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SUMMARY

In this paper, we consider the robust stability analysis and synthesis problems for closed-loop vibrational
control. In the analysis problem, we derive an upper bound on the allowable unstructured uncertainty which
preserves the stability of a closed-loop vibrationally stabilized system. In the synthesis problem, we establish
a necessary and sufficient condition for the existence of a single vibrational controller that stabilizes
a polytope of plants. ( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND PROBLEM FORMULATION

Consider the system

xR "Ax#Buf A
t

eB (1)

f (t)"f (t#¹), ¹O0,
1

¹ P
T

0

f (t) dt"0 (2)

/ (t)"P
t

0

f (q) dq,
1

¹ P
T

0

/ (t) dt"0 (3)

where x3Rn, u3R, A and B are constant matrices of appropriate dimensions, f (t) is a piecewise
continuous function, and e is a small positive parameter, 0(e;1. A characteristic feature of this
system is that the control, u, enters the open-loop system dynamics as an amplitude of a periodic,
zero average function, and this amplitude can be chosen to depend on the system state vector x.
Such systems belong to a large class of bilinear systems found in mechanical systems.1 Another
example is the periodic operation of chemical reactors2 where the input flow vibrations are
introduced so that the closed-loop system behaves as desired.
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A control theory for system (1), referred to as closed-loop vibrational control, has been
developed in References 3 and 4. In particular, the following has been proved:

Theorem 1.13,4

There exists a matrix K and a sufficiently small positive e
0
such that for all 0(e)e

0
system (1)

with state-space feedback

u"
K

e
x"

1

e
[k

n
k
n~1

2 k
2
k
1
]x (4)

is asymptotically stable if and only if (A, B) is stabilizable and the sum of all the controllable
eigenvalues of A is negative.

The present paper is devoted to the property of stability robustness in closed-loop vibrational
control. It is assumed that (1) is the nominal plant, whereas the true plant is defined by

xR "(A#*A)x#Buf A
t

eB (5)

where *A is a constant perturbation matrix with no time delay. In this paper, we examine the
analysis and synthesis problems arising out of uncertainties in the system matrix A and ignore
actuator imperfections, i.e. the matrix B is assumed to be known exactly and does not contain any
variations.

In the analysis problem, Section 2 gives a bound on the spectral radius of *A so that for all
*A’s that meet this bound, a controller (4), which stabilizes the nominal plant (1), also stabilizes
the perturbed system (5). Assuming that the characteristic polynomial of (5) belongs to a polytope,
Section 3 gives a condition which guarantees the existence of a controller (4) such that the
closed-loop system (5), (4) is asymptotically stable for all members of the polytope. The
conclusions are formulated in Section 4.

The following notations are used. The transpose of a matrix A is denoted as AT. We denote the
maximum singular value, maximum eigenvalue and minimum eigenvalue of A by p

.!9
(A),

j
.!9

(A), and j
.*/

(A), respectively. Tr A denotes the trace of matrix A. For a periodic function b (t)
with period ¹, b(t)"1/¹: T

0
b(t) dt. To satisfy the conditions of Theorem 1.1, we assume

throughout this paper that the pair (A, B) in (1) is controllable and Tr A is negative.

2. ANALYSIS

Consider system (5) with feedback (4)

xR "AA#*A#B
K

e
f A

t

eBBx (6)

Theorem 2.1

Assume that the matrix K is chosen so that for all 0(e)e
1

system (6) with *A"0 is
asymptotically stable. Then there exists a sufficiently small positive e

0
)e

1
such that for all

0(e)e
0

system (6) with *AO0 is asymptotically stable if

p
.!9A'~1 A

t

eB *A' A
t

eBB)
j
.*/

(Q)

j
.!9

(P)
(7)
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where '(t) is a state transition matrix for xR "BKf (t)x, P is the unique positive-definite solution
of the Lyapunov equation

PAM #AM TP#2Q"0 (8)

Q is some positive-definite matrix, and

AM "'~1 A
t

eB A' A
t

eB (9)

Proof. Define

x (t)"' A
t

eB f (t) (10)

and rewrite (6) as

fQ"'~1 A
t

eB (A#*A)' A
t

eB f (11)

In time q"t/e, this is an equation in the standard form.5 Therefore, applying the averaging
principle and taking into account (2), we obtain the following averaged equation:6

f10 "'~1 A
t

e
w (A#*A)' A

t

eB f1 "(AM #*A)fM (12)

where

*A"'~1 A
t

eB*A' A
t

eB (13)

Note that the last equality in (12) is obtained due to the linearity of the averaging operation. From
Reference 7, we know that the averaged equation (12) is stable if

p
.!9

(*A))
j
.*/

(Q)

j
.!9

(P)
(14)

where P is the unique matrix that satisfies the Lyapunov equation (8) and Q is any
positive-definite matrix.

Hence, for each *A satisfying (14), the averaged equation (12) is asymptotically stable, and
there exists e*A such that for all 0(e)e*A , system (11) is also asymptotically stable.5~7 Due to
(10) asymptotic stability of (11) implies also the asymptotic stability of (6). In Reference 8, it was
shown that e*A is a continuous function of the elements of the matrix *A. Since the set of *A
satisfying (14) is closed and bounded, it follows that there exists a uniform lower bound for e*A .
The proof is completed by setting e

0
"min*Ae*A . K

Remark 2.1

As it follows from Reference 7, the largest robustness bound in (7), is attained when Q of (8) is
selected as an identity matrix.
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The perturbation bound, given in (7), is imposed on *A in an indirect manner, through the
averaged perturbed matrix *A. However, when A and B are in the controllable canonical form,
the robustness bound can be re-formulated directly in terms of the spectral radius of *A. This is
carried out below. Indeed, assume that A and B are in the controllable canonical form. Then the
state transition matrix '(q) is given by4

'(q)"

1 2 0 0

F } F

0 2 1 0
k
n

k
1

(ek1/ (q)
!1) 2

k
2

k
1

(ek1/ (q)
!1) ek1/(q)

(15)

Note that the state transition matrix '(q) remains well defined for k
1
"0. Since TrA is negative

and /(q)"0, we select k
1
"0 so that (13) can be simplified into the following form:

*A"*A#*A
1

(16)

where

*A
1
"

1 2 0 0

F } F

0 2 1 0

k
n

n~1
+
i/1

*A
in
k
n~i`1

/2 2 k
2

n~1
+
i/1

*A
in
k
n~i`1

/2 0

(17)

and *A
ij

denotes the (i, j )th element of the perturbation matrix *A.

Corollary 2.1

Assume that A and B are in controllable canonical form and k
1

in (4) is 0. Then there exists
a positive e

0
sufficiently small such that for all 0(e)e

0
, the system (6) is stable if

p
.!9

(*A)#p
.!9

(*A
1
))

1

j
.!9

(P)
(18)

where P is the solution of (8) with Q"I.

Proof. The proof follows directly from Theorem 2.1, (16) and the fact that p
.!9

(*A#*A
1
)

)p
.!9

(*A)#p
.!9

(*A
1
). K

Remark 2.2

The value of e
0
, mentioned in Theorems 1.1 and 2.1, can be estimated using the method

described in Reference 8. As it is usual in asymptotic analysis, this estimate is extremely
conservative. In practice, however, much larger e’s ensure the correspondence between the
original and the averaged equation. It was also numerically shown in Reference 8 that for systems
with eigenvalues with magnitude of the order 1, the value of e

0
K0)1 is sufficient for stability of

the averaged equation to imply the stability of the original equation. K
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Example 2.1

Consider the system (6) with

A"C
0

0

1

!3D , B"C
0

1D , f (q)"sin(q)

and K"[2 0]. Applying the averaging principle, we obtain the averaged equation (12) with

AM "C
0

!2

1

!3D
From (18), the allowable range of the perturbation matrix which ensures the asymptotic stability
of the original system (6) is given by

p
.!9

(*A)#2 D*A
12

D)0)382 K

3. SYNTHESIS

Consider a system described by differential equation of the order n

x(n)#(a
10
#*a

10
)x(n~1)#2#(a

n0
#*a

n0
)"uf (t/e) (19)

where a
i
, i"1,2 , n denote the nominal ith coefficient of the differential equation (19) and *a

i
,

i"1,2 , n the corresponding perturbation in the ith coefficient. We assume that the
characteristic polynomial of the differential equation (19) belongs to the class P defined as
follows:

P"Gp (s)"
m
+
j/1

a
j
p
j
(s): a

j
*0, j"1,2 ,m;

m
+
j/1

a
j
"1H

Here

p
j
(s)"sn#aj

1
sn~1#2#aj

n
, j"1,2 , m (20)

are the vertex polynomials and aj
i
, i"1,2 , n denote the ith coefficient of the jth vertex

polynomial.
Equivalently, the system (19) can be expressed in the form of (5) with A and B in the

controllable canonical form and the perturbation matrix *A containing the terms *a
i
,

i"1,2 , n in the last row

A"

0 1 2 0

F } F

0 0 2 1

!a
n0

!a
(n~1)0

2 !a
10

, B"

0

F

0

1

,

*A"

0 0 2 0

F } F

0 0 2 0

!*a
n0

!*a
(n~1)0

2 !*a
10
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The following results gives condition on the existence of a stabilising gain matrix K for such
a perturbed system (5) with characteristic polynomial belonging to the class P.

Theorem 3.1

There exists a matrix K and a sufficiently small positive e
0

such that for all 0(e)e
0

any
perturbed system (5) with open-loop characteristic polynomial in P can be stabilized by a single
controller (4) if and only if all coefficients aj

1
, j"1,2 , m, defined in (20), are positive.

The proof of Theorem 3.1, is based on the following lemmas:

Lemma 3.1

Consider a polynomial

p(s)"t
0
sn#t

1
sn~1#2#t

n
(21)

where n*3, t
0
"1, t

i
'0, i"1,2 , n. Let d* be the positive real solution of the equation

d(d#1)2"1. Then polynomial (21) is Hurwitz if the coefficients t
i
satisfy the condition

t
l~1

t
l`2

t
l
t

l`1

)d*, l"1,2 , n!2 (22)

This lemma has been proved by Lipatov and Sokolov in Reference 9. Inequality (22) will hence-
forth be referred to as the Lipatov’s condition.

Lemma 3.2

Consider the following four polynomials:

p
h1

(s)"c
0
sn#c`

1
sn~1#c`

2
sn~2#c~

3
sn~3#c~

4
sn~4#2

p
h2

(s)"c
0
sn#c~

1
sn~1#c~

2
sn~2#c`

3
sn~3#c`

4
sn~4#2

(23)
p
h3

(s)"c
0
sn#c~

1
sn~1#c`

2
sn~2#c`

3
sn~3#c~

4
sn~4#2

p
h4

(s)"c
0
sn#c`

1
sn~1#c~

2
sn~2#c~

3
sn~3#c`

4
sn~4#2

where n*3, c
0
"1, c~

i
)c`

i
, 1)i)n and c~

1
'0. Let coefficients aN

i
, 1)i)n be defined as

a
i
(h)"G

c~
1
h~*(n~1)(i~1)+@4`(i~1)2@4!c~

i
h~*(n~1)(i`2)+@4`i(i~2)@4!c~

i

if i is odd

if i is even
(24)

where h'0. Then there exists a h* such that for all 0(h(h* coefficient a
2

is positive and the
polynomials

p
hcl1

(s)"c
0
sn#(c`

1
#a

1
(h))sn~1#(c`

2
#a

2
(h))sn~2#(c~

3
#a

3
(h))sn~3#2

p
hcl2

(s)"c
0
sn#(c~

1
#a

1
(h))sn~1#(c~

2
#a

2
(h))sn~2#(c`

3
#a

3
(h))sn~3#2

(25)
p
hcl3

(s)"c
0
sn#(c~

1
#a

1
(h))sn~1#(c`

2
#a

2
(h))sn~2#(c`

3
#a

3
(h))sn~3#2

p
hcl4

(s)"c
0
sn#(c`

1
#a

1
(h))sn~1#(c~

2
#a

2
(h))sn~2#(c~

3
#a

3
(h))sn~3#2

are Hurwitz.

1106 P. T. KABAMBA E¹ A¸.

( 1998 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 8, 1101—1111 (1998)



Proof. Let cj
i
denote the ith coefficient, 1)i)n, of the jth polynomial, 1)j)4, in (23). First,

we show that there exists h* such that for all 0(h)h* polynomials (25) satisfy Lipatov’s
condition, i.e.

max
1)l)n!2, 1)j)4

(cj
l~1

#a
l~1

(h)) (cj
l`2

#a
l`2

(h))

(cj
l
#a

l
(h)) (cj

l`1
#a

l`1
(h))

(d* (26)

where d* is defined in Lemma 3.1. Then, the statement of this lemma follows directly from Lemma
3.1. To show that Lipatov’s condition holds, consider

f
l
(h)¢ max

1)j)4

(cj
l~1

#a
l~1

(h)) (cj
l`2

#a
l`2

(h))

(cj
l
#a

l
(h)) (c j

l`1
#a

l`1
(h))

, 1)l)n!2 (27)

It is easy to see that the function f
l
(h) is monotonically increasing with respect to h. Indeed, define

a
0
(h)"0 and c~

0
"c`

0
"1. Let c`

q
(h)"c`

q
#a

q
(h), c~

q
(h)"c~

q
#a

q
(h), and

*c
q
"c`

q
(h)!c~

q
(h)"c`

q
!c~

q
for 0)q)n. Then

f
l
(h)"

c`
l~1

(h)c`
l`2

(h)

c~
l

(h)c~
l`1

(h)
, 1)l)n!2

"

c~
l~1

(h)c~
l`2

(h)

c~
l

(h)c~
l`1

(h) A1#
*c

l~1
c~
l~1

(h)B A1#
*c

l`2
c~
l`2

(h)B (28)

"t (h) A1#
*c

l~1
c~
l~1

(h)B A1#
*c

l`2
c~
l`2

(h)B (29)

where

t (h)"G
h(n`1)@2

h

if l"1

if 2)l)n!2
(30)

We will show that each of the three factors in the right-hand side of (29) is a non-decreasing
function of h. Indeed, c~

0
"1, c~

1
"c~

1
'0, and since c~

i
(h)"c~

i
#a

i
(h) for 2)i)n, we observe

from (24) that the exponent of h in c~
i

(h) is negative or zero. Also, *c
q
*0 for 0)q)n and from

(30), t (h
1
)(t (h

2
) for 0(h

1
(h

2
. Thus, f

l
(h) is a continuous and monotonically increasing

function of h. Also, as it follows from (29), f
l
(0)"0, and lim

h?=
f
l
(h)"R. Therefore, by the

Intermediate Value Theorem, there exists h*
l

such that

f
l
(h*

l
)"d*, 1)l)n!2 (31)

Let h*"min
l
h*
l
. Since f

l
(h) is monotonically increasing with h, it follows that f

l
(h*))f

l
(h*

l
),

1)l)n!2. Therefore,

max
l

f
l
(h)"max

l,j

(cj
l~1

#a
l~1

(h)) (cj
l`2

#a
l`2

(h))

(cj
l
#a

l
(h))(cj

l`1
#a

l`1
(h))

(max
l

f
l
(h*))d*

is satisfied for all 0(h(h*. Finally, to ensure that a
2
'0, i.e.

h1~n!c~
2
'0 (32)
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choose h in (24) as follows:

(i) if c~
2
)0, let 0(h(h*,

(ii) if c~
2
'0, let 0(h(min[(c~

2
)1@(1~n), h*]. K

Proof of Theorem 3.1. Consider the closed-loop system (5), (4)

xR "AA#*A#BKf A
t

eBBx (33)

From (12), we obtain the following averaged equation:

f10 "'~1 A
t

eB (A#*A)' A
t

eB f11 (34)

where f is defined in (10).
According to References 5, 6 and 8, if (34) is asymptotically stable, there exists a positive

e
0

sufficiently small such that for all 0(e)e
0

equation (33) is also asymptotically stable. Note
that A#*A and B are in the controllable canonical form since the matrix *A affects only the last
row of the system matrix A. The necessity part follows from the Jacob—Liouville theorem10 which
states

Tr(A#*A)"TrA'~1 A
t

eB (A#*A)' A
t

eBB
Since vibrational control cannot change the trace of the matrix A#*A in (33), it is necessary that
aj
1
'0, j"1,2 ,m for (33) to be Hurwitz.
Sufficiency is based on Kharitonov’s theorem11 and Lemma 3.2. Since aj

1
'0, j"1,2 , m and

/(q)"0, we choose k
1
"0. It then follows from (15) that the averaged equation (34) has the

following characteristic polynomial:

p
cl
(s)"sn#(a

1
#a

1
)sn~1#(a

2
#a

2
)sn~2#2#(a

n
#a

n
) (35)

where

a
i
"k

2
k
i
/ (t)2, i"1,2 , n (36)

and the coefficients a
i
are the coefficients of the characteristic polynomial of the perturbed system

(5). For 0(n)2, it is easy to construct a
i
, 1)i)n to stabilize (35). Hence, we will consider the

case when n*3. Let c~
i
"min

j
aj
i
, c`

i
"max

j
aj
i
, where aj

i
denotes the ith coefficient, 1)i)n, of

the jth vertex polynomial 1)j)m. We first construct four interval polynomials which contain
the polynomial (35):

p
hcl1

(s)"sn#c`
1
sn~1#c`

2
sn~2#c~

3
sn~3#c~

4
sn~4#2

p
hcl2

(s)"sn#c~
1
sn~1#c~

2
sn~2#c`

3
sn~3#c`

4
sn~4#2

(37)
p
hcl3

(s)"sn#c~
1
sn~1#c`

2
sn~2#c`

3
sn~3#c~

4
sn~4#2

p
hcl4

(s)"sn#c`
1
sn~1#c~

2
sn~2#c~

3
sn~3#c`

4
sn~4#2
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where

c~
i
"c~

i
#a

i
, 1)i)n

(38)
c`
i
"c`

i
#a

i

Next, we need to determine a
i

in (38) satisfying a
1
"0, a

2
'0 so that the four interal

polynomials (37) are Hurwitz. It follows from Kharitonov’s theorem that if the polynomials (37)
are Hurwitz, then (35) is also Hurwitz. Choose a

i
, 1)i)n as defined in (24), then from Lemma

3.2, there exists a h* such that for all 0(h(h*, polynomials (37) are Hurwitz. The
corresponding stabilizing state feedback gain K can be computed from (36). As it follows
References 5, 6 and 8, for each Hurwitz characteristic polynomial p

cl
(s) in (35) there exists eP'0

such that for all 0(e)eP the corresponding closed-loop system of (33) is also asymptotically
stable. In Reference 8, a lower bound of eP was derived. This bound for eP is a continuous function
of the coefficients of the open-loop characteristic polynomial p (s). Since the set of open-loop
characteristic polynomial p (s)3P is closed and bounded, it follows from the property of
continuous functions that a uniform lower bound of eP exists. The proof is completed by setting
e
0
"minP eP . K

Remark 3.1

The condition aj
1
'0, j"1,2 , m, in Theorem 3.1 is equivalent to the requirement that the

trace of the perturbed matrix A#*A be negative.

Remark 3.2

Theorem 3.1 is an extension of the result obtained in Reference 12 for interval polynomials. The
assumption that P is polytopic is weaker than Kharitonov’s interval polynomial assumption
because it allows for linearly dependent coefficient perturbations.

Example 3.1

Consider a 6th order system (5) with open-loop characteristic polynomial p (s)3P where P is
a polytope of polynomials (convex hull) with the following four vertex polynomials:

p
1
(s)"s6#0)5s5!0)6s4#1)5s3#2)5s2#3)4s!3

p
2
(s)"s6#0)7s5!s4#2s3#2s2#4s!1

p
3
(s)"s6#s5#s4#s3#3s2#3s!1

p
4
(s)"s6#0)6s5#0)2s4#1)1s3#2)9s2#3)8s#2

This uncertain open-loop system is unstable since the vertex polynomials p
1
(s) and p

2
(s) are

obviously unstable. With vibrational state feedback control (4), the characteristic polynomial (35)
of the averaged equation (34) is bounded by the interval polynomials (37). Next, we construct a

i
,

1)i)6, as defined in (24) and determine h'0 so that the interval polynomials (37) are

1109STABILITY ROBUSTNESS

( 1998 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 8, 1101—1111 (1998)



Hurwitz. Following (28), we define the function f
l
(h) as

f
l
(h)"

c`
i~1

(h)c`
i`2

(h)

c~
i

(h)c~
i`1

(h)
, 1)l)4

and hence

f
1
(h)"h3>5A1#

*c
3
h1>5

c~
1
B

f
2
(h)"hA1#

*c
1

c~
1
B (1#*c

4
h5>5)

f
3
(h)"h (1#*c

2
h5)A1#

*c
5
k

c~
1
B

f
4
(h)"hA1#

*c
3
h1>5

c~
1
B (1#*c

6
h4)

where *c
i
"c`

i
!c~

i
"max

j
aj
i
!min

j
aj
i
. Consequently, with c~

1
"min

j
aj
1
"0)5, d*"0)4656,

we compute h*
l
, 1)l)4, such that

f
1
(h*

1
)"(h*

1
)3>5(1#2(h*

1
)1>5)"d* (39)

f
2
(h*

2
)"h*

2
(1#1)(1#(h*

2
)5>5)"d* (40)

f
3
(h*

3
)"h*

3
(1#2(h*

3
)5)(1#2h*

3
)"d* (41)

f
4
(h*

4
)"h*

4
(1#2(h*

4
)1>5)(1#5(h*

4
)4)"d* (42)

Solving (39)—(42), we obtain h*
1
"0)6536, h*

2
"0)2327, h*

3
"0)2925, h*

4
"0)3232. Thus,

h*"min
l
h*
1
"h*

2
"0)2327. Since min

j
aj
2
(0, for 0(h)0)2327, the interval polynomials (37)

and consequently, the characteristic polynomial (35) will be stabilized. Arbitrarily choose
h"0)23, then a

2
"1554)7, a

3
"3)5, a

4
"3237)6, a

5
"!0)8, and a

6
"360)3. With f (q)"sin q,

the corresponding feedback gains in (4) are k
1
"0, k

2
"55)8, k

3
"0)1255, k

4
"116)1,

k
5
"!0)0287, and k

6
"12)9. From Theorem 2 of Reference 8, the asymptotic stability of the

averaged equation (34) ensures the asymptotic stability of the original system (33). K

4. CONCLUSIONS

In this paper, we analysed the problem of stability robustness in closed-loop vibrational control.
In particular, given a vibrational controller, we derived a bound on the unstructured uncertainty
that preserves the stability of the closed-loop system. In addition, we addressed the question of
existence of a single vibrational controller that stabilizes a set of plants. Here we showed that
a vibrational controller, which stabilizes a polytope of characteristic polynomials, exists if and
only if the sum of the eigenvalues of each vertex polynomial in the polytope is negative. The
results obtained assure that practical applications of closed-loop vibrational control should not
find particular impediments due to the lack of stability robustness.
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