et al.4 The construction of the predicted

motion requires no iteration or solution of sets of equa-

tions and, as such, can be computed very rapidly com-

pared to optimization and iterative inverse kinematic

methods. In contrast to Tolani et al.4, my method allows

the prediction of endpoint-constrained kinematic chains

with an arbitrarily large number of links, but does not

incorporate information about joint flexibility and limits.

Data

In this section, I describe the data to which the methods

were applied. Since the primary objective of this article

is to describe the motion-modeling methodology, I

provide only enough detail to understand the nature

of the data. There are many factors that may affect

motion and the precise details of the conditions of the

experiments are important if conclusions about these

factors are required. However, this particular article is

about how to model this type of data and does not aspire

to specific conclusions about the effect of age etc. on

motion. I emphasize that the methodology presented

here could be applied to data collected in different ways

for different linkages.

In 1999, the Human Motion Simulation Laboratory

(HUMOSIM) at the University of Michigan conducted a

set of experiments concentrated on the motions of

standing people performing reaches to a dispersed set

of targets. In one experiment, subjects were required to

move a small box with both hands from a position in

front of the body at waist height to a shelf at the specified

target. The subject then released the box and returned to

the rest position, then reached back to the box, grasped it

and returned it to the rest position. The left foot was held

fixed but the rest of the body was free to move.

A total of about 3000 motions were performed by a

group of 20 subjects reaching to 30 targets, where the

four parts of the motion described above are counted

separately. The subjects, from whom informed consent

was obtained, were selected to provide a means to

assess the effects of anthropometry (height in particu-

lar), gender, and age on the motions. The subjects

ranged from very short to very tall and from 20 to 60

years of age. Two different motion capture systems were

simultaneously used to estimate joint center locations

throughout the motions: an optical reflective marker

system and an electromagnetic one. The whole posture

was described by 23 joint center locations located at the

left and right feet, ankles, knees, hips, shoulders, el-

bows, wrist, front and back of hand together with the

L5/S1 (small of the back), the C7/T1 (back of the neck),

the sternoclavicular joint (supersternale), the mid-

tragion (between the ears) and the nasion (between the

eyes). Some of these locations were computed by pro-

jecting down from the externally placed markers.

I extracted the portions of the recorded motion where

the subject was reaching based on the motion of the

right hand. Because the data was collected at 20 Hz and

each motion lasted around 1 second on average, each

motion was represented by the 3D coordinates of the 23

markers at around 20 timepoints on average. Due to

occlusion or other data collection problems, some mar-

kers are missing during some parts of some motions.

Where the amount of missing data was not substantial, I

interpolated these cases, otherwise the motion was

discarded.

Methods

Functional RegressionAnalysis

Many individual components of the motion, such as

angles between body segments as they change over

time, can be described as functions. For example, con-

sider an axis joining the initial and final location of the

hand. I can compute the orthogonal distance of the hand

from this axis during motion, which I will call the radial
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deviation. Because I observe the data only at discrete

timepoints, I have a sequence of observed values from

the start to the end of the motion. These sequences are of

different lengths because some targets are further away

than others and people reach at different speeds. We

rescale all these motions so that t¼ 0 is the start of the

motion and t¼ 1 is the end of the motion. I can save the

actual time taken as a possible predictor of the motion.

Plots of this distance for 20 subjects reaching with the

right hand to a location somewhat to the left and front of

the body and about the same height as the initial

position of the hand are shown in Figure 1. Since there

are 30 targets and some reaches were replicated, a plot

of the complete data for this measure would show

considerably more curves.

I can describe each motion in terms of a set of

functions. Some of these functions may describe how

given angles change over time, while others may de-

scribe how other quantities like the radial deviation

change. There are many choices of angles and other

quantities that could be used to describe the motion, but

I leave the question of which choices are better until

later. I aim to build a set of models that can predict each

of these functions, which can then be combined to

predict the complete motion.

Suppose the rescaled functions for some chosen quan-

tity are given by yðtÞ ¼ ðy1ðtÞ, . . . ynðtÞÞ, where the sub-

script runs over the n collected motions. These functions

might be expected to depend on certain covariates such

as the location of the target being reached, the age and

anthropometry of the subject and other factors. For the

ith curve, I collect these predictors in a vector xi.

Typically, the first term in this vector is one. We then

propose a functional linear model:

yiðtÞ ¼ xTi �ðtÞ þ "iðtÞ

Notice that this is similar to a standard regression model

but the response is now a function, as is the error term

"iðtÞ. The regression coefficients �ðtÞ are now a vector of

functions. A general introduction to the area of functional

data analysis may be found in Ramsay and Silverman.5

The particular coefficient function for a given covariate

will now represent the effect on the response of that

covariate over the duration of the reach. I can now

estimate �ðtÞ using least squares by

�̂ðtÞ ¼ ðXTXÞ�1XTyðtÞ

where X is the matrix whose rows are given by the xi’s.

This formula cannot be directly applied since I cannot

observe a yiðtÞ at all possible t. One approach is to

approximate the functions on a grid of values. This

was done in Faraway.6 A fine grid of values is necessary

for accurate representation, which is somewhat ineffi-

cient. So, instead, I represent the curves as linear com-

binations of m cubic B-spline basis functions, �jðtÞ. A

curve yiðtÞ is represented as yiðtÞ �
Pm

j¼1 yij�jðtÞ, where

the coefficients yij are estimated using least squares over

the points at which yiðtÞ is observed.

Given that human motion is usually quite smooth, it

is not necessary to have a large number of basis func-

tions. In our particular application, I found that eight

basis functions were sufficient. So each observed curve

is represented by eight coefficients and the functional

response is thereby converted into a multivariate re-

sponse.

Thus I can write the model in the form

Yn�m�m�1ðtÞ ¼ Xn�pBp�m�m�1ðtÞ þ "n�1ðtÞ

or factoring out the �ðtÞ, I can write it in the simpler

form

Yn�m ¼ Xn�pBp�m þ "n�m

which is now a multivariate multiple regression model

where the coefficient matrix B may be estimated using

least squares:

B̂ ¼ ðXTXÞ�1XTY

I may then use the standard methods of statistical

inference using this modeling approach. Details of

such methods may be found in texts such as Johnson

and Wichern.7 For prediction and interpretation

Figure 1. The radial deviation of the hand from a straight-line

path when reaching with the right hand to a location on the

left for 20 subjects.
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purposes, it is necessary to transform back from this

basis function representation to the original form by

�̂p�1ðtÞ ¼ B̂p�m�m�1ðtÞ

I can predict future responses given a new predictor

value x0 by

ŷ0ðtÞ ¼ x01�pB̂p�m�m�1ðtÞ

More details on this approach may be found in Faraway.8

Trajectory Prediction

In addition to predicting univariate functions, such as

the radial deviation, I may wish to predict the 3D curves

formed by the trajectory of the hand or other body

markers. I could simply model each of the three Carte-

sian coordinates of the trajectory using the technique

described above, but this seems unsatisfactory as it is

not invariant to rotations of the coordinate system. I

have chosen a different parameterization that has more

interpretable components and assumes that I have spe-

cified the beginning and end of the trajectory (as would

be the case for predicting the movement of the hand for

specified tasks).

I define rðtÞ as the radial deviation at time t describing

the orthogonal distance from the axis joining the end-

points, pðtÞ 2 [0, 1] as the proportionate progress along

the axis at time t and vðtÞ ¼ dp=dt as the relative axial

velocity.

See the left panel of Figure 2 for a depiction of these

quantities.

Let �ðtÞ be the angle describing the position of the

hand at time t on the circle orthogonal to the axis of the

reach and whose center lies on this axis. I define �ðtÞ ¼ 0

to be the projection of the unit vertical vector onto this

circle.

I model the trajectory using the triplet

ðvðtÞ; rðtÞ; �ðtÞÞ

I model each of these components using a functional

regression. Since vð0Þ ¼ vð1Þ ¼ rð0Þ ¼ rð1Þ ¼ 0 by defini-

tion, I can accommodate this by omitting the first and

last cubic B-spline basis function which, since these are,

respectively, the only non-zero basis functions at t ¼ 0

and t ¼ 1, will ensure the desired property. Further-

more, I should not directly model �ðtÞ using a functional

regression because it is an angle. Angles 2�� " and 0 are

only " apart but if I enter the numerical values into the

regression, this property will not be respected. For this

reason, I model the responses cos�ðtÞ and sin�ðtÞ and

then use the relation � ¼ tan�1 (sin�/cos�) to predict �,

which does respect the appropriate continuity proper-

ties of an angle.

Greater detail on this method of trajectory prediction

may be found in Faraway.9 Note also that a different

method of predicting the trajectory could be freely

inserted without changing the rest of the approach.

For example, the trajectory could be modified to avoid

an obstacle using other techniques.

Stretch Pivot Coordinates

In the previous sections, I have described how I model

functions in terms of predictors and how I can model the

trajectories of selected body markers. In this section, I

describe how these methods may be combined to pre-

dict the motion of the whole using a representation that I

Figure 2. On the left, I show a side view of the reach with the axis drawn as a straight line connecting the start and end of the

reach. On the right, the view is down the axis, looking from the start towards the end.
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am calling the stretch pivot coordinates. The method is

appropriate for predicting motions with constrained

endpoints—for example, that the hand may be required

to start and end at specified locations. Before I do this, I

will describe the nature of the problem, a number of

candidate solutions and why these are unsatisfactory.

The Problem. I have a closed kinematic chain. The

endpoints are either fixed (for example, the foot when

the subject remains in a standing position) or predicted

using the trajectory method (for example, the hand

during a reaching motion). There is a kinematic chain

linking these two endpoints. In our example, the chain

will stretch from the left foot to the right hand and

contain 10 links. Of course, other linkages may branch

off this chain. In our example, these would be the right

leg, left arm and the head. I will model the main linkage

first. These secondary linkages can be modeled in a

similar fashion once the main linkage has been pre-

dicted. See Figure 3.

The problem is to predict the location of the interior

markers of the chain.

ForwardKinematicsUsingAngle Predictions. Each

segment of the linkage may be described using approxi-

mately two angles depending on the choice of linkage.

There are many ways in which these angles may be

specified but the same difficulties I describe below will

arise. The angles may be modeled using functional

regression analysis in terms of the desired predictors

as described above. The posture must be reconstructed

starting from one end of the chain, building up the

linkage using the predicted angles using forward kine-

matics equations. However, when I reach the other end

of the chain, the predicted location of the terminal

marker will almost certainly not coincide with the

required endpoint. When the linkage is long, the varia-

tion accumulates in the final marker and the discre-

pancy between the forward kinematic predicted

location of the endpoint and the required location may

Figure 3. Schematic of human figure. The critical kinematic chain linking the endpoints at the left ball of the foot which, in our

example, does not move, and the right grip, which moves along a trajectory that I have already predicted. I need to predict the

locations of the nine interior markers of the 10-link chain as labeled in the diagram. When this is done, the three smaller chains

consisting of the right leg, left arm and head can be predicted. For two-handed moves, the trajectory of the left hand can also be

predicted.
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be substantial. In our particular example, this error had

a median value of around 25 cm across all the motions

and subjects. This amount of error is unacceptable for

many applications.

Unrestricted forward kinematic prediction is still

useful for other situations. For example, in our case I

need to predict the location/orientation of the head.

This can be described using a two-segment linkage

originating at c7/t1, proceeding to the mid-tragion

(center of the head) and ending at the nasion (between

the eyes). Since the position of the nasion is uncon-

strained, I can simply predict it using this method.

Inverse Kinematics. For an unrestricted kinematic

chain with l links, fully flexible joints and with only

one endpoint fixed, we need 2l angles to describe the

position of the chain. When the other endpoint is fixed,

three degrees of freedom are used and thus only 2l� 3

angles (or other quantities) would be necessary to de-

scribe the location of the chain. Thus, the forward kine-

matics approach suffers from having more angles than I

need, while from the inverse kinematics point of view

there are an infinite number of postures that would

satisfy the endpoint constraints. Many authors have

described various criteria for selecting the ‘best’ solution

from this infinite number of possibilities. See, for exam-

ple, Zhang et al.10 or Hsiang and Ayoub11 in the biome-

chanics literature, while Gleicher and Litwinowicz12 is

an example of an animation-motivated approach which

also reviews previous approaches. These criteria have

been drawn from various considerations regarding com-

fort, energy, joint mobility restrictions etc. In Faraway

et al.13 I proposed selecting the solution that was closest

to the unconstrained forward kinematics prediction.

These approaches require the solution of an optimiza-

tion problem with non-linear constraints. This is feasible

for short linkages but the methods rapidly become

increasingly time consuming, complex and unreliable

as the number of links increases. Tolani et al.4 describe

the disadvantages of these numerical approaches.

Stretch Pivot. Only 2l� 3 parameters are necessary to

describe a closed l-link kinematic chain. The key to

success is selecting these parameters in a clever way.

As a starting point, consider a closed two-link chain.

Only one parameter is need to describe this linkage,

since the midpoint of the chain is constrained to lie on a

circle whose center lies on and is orthogonal to an axis

joining the endpoints. I need only specify the angle on

this circle. I call this midpoint the pivot and I call this

angle the pivot angle. Such an angle was used by Kor-

ein14 Wang15,16 and Tolani et al.4 Some authors have

called this a swivel angle. The angle is illustrated in

Figure 4.

For more than two links, one might consider model-

ing l� 2 of the links using forward kinematics and then

use a pivot angle to describe the orientation of the

remaining two links. However, the predicted position

of the endpoint of the l� 2 links could be further away

from the other endpoint than the combined distance of

the two remaining links. For a long linkage, this condi-

tion may easily occur and is the reason why this solution

was not satisfactory for our particular example. Never-

theless, the pivot angle idea does provide the hint

towards a more general solution.

Consider an l-link chain and pick a marker in the

middle of this chain. The selected marker does not need

to be the middle in the sense of median, but assume, for

now, that there are at least two links on each side of the

selected marker. Let us arbitrarily call the two endpoint

markers the proximal and the distal, and the selected

midpoint the medial. Let lp and ld be the distances

between the proximal and the medial and the distal

and the medial respectively. If lp and ld are considered

fixed, then the position of the medial relative to the

proximal and distal may be described in terms of a pivot

angle, �m, lying on the circle orthogonal to, and whose

center lies on, the axis joining the proximal and distal.

Let mp and md respectively represent the total length

of all the links joining the proximal and the medial, and

the distal and the medial. So

0 � lp � mp and 0 � ld � md

Define pp ¼ lp=mp and pd ¼ ld=md. I call the p’s the stretch

parameters. I may describe the position of the medial in

terms of the three parameters (�m; pp; pd). Hence the

name stretch pivot (see Figure 5).

Figure 4. The pivot angle describes the location of the mid-

point on the circle of its possible positions.
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Once the position of the pivot has been determined, the

problem is reduced to two smaller problems. I may repeat

the same procedure on the two halves of the chain

recursively until I have reduced it to a collection of two-

or three-link chains. For the two-link chains, only a pivot

angle is needed to describe the middle marker. For a

three-link chain, I may describe the position of one of the

midpoints in terms of one pivot angle and one stretch

parameter, thereby reducing the problem to a two-link

chain requiring only one more pivot angle for description.

This parameterization uses exactly 2l� 3 parameters,

equal to the number of degrees of freedom in the chain.

I may model the stretch pivot parameters using func-

tional regression analysis. Any predicted pivot angle

will be valid in the sense that it will lead to a possible

configuration of the chain. Of course, anatomy further

restricts what angles are physically possible. I will

discuss such concerns later.

The stretch parameters must lie between 0 and 1 so it is

simpler to model log p=ð1 � pÞ as the response so that the

predicted p will always lie between 0 and 1. Depending

on the particular configuration, further restrictions will

apply to the pair ðpp; pdÞ because the two halves of the

chain must neither be too stretched or not stretched

enough so that the halves might not join in the middle.

Let mpd be the distance from the proximal to the distal.

The triangle inequality and their being proportions

means that ðpp; pdÞ must satisfy the following constraints:

pdmd þ ppmp � mpd

pdmd þmpd � ppmp

mpd þ ppmp � pdmd

0 � pp � 1

0 � pd � 1

Depending on the relative values of ðmp,md,mpdÞ, this

results in a range of potential values for ðpp, pdÞ, some of

which are depicted in Figure 6.

I need to model a bivariate response, ðpp, pdÞ, but the

irregular shape of the domain being dependent on the

relative values of ðmp,md,mpdÞ makes it difficult to build

a prediction equation that will always produce valid

values. I propose the following solution: I will work

with ðpp þ pd, pd � ppÞ, where the first parameter

Figure 5. Stretch parameters illustrated. The distance be-

tween the proximal and medial if that part of the chain were

fully extended is mp, while the corresponding distance for the

medial to the distal ismd. I define pp ¼ lp=mp and pd ¼ ld=md.

Figure 6. Allowable range for ðpp, pdÞ lies within the unit square, further restricted by the triangle inequality constraints shown

as dotted lines. In all three panels, the proximal is at (0, 0, 0) and the distal is at (1, 1, 1). In the first panel, mp ¼ 4,md ¼ 4; in the

second mp ¼ 2,md ¼ 2; and in the third mp ¼ 1; md ¼ 4. The points in all three plots are the values of ðpp; pdÞ corresponding to
four different values of ðqs; qdÞ: (0.1, 0.9), (0.1, 0.1), (0.9, 0.1) and (0.9, 0.9).
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measures how stretched out the configuration is, while

the second measures the extent to which the midpoint is

towards the proximal or distal.

For any given ðmp,md,mpdÞ, I may determine the

maximum, qsmax, and the minimum, qsmin, values that

can be taken by the sum, s ¼ pp þ pd. I then define a new

parameter qs as

qs ¼ ðs� qsminÞ=ðqsmax � qsminÞ

So qs is a number between 0 and 1 representing the sum

of the stretch parameters scaled within its allowable

range.

Now treating, s ¼ pp þ pd as fixed, I compute the

range of the difference d ¼ pd � pp as ðqdmin, qdmaxÞ, and

define qd as

qd ¼ ðd� qdminÞ=ðqdmax � qdminÞ

So qd is again a number between 0 and 1 representing

the difference of the stretch parameters conditional on

their sum, scaled within its allowable range. So any

combination of ðqs, qdÞ within the unit square may be

mapped to a ðpp, pdÞ for any ðmp,md,mpdÞ combination.

Importantly, the predicted configurations for a given

ðqs, qdÞ for different ðmp,md,mpdÞ combinations will be

roughly homologous in the sense of placing the medial

in about the same location to the extent possible given

the values of ðmp,md,mpdÞ. This feature is important if I

am to use ðqs, qdÞ as regression responses.

The values of qsmin, qsmax, qdmin, qdmax for given

ðmp; md; mpdÞ are given in the Appendix.

There remains the problem of the three-link chains

which require only one stretch parameter to describe.

Again the specific configuration of ðmp,md,mpdÞ will

determine the range of this stretch parameter, which

will be a subset of [0, 1]. The problem is just a simpler

version of the one solved above. I may compute the

range of this stretch parameter and then compute an

appropriate q 2 ½0, 1� as above.

So I am now able to describe the posture in terms of

pivot angles and transformed stretch parameters, q,

which can each take any value within their allowable

range independent of the value of any of the other

parameters. I can independently manipulate any of

these parameters while maintaining the endpoint con-

straint. This crucial property allows us to independently

model each parameter using a functional regression

equation. Given any predicted pivot and stretch para-

meters, I can construct a motion for any choice of link

lengths long enough to reach the target.

Def|ning the PivotAngles

In defining a pivot angle, I should define an origin (zero

degrees). Two problems may occur. Firstly, when

mp þmd ¼ mpd, i.e. the two links are collinear, the angle

cannot be defined at all. When this condition is close to

occurring, there will be some instability in the pivot

angle in that small changes in the midpoint may result

in large changes in the pivot angle. However, given that

the ultimate aim is to predict the midpoint and not the

pivot angle, this problem is not serious.

The second problem is more troublesome. One way to

define zero is to pick a direction, say the vertical, and

project this direction onto the circle of the pivot angle to

define a zero. However, if the circle lies in the horizontal

plane, the zero will be undefined. Of course, this is

unlikely to occur exactly in practice, but, more seriously,

there will be much instability in the pivot angle when

the motion is such that the axis joining proximal and

distal passes close to vertical. (Zero could also be

defined using a plane, but the same problems will arise.)

Of course, one could just choose a different polar

direction but this will simply move the problem else-

where. For some combinations of body markers, it is

possible to pick a good polar direction since we might

know that any axis that is likely to occur will not be close

to the polar direction. However, some combinations,

such as the wrist, elbow and shoulder, can clearly have

axes in all directions. Some adaptive choice is necessary.

Our approach is to avoid this zero problem entirely by

defining the angle in terms of the normal vector to the

plane passing through the pivot and the two endpoints.

I then model the three coordinates of the normal vector

using three functional regressions. Admittedly, three

parameters are introduced where only one appears to

be needed, but the polar instabilities are avoided and the

normal vector does contain relevant information about

the orientation of the endpoints and the pivot which can

be usefully modeled.

Results

In this section, I describe the particular implementation I

used for modeling the data described above and how

well the models performed. These choices would need

to be reconsidered and recombined for other types of

motion but it is worth describing our choices here to

understand the considerations involved.

The selection of pivots is essential to the implementa-

tion of the stretch pivot coordinates. First consider the
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primary kinematic chain linking the left ball of the foot

to the right hand. The pivots selected were c7/t1, the left

hip, the right shoulder, the right elbow and the left knee,

where the order indicates the order of precedence. The

remaining markers on this chain required only a pivot

angle to describe.

The right ball of the foot was free to move in our

experiment. I modeled the Cartesian coordinates

ðxðtÞ, yðtÞ, zðtÞÞ directly for this marker using a separate

functional regression for each component. Once the posi-

tion of the right foot was determined, the right knee was

used as a pivot, with the remaining markers on this chain

each requiring only a pivot angle to describe.

When the left hand was holding the box, the angles

describing the orientation of the box were modeled

using functional regression equations. Thus the position

of the left grip was derived from the right grip together

with the predicted box angles. For the motions where

the left grip was empty (returning to the rest position or

reaching to grasp the box on the shelf), the trajectory of

the left hand was independently modeled in the same

way as the right hand.

The two-link head chain did not have a fixed end-

point, so that the angles describing the orientation were

simply modeled using functional regressions.

In order to make a prediction, it is necessary to

provide the segment lengths (the distances between

adjacent markers). Various studies have been made

concerning these lengths and how they vary as a func-

tion of anthropometry. In our case, I fit simple regres-

sion models to describe these lengths as a linear function

of stature. For our small number (20) of subjects, there

was no evidence that more than stature alone would be

helpful in predicting these lengths.

It is possible to accommodate variable segment

lengths. For example, I might model the c7/t1 to l5/s1

spine link as a function varying in time depending on

the predictors. This allows for some additional flexibil-

ity and biomechanical fidelity. However, all segment

lengths were fixed in the model presented below.

All the functional regressions were fit using the robust

regression method of Huber.17 I found that this method

gave better fits than least squares. There are many

potential predictors that could be used in the functional

regression equations and still more ways that these can

be combined. I needed to choose among these possibi-

lities. If I consider the modeling of a single stretch or

pivot angle parameter, I find, of course, that adding

more predictors always improves the fit. Although the

well-known techniques of variable selection could be

applied, we may simply observe that fitting the

individual stretch and pivot parameters is not our

primary objective. For any individual data point (which

is a complete reach) and given model I compute a fitted

value which is the predicted reach for the predictors

associated with that data point. I can compute the

distance between the observed data and the predicted

value over the markers and over the time of the reach. I

can repeat this over the complete data set and derive

some measure of fit. I can use this to evaluate the

competing models.

I experimented with a variety of different models and

discovered that better results were obtained with more

local rather than global models. One would not expect

that information about a reach to a high shelf would be

useful in predicting reaches to low shelves and yet a

single predictor equation for the whole target area does

just this. Instead, I found that better results were ob-

tained by subsetting the data by target area and fitting

separate models. This is not surprising. Consider, for

example, reaches to a range of vertically stacked target

shelves. For the higher shelves, it is not necessary to bend

the knees, but, as the target shelf moves lower, at some

point the subject will bend his knees during the reach.

The transition from one pattern of motion to another is

abrupt and not continuous in the target shelf—hence the

need for more local fitting. A better understanding of

such transition points would be valuable.

It is quite time consuming to fit and evaluate models

so I was unable to further explore the wide variety of

potential models that might be considered. Note also

that I used the same predictors for all the functional

regressions, although in fact different predictors could

be used for different stretch and pivot parameters.

For my final model, evaluated and fit on the same

data, I found a median error over all reaches averaged

over time of 6.9 cm for the right grip and 7.9 cm for c7/t1.

I used predicted (based on height) segment lengths

rather than the actual segment lengths. Had we used

the actual segment lengths for each individual, lower

figures would have been obtained but these would not

reflect the performance that one might expect in actual

use as most users will only be able to supply the height

and not all the segment lengths. When considering these

figures, it is important to realize that there is a lower

bound to what may be achieved given the natural

variability in motion beneath which one cannot hope

to predict. The same person repeating the same task will

not do it identically. Even greater variation might be

expected between reaches performed by two people of

the same height, age and gender (and whichever other

predictors might have been used) doing the same reach.
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If I build a regression model with an indicator variable

for each target and subject, I can get a notion of the best

possible predictive performance (within the class of

methods that I am using). The median errors for the

right hand and c7/t1 for this model are 6.3 cm and

6.7 cm respectively. Of course this model is not practical

since it could only be used for predicting motions to our

targets made by our subjects, but it does indicate that the

model I have chosen could not be greatly improved

upon. This does not preclude the possibility that some-

one else may present a completely different modeling

technique that outperforms mine, but, given the inher-

ent natural variability in motion, the scope for signifi-

cant improvement is not substantial.

A functional demonstration of the motion prediction

may be obtained from my web site at http://www.stat.

lsa.umich.edu/� faraway.

One important advantage of using stretch pivot coor-

dinates over other methods that require optimization is

that it is fast. To predict all four phases of the motion

required only 0.01 seconds on an 850 Mhz Pentium III PC.

The algorithm was implemented in C but without any

special efforts at optimization. This speed makes it prac-

tical for applications where rapid animation is important.

Discussion

I mention here several shortcomings in the current

method and discuss potential improvements.

The performance of any empirical model is only as

good as the data it is based upon. In our case, the

predictive performance declines as we specify inputs

that are far from those observed in the experiment. For

example, if I input a target far to the left of the subject, I

cannot expect a good prediction since all the targets in

the experiment were to the right of the saggital plane.

Such failings are inevitable and can only be reliably

rectified by collecting more data with the required input

conditions.

For a complex model such as this, it is inevitable that

some small proportion of inputs will produce unrealistic

predicted motions. One can try to reduce the occurrence

of such errors with model improvements, but complete

success seems unattainable. Some errant predicted mo-

tions can be detected because they violate joint mobility

constraints or other numerical criteria. Corrections may

be applied. Nevertheless, some motions may be numeri-

cally very close to real motions and yet appear unnatural.

In some applications, the user might be willing and able

to intervene to either correct or reject the motion. When

fully automated prediction is required, such errors are

problematic. Another pitfall, particularly for ergonomic

applications, is predicted motions which appear natural

but have some hidden defect.

The current method contains no notion of obstacle

avoidance. If the hand must avoid some obstacle then

the trajectory prediction must be suitably modified. This

seems feasible enough, but more problematic are ob-

stacles that intersect with other parts of the body. An

even more difficult problem occurs when the predicted

position of the body intersects with itself. For example,

on reaches to targets near the feet, I need to avoid

predictions where the hand passes through the knees.

Some motions should not be averaged. For example,

the typical head motion during a lift involves a fairly

rapid glancing motion from looking at the box to the

shelf. The timing of this rapid motion is variable. If

several such motions are averaged, a smooth, slower

move of the head from looking at the box to the target

results. Such a move is not representative and so a

different way of combining such observed head motions

is required.

Most joints have mobility restrictions but the method

does not respect these restrictions. This is a weakness

since the joint angles, through which such restrictions

are typically expressed, are not used by our method and

so it not possible to explicitly enforce these restrictions.

Since the method is based on empirical data, these

limitations are not often exceeded, but nonetheless the

problem may occur. In such cases, the dynamic posture

predicted by our method may serve as an initial esti-

mate requiring some correction. For example, elbow

angle mobility violations can be rectified with a rotation

upper–lower arm linkage without changing the rest of

the posture.

Our model was built for implementation in Digital

Human Modeling software for ergonomic design such

as Jack. Joint angles may be directly computed from our

predicted joint centers. However, the posture represen-

tation in Jack and other animation software varies—

different joint centers, degrees of freedom and other

constraints are used. Mapping our predicted motions

into forms suitable for other software is not always

straightforward but further discussion is beyond the

scope of this article.
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Appendix:Range of Sumand
DifferenceofStretchParameters

qsmax:

Set qsmax ¼ 2 but

* If md �mp � mpd setqsmax ¼ ðmpd þmp þmdÞ=md

* If mp � md � mpd setqsmax ¼ ðmpd þ mp þ mdÞ=mp

qsmin:

* If mpd < md then set a ¼ mpd=md else set a ¼ ðmpd�
md þmpÞ=mp

* If mpd < mp then set b ¼ mpd=mp else set b ¼ ðmpd�
mpþ mdÞ=md

* Set qsmin ¼ minða; bÞ.

Let x ¼ pp þ pd.

qdmax:

* Set a ¼ 2ðmpd þ xmpÞ=ðmp þmdÞ � x

* If mp > md set b ¼ x� 2ðmpd � xmdÞ=ðmp � mdÞ else set

b ¼ 2

* Set qdmax ¼ minðx; 2� x; a; bÞ

qdmin:

* Set a ¼ x� 2ðmpd þ xmdÞ=ðmp þmdÞ
* If mp < md; set b ¼ x� 2ðmpd � xmdÞ=ðmp � mdÞ else set

b ¼ �2.

* Set qdmin ¼ minð�x; x� 2; a; bÞ
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