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SUMMARY

Reference governors are applied to closed-loop tracking systems that are linear and discrete time and have
constraints on state and control variables. Earlier results are extended in signi"cant ways. Disturbance
inputs, whose values belong to a speci"ed set, are allowed and a general class of reference governors is
introduced. Each governor in the class guarantees constraint satisfaction for all reference and disturbance
inputs. Moreover, if the reference input is ultimately con"ned to a neighbourhood of a constraint-admissible
constant input, the eventual action of the reference governor reduces to a unit delay. By appropriately
selecting reference governors from the allowed class it is possible to simplify signi"cantly their
implementation. The increase in on-line speed of operation overcomes prior limits on the practical
application of reference governors. Algorithmic procedures are described which facilitate design of the
reference governors. Several examples are presented. They illustrate the design process and the excellence of
response to large inputs. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper addresses the implementation of nonlinear controllers for tracking systems in which
the equations of motion are linear but there are pointwise-in-time constraints on control and/or
state variables. The purpose of the feedback control is good tracking performance, i.e. a small
closed-loop error for a large class of reference commands r (t), and disturbance inputs, w (t).
Powerful design techniques are available for synthesizing linear controllers which, ideally, achieve
this objective. Suppose now that linear system design objectives have been met and the output
of the controller, y (t), is subject to saturation, u (t)"sat y(t), where sat y"y if and only if y3>,
the saturation constraint set. If the reference command is large enough to cause saturation, the
e!ect of the saturation nonlinearity is often unacceptable. The error may diverge or become
disproportionately large and persist for a long time.



Figure 1. The reference governor and controlled process with constrained output.

The traditional way of treating such problems is through design compromises: reducing the
performance of the linear controller, putting limits on the reference commands, increasing the size
of saturation sets by using more powerful actuators. More recently, the greater e!ectiveness of
nonlinear control techniques has become widely recognized. This led to a large and diverse
literature. Major research directions include: state regulators with large domains of attraction,
moving horizon optimal control, model predictive control, anti-windup schemes, applications
of positively invariant sets. See Reference 1 for an extensive bibliography on systems with
saturation.

In this paper we pursue the promising approach to tracking systems originated by Kapasouris
et al.2,3. The key idea is to attenuate the reference command when the possibility of present and
future constraint violation occurs. The basic arrangement reduced to its simplest form, is shown
in Figure 1. The required attenuation is produced by the reference governor, a nonlinear "lter of
variable band-width which guarantees y(t)3>. If the controlled process is the closed-loop system,
saturation is avoided and the desirable response properties of the closed-loop linear design are
fully maintained. Usually the reference governor is active only for short intervals of time. Thus,
for most of the time, the input to the controlled process v(t) closely approximates r (t). In e!ect, the
reference governor is an add-on device whose purpose is to protect the linear system from large
excursions of the reference command. A similar device, the error governor,4,5 which is applied
inside the closed-loop system, will not be considered here. While error governors are easier to
implement than reference governors, they have serious limitations: constraints on plant state
variable cannot be treated, the plant must be stable, and it is di$cult to ascertain the response
characteristics and stability of the resulting nonlinear closed-loop system.

The tool for predicting the possibility of present and future constraint violation is an
appropriate output admissible set, a set of initial states such that y (t)3> for all t*0. In prior
implementations of reference governors, it is assumed that these sets are positively invariant.
There is a large literature on such sets; see, for example, References 6}17 and references therein.
Most of this literature concerns applications of the sets to the implementation of state regulators,
an entirely di!erent function than the one used in the implementation of reference governors. The
regulation approach can be extended in limited ways to tracking systems. The most common idea
is to restrict the reference commands to the class of functions generated by the solution of linear
dynamical systems. See References 18 and 16 which consider constant inputs, and Reference 19,
which considers general exponential inputs. Reference governors operate e!ectively without such
special assumptions on the class of inputs.
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Practical applications of the governors in References 2, 3 and 5 are limited because the required
on-line characterization of the output admissible sets is extremely time consuming. This di$culty
is a consequence of their continuous-time nature. Gilbert and Tan14,20 develop computational
tools for discrete-time maximal output admissible sets and use them in the implementation of
discrete-time error governors. For the aircraft control problem considered in Reference 5 they
obtain computational times which are several orders of magnitude shorter. Subsequently, Gilbert
et al.4,21 investigated discrete-time reference governors. Again, they show that practical
implementations are possible for systems of moderately high order. Moreover, the theoretical
response results are much stronger than those reported in Reference 2.

It is also possible to develop a class of discrete-time reference governors based on a di!erent
underlying strategy. See the papers by Bemporad and Mosca.22}26 They are in#uenced by ideas
from model predictive control where it is assumed that the reference input has a known functional
form. Their command generator processes the reference command and produces a parametrically
expressed virtual reference input. The command generator continuously updates the parameters
in such a way that constraint violation is avoided and certain response properties are optimized.

This paper, which has its origins in Reference 27, considers discrete-time reference governors
and builds on results of Reference 4 in three signi"cant ways. First, we allow unknown
disturbance inputs. The extension depends on the theory of maximal output admissible sets for
systems with disturbance inputs. Second, we demonstrate that desirable response properties of
reference governors can be maintained when their implementation is based on a family of output
admissible sets that are appropriately de"ned subsets of the maximal output admissible set. The
design #exibility a!orded by the corresponding family of the reference governors leads to
simpli"cations which greatly reduce the number of on-line computations required to implement
reference governor operation. Third, we describe algorithmic design procedures which facilitate
the implementation of the reference governor.

To be more speci"c, consider again the system in Figure 1. We assume the controlled process is
asymptotically stable and has the form

x (t#1)"Ax(t)#B
v
v(t)#B

w
w(t) (1)

y(t)"Cx(t)#D
v
v(t)#D

w
w (t) (2)

where x(t)3Rn , v(t)3Rm , w (t)3Rl , y(t)3Rp . Let W, Y and R denote, respectively, the sets of
all sequences w : Z`P=LRl , y :Z`P>LRp and r : Z`PRm , where Z` is the set of non-
negative integers. The desired constraints are imposed by requiring y3Y. Expression (2) is not
restricted to controller or actuator limits; general constraints on process state variables can be
included. The purpose of the reference governor is to enforce the constraint y3Y for all r3R and
w3W. Admittedly, the model for the disturbance input is simplistic since it involves only the
speci"cation of the set =. Although the model leads to more conservative designs when it is
contrasted with the stochastic models, it does guarantee protection against the worst possible
action of the disturbance. In this sense the model is more typical of those used in game theoretic
control problems.28,29 For the present we avoid mathematical technicalities and concentrate on
an informal discussion of the reference governor.

As in Reference 4, the reference governor is a multivariable low pass "lter with unit static gain
and an adjustable bandwidth parameter K, which is a nonlinear function of r (t), its own state and
the state of the controlled process:

v(t#1)"v (t)#K(r(t), v(t), x (t))(r(t)!v(t)) (3)
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It is required that K(r(t), v (t), x (t)3[0, 1]. This implies that v (t#1) is an interprolation between
r(t) and v (t) in the sense that it belongs to the line segment joining r (t) and v(t). Ideally,
K(r(t), v (t), x(t))"1. Then v (t#1)"r (t) and the reference command su!ers only a unit delay.
When r(t) is large and the possibility of future constraint violation occurs, K(r(t), v(t), x (t)) is
reduced so that v(t#1) is closer to v (t), which has been chosen on the previous time step to be
constraint admissible. If m'1 an alternative scheme, not considered in detail in Reference 4, is to
have a separate bandwidth parameter for each component of (3). Then K(r (t), v(t), x(t)) becomes
a diagonal matrix of m parameters which, subject to the avoidance of future constraint violations,
are chosen to minimize a norm of v(t#1)!r (t). Note that v(t#1) is determined entirely by data
at time t. This is a crucial feature of (3); it allows one sample period for the computation of
K(r(t), v (t), x (t)).

To put what follows in a clearer perspective, let us sketch the main ideas for the case where K is
a scalar and future constraint violation is predicted by a maximal output admissible set, O

=
. In

words, O
=

is the set of all initial states which, with K"0, guarantee output constraint satisfaction
in (1)}(3). More precisely.

O
=
O M(v (0), x(0): y(t)"Cx(t)#D

v
v (0)#D

w
w (t)3> ∀t3Z` and ∀w3WN (4)

This set is positively disturbance invariant for the system de"ned by (1)}(3) with K"0, i.e.
(v(t), x (t))3O

=
implies (v(t#1), x(t#1))3O

=
for all w (t)3=. The function K is evaluated by

K(r, v, x)"maxMi3[0, 1]: C
v

------------------------
Ax#B

v
v#B

w
w D#i C

r!v
-------

0 D3O
=
, ∀w3=N (5)

Since the set O
=

is positively invariant for system (1)}(3) with K(r(t), v(t), x(t)),0, it follows that
(v, x)3O

=
implies that the inclusion in (5) is satis"ed when i"0. Thus for all (v(t), x (t))3O

=
,

K(r(t), v (t), x (t)) is de"ned by (5). Further, when K(r, v, x) is used in (1)}(3), it guarantees that
(v(t#1), x(t#1))3O

=
. Consequently, (v(0), x (0))3O

=
, implies (v(t), x (t))3O

=
for all t3Z`

which in turn implies y3Y. Since K(r, v, x) is the maximum value of i in (5), v(t#1) is moved as
far as possible toward r(t) along the line segment connecting v(t) and r (t). In fact, it will be proved
that under reasonable conditions, less stringent than those in Reference 4, that there exists
a tJ 3Z` such that K(r(t), v (t), x (t))"1 for all t*tJ . Thus the ultimate response of the overall
system is that of the linear controlled process with an added unit delay.

There are two major di$culties in the implementation of the reference governor, both
connected with the computation of K(r, v, x). The "rst problem is addressed in Reference 16.
While O

=
does not, in general, have a "nite characterization, it does have a disturbance invariant

approximation, OI
=

, which is "nitely determined and is readily computed. The second problem
concerns the complexity of OI

=
. It often arises when the reference governor is applied to

sampled-data control of a continuous-time system and the sample rate is high: as the sampling
rate is increased, OI

=
becomes increasingly complex and the time available for computing

K(r, v, x) is decreased. This is where the family of reference governors comes in. By modifying
expression (5) in a simple way, it is possible to replace O

=
by any set P having the property

PI LPLOI
=

, where PI is a set de"ned by the data that describe the controlled process. Usually, the
restriction imposed by PI LPLOI

=
is not severe; in particular, P does not have to be disturbance

invariant and it may have a structure that is relatively simple compared to the complex structure
of OI

=
.
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We are now in position to summarize the arrangement and contributions of the present paper.
Section 2 states overriding assumptions on problem data and introduces a special coordinate
system for (1)} (3) which simpli"es the subsequent treatment of the disturbance invariant sets.
Known properties of OM

=
, the set in the special co-ordinate system that corresponds to O

=
, and its

"nitely determined approximation, OI
=

, are reviewed in Section 3. In these matters we rely heavily
on Reference 16 which summarizes and extends results from the prior literature8}10,30 on
positively disturbance invariant sets. Section 4 contains the main theoretical results. It de"nes
precisely the family of reference governors and states their response properties. In brief y3Y
for all r3R and w3W and, if r(t) ultimately enters an appropriate neighbourhood of a
constraint-admissible constant input, K(r(t), v (t), x (t))"1 for all su$ciently large t. It is not
necessary, as in Reference 4, for r (t) to converge to a constraint admissible value. Section
5 considers, for polyhedral >, computational procedures which lead to functions K that can be
implemented economically on-line. The procedures include numerical tests for the inclusions
PI LPLOI

=
and algorithmic methods for reducing complexity of P. Section 6 contains two

examples which illustrate the feasibility of the proposed implementations. Section 7 summarizes
the main contributions and compares them with results from the prior literature.

Notations are standard. The n]n identity matrix is I
n
; the n by m zero matrix if O

n]m
; the

superscript T denotes vector or matrix transpose. Let a3R, x3Rn, ¸3Rm]n, and X, >LRn.
Then: x

i
is the ith component of x, Bn"Mx: ExE

=
)1N is the closed unit hypercube, ¸X is the

image of X under ¸, aX"Max: x3XN is the scalar multiple of X, X#>"Mx#y: x3X, y3>N
is the Minkowski sum of X and >, MxN is the set consisting of the single point x, MxN#aBn is the
in"nity-norm closed ball of radius a centred at x, coX is the convex hull of X, int X is the interior
of X. Suppose X is compact. Then the support function of X, h

X
: RnPR, is de"ned by

h
X
(g)"max

x|X
gTx.

2. ASSUMPTIONS AND PRELIMINARIES

We assume that system (1)}(2) and its constraints satisfy the following assumptions: (A1) A is
asymptotically stable, (A2) C, A is observable, (A3)= and > are compact and (A4) 03>, 03=.
The "rst assumption is reasonable as (1)}(2) typically models closed-loop systems. The second
assumption is not really restrictive since the constraint y(t)3>, t3Z`, acts only on the
observable co-ordinates of (1)}(2). The third and the fourth assumptions are quite realistic and
while not essential everywhere ease the details of the exposition.

The co-ordinate change mentioned in the introduction is achieved by letting

x"BM
v
v#xN , BM

v
"(I

n
!A)~1B

v
, H

0
"C(I

n
!A)~1B

v
#D

v
(6)

Then, (1)}(3) becomes

xN (t#1)"AxN (t)!BM
v
KM (r(t), v(t), xN (t)) (r(t)!v(t))#B

w
w(t) (7)

y(t)"H
0
v(t)#CxN (t)#D

w
w (t) (8)

v(t#1)"v(t)#KM (r(t), v (t), xN (t)) (r(t)!v(t)) (9)

where KM (r, v, xN ) is a scalar or a diagonal matrix that determines the bandwidth of the reference
governor. Hereafter, we focus our attention on (7)}(9), realizing that it is always possible to return
to the original co-ordinate system and obtain K from K(r, v, x)"KM (r, v,!BM

v
v#x). Note that

H
0

is the static gain from v to y for system (1)}(2).
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3. THE SETS OM
=

AND OI
=

The determination of KM is based on the maximal output admissible set, OM
=

, associated with the
system

v (t#1)"v(t) (10)

xN (t#1)"AxN (t)#B
w
w (t) (11)

y(t)"H
0
v(t)#CxN (t)#D

w
w(t) (12)

which is obtained by setting KM (r(t), v(t), xN (t))"0 in (7)}(9). The advantage of the special
co-ordinate system is now apparent: unlike (1), equation (11) does not contain v(t). The simpli"es
the treatment of

OM
=
O M(v(0), xN (0))3Rm`1: y3Y∀w3WN (13)

It is evident that OM
=

is positively disturbance invariant, i.e. (v (0), xN (0))3OM
=

implies (v (t), xN (t))3OM
=

for all t3Z` and w3W.
The remainder of this section reviews known results concerning OM

=
and its "nitely determined

approximation OM
=

. The presentation follows the pattern of Reference 16 which includes the
treatment of systems such as (10)}(12) that are Lyapunov stable but not asymptotically stable.
Since complete proofs can be found in this reference, none are given here. To obtain explicit
characterization of OM

=
and to state concisely the needed results it is necessary to introduce some

additional notations and intermediate results.
We begin with a set operation of P-subtraction,16 or Minkowsky subtraction, as it is sometimes

called.31 The pre"x P acknowledges Pontryagin who appears to be the "rst who introduced the
di!erence in a control application.32 It has appeared elsewhere as well, often in an implicit rather
than explicit from. See, e.g. References 19, 31 and 33}36. Let ;, <LRp. Their P-di!erence is

;&<O Mz3Rp: z#v3; ∀v3<N (14)

It is possible that ;&<"0. Generally, (;&<)#<O;, i.e. P-subtraction is not an additive
inverse of the Minkowsky summation. Properties of P-subtraction will be introduced as needed
in the sequel. To give key formulas of this section a pragmatic #avour, it is worthwhile to note the
following result. Suppose ; is the polyhedron

;"Mu3Rp: cT
i
u)b

i
, i"1, 2 , NN (15)

where c
i
3Rp , c

i
O0 and b

i
3R, i"1, 2 , N, and < is compact. Then, ;&< is a polyhedron

de"ned by

;&<"Mz3Rp: cT
i
z)b

i
!h

V
(c

i
) , i"1, 2 , NN (16)

Next, consider F
t
, the set of states xN (t) in (11) that are reachable at time t, starting at xN (0)"0.

This set is given by

F
0
O M0N

F
t
O Mx (t): x (t)"

t~1
+
k/0

A(t~k~1)B
w
w (k), w3WN

"B
w
=#AB

w
=#2#At~1B

w
=, t*1 (17)
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By (A3) and (A4), F
t
is compact and F

t
LF

t`1
. In fact, the sequence of sets MF

t
: t3Z`N has

a Hausdor!28,31 limit.

Theorem 3.1

There exists a unique compact set F with the following properties: (i) F
t
LF for all t3Z`. (ii)

For every e'0 there exists tL 3Z` such that FLF
t
#eBn for all t'tL .

Generally, since it is de"ned by the Minkowsky sum of in"nitely may terms, F does not have an
explicit characterization. However, it is possible by various procedures, to obtain super sets of
F which approximate F. As will be seen in Section 5, such sets can be exploited in numerical
computations that involve F.

P-subtraction and F
t
lead to a concise, recursive characterization of OM

=
. De"ne

OM
t
O M(v (0), x (0))3Rm`n: y (q)3>, q"0, 2 , t ∀w3WN (18)

Then, it is clear that

OM
=
" Y

t|Z`

O
t

(19)

Moreover, OM
t
has the characterization

OM
0
"M(v, xN )3Rm`n : H

o
v#CxN 3>

0
N

OM
t`1

"OM
t
YM(v, xN )3Rm`n : H

0
v#CAt`1xN 3>

t`1
N (20)

where

>
0
O>&D=

>
t`1
O>

t
&CAtB

w
= (21)

To state the remaining results, two additional sets must be de"ned:

>
=
O Y

t|Z`

>
t
, <O Mv3Rm : H

0
v3>

=
N (22)

If>
=
O0,>

=
is compact and< is closed. There is a simple, constant input interpretation of these

sets. In the disturbance free situation constrained equilibria of (1) are de"ned by v (t)"vL ,
x(0)"BM

v
vL (or xN (0)"0) and y (t),yL "H

0
vL 3>. If y3Y is to be satis"ed for all w3W, and the

same constant input and x(0), then vL must be more tightly constrained; speci"cally,< is the set of
all v( and >

=
is the set of all yL .

Theorem 3.2

(i) OM
=
O0 if and only if 03>

=
. (ii) If OM

=
O0 it satis"es the inclusions

<]FLOM
=
L<]Rn (23)

Figure 2 depicts, schematically, the geometric situation described by Theorem 3.2. Shown are
the cylinder set <]Rn and the set <]F where F is the set given in Theorem 3.1. Neglect, for the
present, the shaded sets; clearly, OM

=
satis"es (23) and it is obvious that OM

=
must contain points in

the boundary of <]F. In the disturbance-free case, the picture is simpler since <]F"<]M0N.
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Figure 2. The sets described in Theorems 3.2 and 3.3

With respect to our needs in the next section, OM
=

has two de"ciencies: the left inclusion in (23) is
too weak; the recursive determination of OM

=
is generally intractable from a computational point

of view. By weak we mean that <](F#eBn)LOM
=

is not satis"ed for some e'0. By intractable
we mean it is generally true that there exists no t*3Z` such that OM

=
"OM

t*
. As will be seen in the

following two theorems we overcome these de"ciences by replacing < and OM
=

by smaller sets,
<I and OI

=
, which, ideally, approximate < and OM

=
. Suppose 03int>

=
and let >I 3Rm satisfy the

following conditions:

>I Lint>
=

, 03 int>I , >I is compact (24)
De"ne

<I O Mv3Rm : H
0
v3>I N (25)

and

OI
=
OOM

=
Y(<I ]Rn)

"M(v, xN )3Rm`n : H
0
v3>I , H

0
v#CAtxN 3>

t
∀t3Z`N (26)

Note that OI
=

is the maximal output admissible set for (10)}(12) with the original constraint
y(t)3> and an added constraint H

0
v (t)3>I . Hence, OI

=
is d-invariant.

Theorem 3.3

Suppose (24) is satis"ed. Then there exists e'0 such that

PI (e)O<I ](F#eBn)LOI
=
L<I ]Rn (27)
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The modi"cations produced by the introduction of<I are shown by the shaded sets in Figure 2.
By choosing >I +>

=
, it follows that OI

=
+OM

=
. Since 03 intP (e), 03int OI

=
. It is obvious that

both OM
=

and OI
=

are unbounded if rankH
0
(m; if rankH

0
"m they are both compact.

Theorem 3.4

The set OI
=

is "nitely determined, i.e. there exists t*3Z` such that OI
=
"OI

t*
.

It is shown in Reference 16 that OI
t`1

"OI
t
implies t*"t. Hence, OI

=
may be obtained by an

algorithmic recursion of a form similar to (20) and (21).

Algorithm 3.1. De"ne

Q
0
"M(yN , xN )3Rp`n : yN 3>I , yN #CxN 3>

0
N

Q
t`1

"Q
t
YM(yN , xN )3Rp`n : yN #CAt`1xN 3>

t`1
N (28)

Apply (21) and (28) for t"0, 1, 2 , until Q
t`1

"Q
t
. Set t*"t and

OI
=
"M(v, xN )3Rm`n : (H

0
v, xN )3Q

t*
N (29)

There are advantages in doing the recursions on Q
t
rather than O

t
. The computations are

simpler and the set Q
t*

is compact. Additional computational issues, including those associated
with >I , are discussed in Section 5.

4. MAIN RESULTS

We are now ready to give precise de"nitions of KM and determine response properties of the
resulting reference governors.

Let e be any positive number such that PI (e)LOI
=
. By Theorem 3.3, e exists. The de"nition of

KM is based on any closed set P satisfying

PI (e)LPLOI
=

(30)
Let

P
W
"P&C

0
-----
BM
w
D= (31)

Since (30) implies <]FLP, it follows from (17) and the de"nition of P-subtraction that P
W

is
non-empty. Also, by P-subtraction it follows16 that P

W
is closed. Consider the inclusion

C
v

-----
AxN D#C

I
m-----

!BM
v
Di (r!v)3P

W
(32)

The motivation for this condition comes from the system equations (7) and (9). If it holds,
r(t)"r, v(t)"v, xN (t)"xN and KM (r(t), v (t), xN (t))"i, then (v(t#1), xN (t#1))3PLOI

=
for all

w (t)3=.
We de"ne the scalar bandwidth parameter, KM :Rm]Rm]RnP[0, 1], by

KM (r, v, xN )"G
0 if (32) has no solution for i3[0, 1]

otherwise

maxMi: (32) is satisfied, i3[0, 1]N

(33)
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Since P
W

is closed it follows that the maximum exists. The d-invariance of OI
=

and the possibility
that i"0 guarantee that KM (r (t), v(t), xN (t)) is chosen so that (v(t), xN (t))3OI

=
implies that

(v(t#1), xN (t#1))3OI
=

. Hence, (v(0), xN (0))3OI
=

implies that (v(t), xN (t))3OI
=

for all t3Z`. From
(13) nd (26) it follows that y3Y. By maximizing i, v(t#1) is made as close as possible to r(t).

The alternative, multiparameter de"nition of KM , mentioned in Section 1, is implemented
a follows. The reasoning is essentially the same as in the preceding paragraph. Let i be a diagonal
matrix of m scalar parameters:

i"diag[i
i
]3Rm]m, i

i
3[0, 1], i"1, 2 , m (34)

De"ne KM :Rm]Rm]RnPRm]m by

KM (r, v, xN )"

i
g
j
g
k

0 if (32), (34) have no solution

otherwise

argmini MEv#i (r!v)!rE: (32), (34) are satisfiedN

(35)

Here E ) E is an arbitrary norm on Rm and the purpose of (35) is to make v(t#1) as close as
possible to r (t). Again, the optimization problem has a solution. Note that the i

i
, i"1, 2 , m,

which solve it may not be uniquely determined. In such rather rare cases we suppose the
ambiguity in (35) is resolved in a consistent manner; for any such resolution our subsequent
results remain valid. While (35) o!ers more freedom than (33) in the determination of v(t#1), it
has the disadvantage that the resulting reference governor is more complex to implement and to
analyse.

Through the #exibility in the choice of P provided by (30) both de"nitions of KM lead to a family
of reference governors. The disturbance-free reference governor considered in Reference
4 corresponds to the choice P"OI

=
. There are, at "rst glance, compelling reasons for making this

speci"c choice in both the disturbance-free and disturbance cases. For (v, xN )3OI
=
, (32) always has

a solution, thus eliminating the "rst alternatives in (33) and (35). Moreover, (32) then allows
maximum freedom in the determination of KM . Thus K1 is as large as possible which causes the
reference governor to respond as quickly as possible. The principal disadvantage of P"OI

=
has

been presented in Section 1. Computational e!ort may become prohibitive. As will be seen in
Section 6, choosing P to be a relatively simple, proper subset of OI

=
can greatly simplify the

computation of KM . If, at the same time, P+OI
=

the corresponding decreases in KM (r(t), v(t), xN (t))
are small and the reference governor performs almost as well as with P"OI

=
.

We are now ready to state the response properties of the reference governors. The "rst theorem
is an obvious consequence of our preceding discussion.

Theorem 4.1

Assume:>I satis"es (24), P is closed and satis"es (30) for some e'0, KM is de"ned by (33) or (35),
and (v(0), xN (0))3OI

=
. Then the following results hold for all r3R and w3W: (i) (v (t), xN (t))3OI

=
for all t3Z` ; (ii) y3Y.

The theorem says nothing about the performance of the reference governor, i.e. the behavior of
KM (r(t), v (t), xN (t)). This is the objective of the next theorem. To state the results a positive number
G, which depends on A and BM

v
, is needed. Let xJ (t), t3Z`, be de"ned by xJ (t#1)"
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AxJ (t)!B
v
v(t), xJ (0)"0. The number G is any upper bound on the induced l

=
norm of the

operator which carries v into xJ , i.e. xJ (t)3GBn for all t3Z` and for all v : Z`PBm.

Theorem 4.2

Suppose the assumptions of Theorem 4.1 are satis"ed. Assume: >I is convex,
Mr

0
N#e (4G)~1BmL<I and Er (t)!r

0
E
=
)e(4G)~1 for all t*tL . Then there exists tJ*tL such that

v(t#1)"r(t) for all t*tJ .

The proof of the theorem is given in the appendix.

Remark 4.1

The assumptions for the theorem in Reference 4, stated in the notations of this paper, are
stronger: KM is de"ned only by (33),="M0N, P"OI

=
and r(t)Pr

0
3<I as tPR.

Remark 4.2

The theorem places no restrictions on the initial behaviour of r(t) and tL may be as large as
desired. However, the "nite settling time, tJ , depends on tL and on the behaviour of r(t) for t)tL .

Remark 4.3

A natural choice for the initial condition of the reference governor is v(0)"0. Then the
requirement (v (0), xN (0))3OI

=
is satis"ed if and only if xN (0) belongs to the maximal output

admissible set for the controlled process (1)}(2) with v(t),0. However, there is more #exibility if
v(0) is chosen once xN (0) is known. Then it su$ces to have xN (0) belong to the projection of OI

=
on

the x6 co-ordinates: xN (0)3MxN 3Rn : & v3Rm, (v, xN )3OI
=

N.

Remark 4.4

The key assumption is the ultimate entry of r(t) into an l
=

ball contained in <. Since the size of
the ball is proportional to e and the upper bound on e is determined by (30), the result becomes
strongest when P"OI

=
. In practice, the requirement on r(t) is very conservative; often, the

settling time is "nite for inputs which remain in <I but go well outside Mr
0
N#e (4G)~1Bm.

Remark 4.5

Convexity of >I is a crucial assumption. Simple examples show that the theorem may fail when
>
=

and >I are both non-convex. The failures have a simple explanation: if (v(0), xN (0)) is in
a component of OI

=
which does not include r

0
, v(t) can get trapped in the corresponding

component of <I . Fortunately, in most applications> is convex. Then>
=

is convex and a natural
convex approximation of >

=
exists: >I "(1!p)>

=
, 0(p;1. If >

=
is not convex, reasonable

convex choices for >I , which satisfy (24), may still exist. In such cases, <I and OI
=

may not
approximate < and OM

=
closely.

Remark 4.6

Recall that the set of all constant, constraint admissible inputs to the controlled process is <.
When <I L< approximates < the reference governor does not reduce greatly the allowed set of
constant inputs, r(t),r

0
, for which v(t) ultimately equals r

0
.

FAST REFERENCE GOVERNORS 1127

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 9, 1117}1141 (1999)



Remark 4.7

It is also possible to prove negative results. For example, v(t#1)"r(t) must fail for large
t when there exists a tJ such that r (t) N<I for all t*tJ .

5. COMPUTATIONAL ISSUES

Implementation of the reference governor requires a concrete representation for P and on-line
scheme for generating KM . We now address computational aspects of these requirements. It is
assumed hereafter that > is a polytope (bounded convex polyhedron), >"My3Rp: cT

i
y)1,

i"1, 2 , MN. This allows us to exploit computational advantages of (16). More general> can be
handled by replacing them by polytope approximations.16 The following, easily veri"ed, formulas
will be used. Suppose g3Rn. Then: hBn (g)"EgE

1
; if X"Mx3Rn: xTQ~1x)1N, Q"QT'0

then h
X
(g)"JgTQg; h

X1`X2
(g)"h

X1
(g)#h

X2
(g); for XLRs and ¸LRn]s, h

LX
(g)"h

X
(¸Tg).

We begin with the computation of >I and OI
=

. Because of (16) it is natural to represent >3 as
a polytope of the form, >I "My3Rp: cT

i
y)p

i
, i"1, 2 , MN where 0(p

i
(1, i"1, 2 , M.

This, in turn, causes OI
=

to be a polyhedron OI
=
"Mz3Rm`n : (T

i
z)1, i"1, 2 , NN. The

remainder of the section concerns computational procedures for: testing P so that it satis"es (30),
obtaining P as a simpli"ed polyhedral approximation of OI

=
, determining KM from P.

In the disturbance free case things are straightforward: >
=
">

t
"> and a suitable choice for

>I is>I "p>, where 0(p(1 and, ideally, p+1. Then p
i
"p, i"1, 2 , M. The computation of

OI
=

follows the plan of Algorithm 3.1, where the required testing Q
t`1

"Q
t
is done numerically by

solving a set of linear programming problems.14 Generally, each iteration of Algorithm 3.1
generates redundant inequalities that can be eliminated from the description of Q

t
without

changing Q
t
. The e$ciency of the iterative process is generally enhanced by eliminating these

redundant inequalities at each iteration. Further, OI
=

is simpli"ed in that N is then minimized.
Details for the disturbance case are more complex because >

=
is the limit of the sequence M>

t
:

t3Z`N and must be approximated. The set >
t
can be computed recursively by (16) and (21)

and it is not di$cult to obtain constants 0(j(1 and k'0, such that CAtB=#

CAt`1B=#2LkjtBm for all t3Z`. Thus, >
t
&kjtBmL>

t
&CAtB=&CAt`1B=&2

">
=

and the approximation >
=
+>

t
&kjtBm becomes arbitrarily good as tPR. Thus, the

obvious choice for>I is>I ">
t
&kjtBm, where the p

i
are computed recursively using (16) and (21)

and the required support functions are evaluated by h
CAtBW

(c
i
)"h

W
(BT(At)TCTg) and

hkjtBm"kjtEc
i
E
1
. Because the bound provided by kjtBm is conservative, >I Lint>

=
. Moreover,

if 03int>
=

and t is su$ciently large, p
i
'0. Hence, (24) holds if 0(p

i
, i"1, 2 , M, a condition

that can be tested numerically as t increases. The accuracy of the approximation >I +>
=

can be
judged by the convergent behavior of p

i
as t increases. Once>I is de"ned, Algorithm 3.1 is applied

to obtain OI
=

, taking care to eliminate redundant inequalities.
To test the inclusions of (30) we suppose that P"Mz3Rm`n : hT

i
z)1, i"1, 2 , N

P
N. This

assumption is consistent with the polyhedral representation of <I and OI
=

and it makes simple the
computation of KM . Non-polyhedral P, such as ellipsoids, can be handled too, but the testing of
(30) is more complex.

The right inclusion of (30) is satis"ed trivially by setting P"OI
=
. More generally, it is satis"ed if

and only if h
P
((

i
))1 for i"1, 2 , N. Since P is polyhedral, h

P
((

i
)"maxM(T

i
z : z3PN can be

evaluated numerically by linear programming. Similarly the left hand side of (30) is satis"ed for
some e'0 if and only if h<I ]F(h

i
)(1 for i"1, 2 , N

P
. These inequalities can be expressed more
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directly in terms of the support functions of <I and F. Let hT
i
"[(hv

i
)T (hx

i
)T] where hv

i
3Rm and

hx
i
3Rn ; then h<I ]F(h

i
)"h<I (hv

i
)#h

F
(hx

i
). Thus, the left inclusion of (30) is satis"ed if and only if

h
F
(hx

i
)(1!h<I (hvi )"1!maxM(hv

j
)Tv: cT

j
H

0
v)p

j
, j"1, 2 , MN ,

i"1, 2 , N
P

(36)

While the right-hand side of (36) can be evaluated by linear programming, the left-hand side is
a problem because F does not generally have an explicit representation. Moreover, computing
F
t
as a Minkowski sum is computationally very expensive.37,38
We consider two relatively e$cient approaches to completing the veri"cation of (36). In the
"rst approach we exploit (17), leting tPR, and properties of support functions to obtain:
h
F
(hx

i
)"+=

t/0
h
W

((AtB
w
)Thx

i
). Each of the terms in this sum is non-negative and can be bounded.

Suppose o
W
'0 is chosen so that =Lo

W
Bm ; then h

W
((AtB

w
)Thx

i
))o

W
E (AtB

w
)hx

i
E
1
. Hence,

there exist o'0 and 0(j(1 such that h
W

((AtB
w
)Thx

i
))ojtEhx

i
E
1

for all t3Z` and
i"1, 2 , N

P
. Combining these results shows that (36) is satis"ed if

q
+
t/0

h
W

((AtB
w
)Thx

i
)(1!h<I (hvi )!ojq`1(1!j)~1Ehx

i
E
1
, i"1, 2 , N

P
(37)

The "nite sum on the left-hand side is easy to compute while the condition imposed by (37)
approaches (36) a qPR.

In the second approach F is bounded by an ellipsoid of the form Z"Mx3Rn: xTQ~1x)1N
where Q"QT'0. The matrix Q is obtained16 by solving the Lyapunov-like equation

Q!c~1AQAT"(1!c)~1BRBT#S (38)

where S"ST'0, R"RT'0 is a matrix such that =LMw3Rw: wTR~1w)1N, and c is an
number such that k2(c(1 where k is the spectral radius of A. The bound FLintZ becomes
sharper as R and S are made smaller. Since h

F
(g))h

Z
(g) for all g3Rn, it follows that (36) is

satis"ed if

J(hx
i
)TQ~hx

i
)1!h<I (hv

i
), i"1, 2 , N

P
(39)

These inequalities are generally a weaker su$cient condition than (37), particularly if q is large.
However, they are less expensive computationally than (37), even when several Q's, corresponding
to di!erent values of c are used in (38). Certainly, (39) is an e!ective test when <I ]F is well inside
OI
=

and P+OI
=

.
In summary, computational tools for testing (30) are available. They have simple numerical

realizations when > is a polytope, P is a polyhedron, and it is possible to compute the support
function of=. Of course, testing (30) is not needed if p

1
, 2 , p

M
'0 and P"OI

=
. This is a good

reason for choosing P"OI
=

. If a simpler P is desired there are various ways to proceed including
heuristic design procedures. The approach which follows is based on the idea that P should
approximate OI

=
. It can be automated and appears to be quite e!ective.

It begins with an outer approximation of OI
=
, which is obtained by deleting some of the half

spaces whose intersection form OI
=
. To achieve good accuracy a numerical criterion for evaluating

the relative importance of the various half spaces is needed. Suppose OI
=
"O(I )

"M(v, xN )3Rm`n : H
0
v3>I , tT

i
(v, xN ))1, i3IN, where t

i
3Rm`n and i3ILZ` de"nes the

linear inequalities which arise from H
0
v#CAtxN 3>

t
, t"0, 2 , t* , in (26). De"ne

e
i
(I)"maxMtT

i
(v, xN N: H

0
v3>I , tT

j
(v, xN ))1, j3I, jOiN!for i3I. Because>I is a polytope, the
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e
i
(I) can be computed by solving linear programming problems. Clearly, e

i
(I)*0 and its

magnitude is a measure of the important of the ith half space. Half spaces corresponding to small
e
i
(I) are successively eliminated to generate approximations O(I

k
) where IMI

1
MI

2
M2.

Note that half space corresponding to the linear inequalities in H
0
v3>I are not eliminated; we do

this so that O(I
k
)L<I ]Rn, an inclusion which is needed to enforce the condition PL<I ]Rn,

contained in (30). There are many possible ways of doing the elimination. For example, I
k`1

can
be generated by eliminating from I

k
an index corresponding to the smallest value of e

i
(I

k
).

Obviously, this approach is numerically expensive because of the large number of linear
programs that must be solved at each stage of the elimination process. A less re"ned but more
e$cient approach is to eliminate fromI

k
the several indices corresponding to the smallest several

values of e
i
(I

k
). The process of successive elimination is continued until a reasonable compromise

between complexity (cardinality of I
k
) and accuracy of the approximation is obtained.

Let O(IK ) be the approximation of OI
=
. Since OI

=
LO(IK ), O(IK ) cannot be used for P. It is

necessary to shrink O(IK ). The shrinking is done only on the xN coordinates so that the &v width' of
P is maintained at <I ; see Fig. 2. Let the shrinkage factor be a~1 where a'1. Then,
P"M(v, xN )3Rm`n : H

0
v3>I , tT

j
(v, axN ))1, j3IK N. The inclusions of (30) are tested by a search

procedure on a'1 until they hold for an a which approximates the smallest possible value for a.
While in the disturbance-free case, there always exists a value of a'1 such that (30) holds, in the
disturbance case an admissible value of a may fail to exist because of the need to satisfy the right
inclusion of (30). However, the likelihood of success is high if O(IK ) is a good approximation of OI

=
.

Also a good approximation is likely to produce a value of a close to 1, so that P closely
approximates OI

=
.

Once P is determined the on-line evaluation of K1 by (33) is relatively simple. Since, P is
a polytope, so is P

W
and (33) is implemented by examining a set of inequalities which are

dependent on i. Suppose P
W
"M(v, xN )3Rm`n : fT

j
(v, xN ))1, j"1, 2 , N

P
N. Let #

j
3Rm,

'
j
3Rm`n be de"ned as

#
j
"C

I
m--------

!B
v
D

T
f
j
, '

j
"C

I
m------
0

@
@
@
@

0
-----
A D

T
f
j

(40)

Given r and v, compute

h
j
"#T

j
(r!v)3R, /

j
"1!'T

j C
v
---
xN D3R (41)

Then inclusion (32) holds for some i3[0, 1] if and only if i satis"es the inequalities: 0)i)1,
ih

j
)/

j
, j"1, 2 , N

P
. These inequalities are expressed equivalently by iL

j
)i)iU

j
,

j"1, 2 , N
P

where

/
j
*0, h

j
)/

j
NiL

j
"0, iU

j
"1

/
j
*0, h

j
'/

j
NiL

j
"0, iU

j
"/

j
/h

j

/
j
(0, h

j
)/

j
NiL

j
"/

j
/h

j
, iU

j
"1

/
j
(0, h

j
'/

j
NiL

j
"1, iU

j
"0 (42)
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The implication on the last line is a convenient arti"ce for starting that (32) has no solution for
some i3[0, 1]. By de"ning

iL"maxMiL
j
: i"1, 2 , N

P
N, iU"minMiL

j
, j"1, 2 , N

P
N, (43)

it is seen that

KI (r, v, xN )"0, iL'iU

"iU, iL)iU (44)

The computational e!ort associated with the on-line computations (41)}(44) is easily estimated.
The number of #ops (multiplies, adds or comparisons) is: (3m!1#2m#2n)N

P
for (41), 3N

P
for

(42), 2N
P
for (43). This gives a total of (5m#2n#4)N

P
#ops. If the inequalities in the de"nition of

P
W

come in symmetric pairs, f
j`1

"!f
j
, as is the case when > is a hypercube, the operations in

(41) need not be fully repeated. Only (5m/2#n#4)N
P
#ops are needed for (41)}(43).

When KM is de"ned by (35), conditions (32) and (34) are expressed by #T
j
(diag[i

i
])(r!v)

)1!/
j
, j"1, 2 , N

P
, and 0)i

i
)1, i"1, 2 , m. Thus, (32) and (34) are expressed by

N
P
#2m linear inequalities on the i

i
. If the linear inequalities are inconsistent KM (r, v, xN )"0.

Otherwise, KM (r, v, xN ) is de"ned by minimizing Ev#(diag[i
i
])(r!v)!rE subject to the linear

inequalities. The on-line solution of this problem becomes computationally expensive if either
m is large or N

P
is large.

6. EXAMPLES

Simplicity of the "rst example makes it easier to illustrate the preceding ideas and the roles played
by OI

=
and P. The continuous-time plant is an inverted pendulum with a dc motor acting at its

base. In scaled variables the equation of motion is hG!h"u, where h is the de#ection of the
pendulum from the vertical. The motor current, u, saturates so that Du D)0)1. The sampled-data
controller, which has a sample period of ¹"0)1, uses a zero order hold on u and linear state
feedback: u (t)"!6x

1
(t)!2x

2
(t)!6w(t)#5v(t). Here, x

1
(t)"h(t¹), x

2
(t)"hQ (t¹), w (t) is

measurement noise (e.g., quantizing error) and v(t) is the reference command. Going through the
usual conversion of a continuous-time system to a discrete-time system and substituting the
feedback law, yields the description of the controlled process (1) where y(t)"u(t) and
>"[!0)1,#0)1]. The eigenvalues are 1)1052 and 0)9048 for the open-loop discrete-time plant,
and 0)8898$0)1947i for the controlled process. In all what follows it is assumed that x (0)"0.

Figure 3 shows step responses of the controlled process when w(t),0 and saturation is
allowed to occur. To make the responses easier to see, the samples of x

1
(t) are joined by

straight-line segments. In all cases the amplitude of the step is su$cient to cause saturation,
although for v (t),r"0)03 saturation is brief so that the response is close to the response of the
linear system without saturation. Signi"cantly larger steps cause instability or a sluggish response
with large overshoot.

We consider two implementations of the disturbance-free reference governor, one for P"OI
=

and one for a simpli"ed PLOI
=
. Since H

0
"!1, <">. We set <I ">I "[!0)095,#0)095]

and apply Algorithm 3.1. The result is OI
=
"M(v, xN )3R3 : D!vD)0)095, D!v#CAtxN D)0)1,

t"0, 1, 2 , 21N. Thus, OI
=

is the intersection of 46 half spaces and t*"21. See the cross-sections
in Figure 4. A simpli"ed P is obtained by following the ideas in Section 5. Figure 4 suggests that
a fairly accurate outer approximation of OI

=
can be obtained by using only the inequalities for
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Figure 3. Inverted pendulum example: responses with saturation and without reference governor

t"0, 3, 6, 2 , 21. This gives a somewhat larger set, consisting of the intersection of 18
half-spaces. We obtain P, which is inside OI

=
, by shrinking this larger set in its x6 co-ordinates:

P"M(v, xN )3R3 : D!v D)0)095, 1!v#aCAtxN D)0)1, t"0, 3, 6, 2 , 21N, a'1. Using linear
programming it is possible to determine the smallest value of a which causes PLOI

=
. This gives

a"1)06. A somewhat larger value, a"1)15, is used in our implementation of (33); this allows us
to see that good results can be obtained even if P does not closely approximate OI

=
. The number

of #ops required for evaluation of K is reduced from 391 for P"OI
=

to 153 for the simpli"ed P.
Note that for all the sets in Figure 4,>I "<I remains unchanged so that the extent of the sets in the
v coordinate is the same.

Figure 5 shows the responses of the two reference governors for v(0)"0 and the same reference
commands which are used in Figure 3. Unlike Figure 3, they are all well behaved and the loss in
performance from using the simpli"ed P is small. When a"1)06 the di!erence in responses is
even less, with the response curves almost on top of one another. For r3<I , the reference governor
conforms to the predictions of Theorem 4.2. For instance, with r"0)08, v (t#1)"r(t) for all
t*27. For r"0)2, r N <I and Remark 4.7 applies.

Next, consider the e!ect of a disturbance where ="[!0)002,#0)002]. Signi"cantly
larger disturbance sets cannot be used, because then OM

=
"0. For instance, this happens if

="[!0)005,#0)005]. Computations of >
t
for large t show>

=
"(0)05952) [!1,#1]; our

choice for >I "<I is [!0)059,#0)059]. The number of half spaces required to express OI
=

is 54
and t*"25. Without the reference governor, the disturbance can cause signi"cant saturation to
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Figure 4. Inverted pendulum example: cross-sections of OI
=

(solid), our approximation of OI
=

(dash) and P (dash}dot) by:
(a) v"0; (b) xN

2
"0
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Figure 5. Inverted pendulum example: responses with the reference governor in the disturbance free case for P"OI
=

(solid) and for PLOI
=

(dash)

take place when fairly small step inputs are applied. For example, we have performed simulations
which show that the system can go unstable with a step r"0)04.

In Figure 6 the input is the step r(t),r"0)04 and the disturbance is given by
w (t)"!0)002 sign(sin 2t). The disturbance is high in frequency so its e!ect on the response of
x
1
(t) is not obvious. However, from the plot of u (t), it is clear that the possibility of saturation

increases considerably with the disturbance. Note that the response is slower than would be
expected for the same input in the disturbance-free case. This is explained easily. The set P"OI

=
is considerably smaller than the set P used in the disturbance-free implementations; hence
K(r(t), v (t), x (t)) is smaller.

In some applications very small sample periods ¹ are desired, so that the controlled system
approaches continuous-time behaviour. It has been observed in Section 1 that decreases in ¹ are
troublesome when P"OM

=
. Figure 4 suggests the nature of the problem. As ¹ decreases from

¹"0)1, more half spaces are required to represent the "ner boundary structure of OI
=
, but

OI
=

does not change very much since dynamics of the control process are represented quite well
with ¹"0)1. Thus, P, which is well inside OI

=
for ¹"0)1 remains inside for smaller ¹.

Simulations show what happens when ¹ is reduced by a factor of 100 to ¹"0)001. The responses
are almost the same as with ¹"0)1. The on-line computational requirements for ¹"0)001 and
P"OI

=
are vastly di!erent. Although the step responses are again almost the same, the number of

half spaces that de"ne P increase from 18 to 4000.
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Figure 6. Inverted pendulum example: responses with the reference governor, disturbance, and r"0)04

The second example is a pitch acceleration control system for a bank-to-turn missile. It is
described by Blakelock,39 pp. 287}289, and has been used with modi"cations in the controller
gains as an example by Rodriguez and Wang.40 To allow comparisons with the reference
governor results in Reference 40, we choose the parameters of Reference 40. It is assumed that
there is no disturbance input.

The missile input, elevator de#ection d
e
, saturates at $4)23. Available outputs are normal

acceleration, a
z
, and pitch rate hQ . Laplace transforms of these variables are related by

A
z
(s)"

!0)6368(s!47)318)(s#47)329)

(s!10)77)(s#13)827)
*
e
(s) , #Q (s)"

!701(s#3)194)

(s!10)77) (s#13)827)
*

e
(s) (45)

Note that the missile is open-loop unstable and that there is a non-minimum phase zero in the
"rst transfer function. The control objective is to have the normal acceleration follow a reference
command, a

3%&
. The two-degree-of-freedom controller uses pitch rate damping in an inner loop

and integral plus proportional control in the main feedforward loop:

*
e
(s)"

4(s#2)

s(s#35)
(A

3%&
(s)!A

z
(s))#

2)2

s#35
#0 (s) (46)

Eigenvalues of the closed-loop system are at !15)87$33)40i and !1)885$2)189i.
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Figure 7. Missile example: time history of a
z

with the reference governor and P"OI
=

The discrete-time, controlled process is obtained by generating d
e
through a zero-order hold

driven by a discrete-time controller which is a zero-order hold approximation41 of the
continuous-time controller, (46). To obtain near continuous-time system performance, a small
sample period, ¹"0)005 s, is selected. The input to the controlled process, v(t), corresponds to
samples of a

3%&
. The output of the discrete-time controller, y (t)"d

e
(t¹), generates the input of the

zero-order hold. It is assumed that the system is disturbance free. Thus, (1) is characterized by
m"1, n"4,="M0N and the saturation constraint results in >"[!4)2,#4)2]. Eigenvalues
of A are at 0)9295$0)1609i and 0)9904$0)0109i. Without the reference governor saturation
does not occur for step commands which have an amplitude less than 31)2. Slightly larger step
inputs cause the system response to diverge.

Our reference governor is obtained by setting >I "[!4)0,#4)0], a reduction in > of about
5%. Since ¹ is very small, the eigenvalues of A are close to the unit circle. This leads to a complex
representation for the polytope OI

=
: t*"379 and there are 762 half spaces. The complexity is not

surprising. It re#ects the inherent complexity which has been observed in the implementation of
continuous-time error governors and reference governors.2,3,9,40,42

Figure 7 shows step responses of the reference governor system when P"OI
=
. For r (t),15,

the reference governor takes no corrective action and, except for the delay of one sample period,
the response is the response of the linear controlled process. For the larger step inputs,
K(r(t), v (t), x (t))(1 for some values of t, slowing the response slightly. As expected, instability is
avoided. Since, H

0
"!0)1044, <I "[!38)31, 38)31]. Expected results are veri"ed: for steps of
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amplitude less than 38)31, K(r(t), v(t), x (t))"1 for t su$ciently large; for larger steps,
K(r(t), v (t), x (t))"0 for t su$ciently large. The responses in Figure 7 agree closely with those in
[40]. The principal di!erence is that for r(t)"45, the response in Reference 40 approaches
40)23"(0)1044)~1 4)2 instead of the 38)31 imposed by our replacement of > by >I . We recall the
importance of the replacement: it guarantees the "nite determination of OI

=
and the "nite settling

time of K(r(t), v (t), x (t)). These issues are not considered in Reference 40.
The on-line computational load for K is very large. Using the symmetry of the constraints, it is

approximately 8000 #ops. Thus, it is of interest to simplify P. Since OI
=
LR5 and is quite

complex, the search for an acceptable P cannot be guided by graphical results as it was in our
previous example. Instead we take advantage of the numerical ideas described in Section 5. The e

i
were evaluated for i"1, 2 , 760. Because of the symmetry of the half spaces it was only
necessary to solve half as many linear programming problems. Since the e

i
are relatively large for

i"1, 2 , 58, the corresponding half spaces were all kept in the initial approximation of OI
=
. It

was also decided, somewhat arbitrarily, that 2 out of every 16 subsequent half spaces should be
kept. This yielded an outer approximation of OI

=
, based on the 148 half spaces corresponding to

t3I
1
. The set I

1
was further reduced by the stagewise process of Section 5. Using the symmetry

of the half spaces, two indices were removed fromI
k
at each stage. The process of elimination was

continued until the e
i
which had to be eliminated had increased noticeably. At this point the

resulting index set,I) , contained only 68 indices. The shrinking of O(IK ) about the x6 coordinates to
obtain P was attempted for several values of a. It was found that the shrinking failed for a"1)2
but succeeded for a"1)3. The latter value was used in the implementation of (44). The resulting
P has 70 inequalities. The number of required #ops is about 600, less than one tenth the number
for P"OI

=
.

The responses, shown in Figure 8, are slightly di!erent in form but only slightly slower.

7. CONCLUSION

The reference governor is a supplementary, nonlinear pre"lter which enforces point-wise in-time
constraints in linear control systems by adjusting the bandwidth parameter K. For su$ciently
small deviations of the command input it acts only as a unit delay and thus preserves desirable
input response and disturbance-rejection properties of the linear system. For large deviations of
the command input its output is temporarily slowed, in an optimal way, to insure the absence of
present and future constraint violations. This action leads to well-behaved, large-input response
properties, a conclusion which is well supported by both the theory and the numerical
experiments.

Our results extend prior research2}4,21}25,27,40,42 on reference governors. The most important
new results are in four general areas: (i) "nite settling time for K in the presence of persistently
varying inputs, (ii) inclusion of disturbance inputs, (iii) the family of functions K generated by
choices of P satisfying (30), (iv) speci"c procedures for implementing o!-line design computations
associated with (30). As far as we know, the contributions in areas (i) and (iii) are entirely original.
With respect to (ii), our developments follow and extend the path originated in Reference 27. See
also Reference 26, which treats both disturbance inputs and robustness issues by exploiting
mathematical ideas similar to those "rst employed in Reference 27. Some of the procedures in
area (iv) are motivated by ideas discussed in Reference 16.

We believe that the simpli"cations of P, allowed by strict right-side inclusions in (30), are
especially important in applications. The complexity problem associated with high sampling rates
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Figure 8. Missile example: time history of a
z
with the reference governor and simpli"ed P

is an important example. High rates occur commonly when digitally controlled systems are
required to mimic closely the response properties of continuous-time systems. Examples in
Section 6 illustrate dramatically the simpli"cations that are possible. There are may other
situations in which OI

=
is naturally complex. For instance,> may be a complex polytope that for

computational reasons serves as an approximation to a non-polyhedral constraint set, such as an
ellipsoid.

Finally, #exibility in the choice of P can be exploited to guarantee proper reference governor
operation in presence of system uncertainty. In principle, the idea is simple. Let S be the set of
uncertain systems. Determine a P that satis"es (30) for all (A, B

v
, B

w
, C, D

v
, D

w
,=, >)3S. Then,

for an appropriately modi"ed set of initial conditions, (v(0), x (0)), the results of Theorems 4.1 and
4.2 hold for every system in S. In this simpli"ed description we have neglected a minor algebraic
complication. Each system in S generates a distinct change of variables (6). Thus, the actual
determination of P must be done in the common coordinate system (v, x), transforming for each
system in S, inclusions (30) from their (v, xN ) co-ordinates to the (v, x) co-ordinates. The
computational procedures for testing the transformed inclusions and computing K are
straightforward modi"cations of the ones discussed in Section 5. This approach to reference
governor robustness in quite di!erent than the one describe in Reference 26 and has several
advantages: it is conceptually simpler, it can be applied to more general sets S and it may give
stronger results.
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APPENDIX A. PROOF OF THEOREM 4.2

The proof of Theorem 4.2 rests on the following lemma.

Lemma

Consider the system

v(t#1)"v(t)#i(t) (r(t)!v(t)), v (t)3Rm, r (t)3Rm , t3Z` (47)

where i : Z`P[0, 1] and v (0) are arbitrary. Suppose there exist tL , d'0 and r
0

such that Er (t)!r
0
E
=
)d

for all t*tL . Then there exists t@*tL such that i(t)Ev(t)!r(t)E
=
)2d for all t*t@.

Proof. There are two possibilities for each i3M1, 2 , mN: either there exists t
i
*tL such that

Dv
i
(t
i
)!r

0i
D)d or Dv

i
(t)!r

0i
D'd for all t*tL . The "rst possibility, (47) and i(t)3[0, 1] imply that

Dv
i
(t)!r

0i
D)d and i(t) Dv

i
(t)!r

i
(t) D)2d for all t*t

i
. Suppose the second possibility occurs with

v
i
(tL )'r

0i
#d. Then it is clear that r

0i
#d(v

i
(t#1))v

i
(t) for all t*tL . Since v

i
(t), t'tL , is non-increasing

and bounded from below, it has a limit. Similarly, it has a limit if v
i
(tL )(r

0i
!d. Therefore, by (47),

i(t) Dv
i
(t)!r

i
(t) DP0 and there exists t

i
*tL such that i (t) Dv

i
(t)!r

i
(t) D)2d for all t*t

i
. Thus, with

t@"maxMt
i
: t"1, 2 , mN, the proof is complete. K

Proof of Theorem 4.2. The "rst step in the proof is to show that the assumption on r (t) implies the
existence of tJ*tL such that

v(t)3<I and xN (t)3F#3
4
eBn for all t*tJ (48)

For notational simplicity let iN (t)"KM (r (t), v (t), xN (t)). Suppose K1 is de"ned by (33). Then by the Lemma there
exists t@*tL such that

Ei6 (t) (r(t)!v (t))E
=
)

e
2G

for all t*t@ (49)

The same inequality is satis"ed if KM is de"ned by (35): apply the Lemma with m"1 to each component of (9)
to obtain i6

i
(t) Dr

i
(t)!v

i
(t) D)(e/2G) for all t*t@

i
, i"1, 2 , m; then (49) holds with t@"maxMt@

1
, 2 , t@

m
N. For

t*t@ the solution of (7) can be written as xN (t)"At~t{xN (t@)#xN
RG

(t)#xN
w
(t), where xN

RG
(t) and xN

w
(t) are

zero-state responses of (7) which are, respectively, due to each of the input terms on the right-hand side of (7).
By (49) and the de"nition of G, xN

RG
(t)3(e/2)Bn; by the de"nitions of F

t
and F, xN

w
(t)3F

t~t{
LF. Moreover,

by the asymptotic stability of A there exists tJ*t@ such that At~t{xN (t@)3(e/4)Bn for all t*tJ . Combining these
facts proves xN (t)3F#(3e/4)Bn. Part (i) of Theorem 4.1 and (26) complete the veri"cation of (48).

Apply (48) to v(t#1) and xN (t#1) using (9) and (7). Since the resulting inclusions must hold for all
w(t)3=, it follows that

v (t)#iN (t) (r(t)!v (t))3<I for all t*tJ (50)

AxN (t)!BM
v
iN (t)(r (t)!v(t))3(F#3

4
eBn)&B

w
= for all t*tJ (51)

These inclusions, together with (30) and (31), con"rm that i"i6 (t) satis"es (32) with r"r(t), v"v (t) and
xN "xN (t). In fact, (51) shows that the last n components of (32) are inactive constraints on iN (t), i.e. for all i in
a su$ciently small neighborhood of i6 (t) the last n components of (32) are satis"ed automatically. Thus, for
t*tJ active constraints in the optimization problems of (33) and (35) must come from (50).

Arguing by contradiction, this result leads to the proof. Suppose KM is de"ned by (33) and i6 (t)(1 for some
t*tJ . Since r(t) and v(t) both belong to the convex set <I , it is possible to "nd i'iN (t), i!iN (t) su$ciently
small, which causes (32) to remain valid. Thus, iN (t)"KM (r(t), v(t), xN (t)) fails to satisfy the maximum condition
of (33), which is a contradiction. Hence, iN (t)"1 and v (t#1)"r (t).

When KM is de"ned by (35) the corresponding argument is more involved. Let k"(i
1
, 2 , i

m
),

k6 (t)"(i6
1
(t), 2 , iN

m
(t))3Rm and N(r, v)"Mk3Rm : k#i (r!v)3<I , i3Rm]m satis"es (34)N. Then (50) is

equivalent to k6 (t)3N(r (t), v (t)). Clearly, v#i (r!v) is an a$ne vector function of k. From this and
the convexity of <I , N(r(t), v(t)) is convex. Since E ) E is a convex function, it also follows that
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f (k)"Ev (t)#i (r(t)!v (t))!r (t)E is a convex function of k. Let e3Rm denote the vector whose
components are all equal to 1. Obviously, e3N (r(t), v(t)) and f (e)"0. Now suppose, contrary to the
Theorem, that v(t#1)Or(t) for some t*tJ . Then, f (kN (t))'0. De"ne k"k6 (t)#j (e!kN (t)). By our
convexity results and f (e)"0, it follows that k3N(r(t), v (t)) and f (k))(1!j) f (kN (t)) for all j3[0, 1].
Thus, for j'0 su$ciently small, (32) is satis"ed and f (k)(f (kN (t)). Hence, the minimization condition in
(35) is violated and the proof is complete. K
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