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SUMMARY

In this paper, we formulate robust stability and performance bounds in terms of guaranteed cost
inequalities. We derive new guaranteed cost bounds for plants with real structured uncertainty, and we
reformulate them as linear matrix inequalities (LMIs). In particular, we obtain a shifted linear bound and a
shifted inverse bound, and give LMI forms for a shifted bounded real bound, a shifted Popov bound, a
shifted linear bound and a shifted inverse bound. Several examples are used to compare the shifted bounds
with their unshifted counterparts and to make comparisons among these new bounds and vertex LMI
bounds. Copyright # 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

For unstructured time-varying or complex uncertainty, the small gain theorem provides a non-
conservative test for robust stability [1–6]. For structured and possibly real uncertainty,
however, the small gain theorem is known to be conservative, and structured singular value
bounds, which involve multipliers and complex scalings, can be used [7,8]. Linear matrix
inequalities (LMIs) are also used to guarantee robust stability [9–15].

Within the context of robust H2 performance, the small gain theorem is equivalent to the
bounded real bound [1–3], which plays the role of a guaranteed cost bound [4]. Various
guaranteed cost bounds have been developed including quadratic and non-quadratic bounds.
Quadratic bounds include the bounded real [1–3], positive real [6,16], and Popov bounds [6,17]
(see Table I), while non-quadratic bounds include the absolute value and linear bounds [21–23]
(see Table II).

In the present paper we reformulate the bounded real, Popov, inverse, shifted bounded real
[18], and shifted Popov [19] bounds as guaranteed cost inequalities. In addition, we present two
new guaranteed cost bounds, namely, the shifted linear and shifted inverse bounds, which we
also reformulate as linear matrix inequalities.
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The guaranteed cost bounds that we consider are either parameter independent or parameter
dependent. Parameter-independent bounds, such as the bounded real bound, use a common
Lyapunov function, whereas parameter-dependent bounds, such as the Popov bound, use a
family of Lyapunov functions. For polytopic uncertainty we show that the least conservative
common (parameter-independent) guaranteed cost bound can be determined by solving an
optimization problem involving a set of linear matrix inequalities. The interesting feature of the
guaranteed cost bounds is the fact that they give rise to sets of LMIs whose dimensions are less
than the dimensions of the vertex LMIs.

The contents of the paper are as follows. In Section 2 we consider the robust analysis problem
in a guaranteed H2 cost inequality framework. In Section 3 we consider the use of vertex LMI’s
to obtain guaranteed H2 cost bounds. In Sections 4 and 5 we review and analyse the shifted
bounded real and shifted Popov bounds, while in Sections 6 and 7 we present the shifted linear
bound and shifted inverse bound. Finally, in Section 8 several examples are considered to
compare the guaranteed cost and vertex LMI bounds.

Proofs can be found in Appendix A.

2. ROBUST PERFORMANCE AND GUARANTEED COST BOUNDS

Let U � Rn�n denote an uncertainty set and consider the uncertain p � m transfer function
GDAðsÞ ¼ EðsI � A� DAÞ�1D; where A 2 Rn�n; DA 2 U; D 2 Rn�m; and E 2 Rp�n: If Aþ DA is
asymptotically stable for all DA 2 U; then we define the worst-case H2 performance by

J ðUÞ ¼4 sup
DA2U

jjGDAjj2: ð1Þ

Table I. Quadratic guaranteed cost bounds.

Bound Reference

Bounded real Anderson et al. [1], Noldus [2], Peterson and Hollot [3]
Positive real Anderson [16], Haddad and Bernstein [6]
Popov Haddad and Bernstein [6,17]
Shifted bounded real Tyan and Bernstein [18]
Shifted positive real Tyan and Bernstein [18]
Shifted Popov Kapila et al. [19]
Implicit small gain Haddad et al. [20]

Table II. Non-quadratic guaranteed cost bounds.

Bound Reference

Absolute value Chang and Peng [21]
Linear Jain [22], Bernstein [23], Kosmidou and Bertrand [24]
Inverse Bernstein and Haddad [4]
Double commutator Tyan et al. [25]
Shifted linear This paper
Shifted inverse This paper

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:1275–1297

D. S. BERNSTEIN AND S. L. OSBURN1276



It follows from standard results that

J ðUÞ ¼ sup
DA2U

tr PDAV ; ð2Þ

where V ¼4 DDT and PDA is the unique, non-negative-definite solution to the Lyapunov
equation

ðAþ DAÞTPDA þ PDAðAþ DAÞ þ R ¼ 0; ð3Þ

where R¼4 ETE:
The following definition will be used to construct bounds for J ðUÞ:

Definition 1
Let N � Sn; O :N ! Sn and P0 :U ! Sn: Then ðO; P0Þ is a bounding pair if

04P þ P0ðDAÞ; P 2 N; DA 2 U ð4Þ

and

DATP þ PDAþ ðAþ DAÞTP0ðDAÞ þ P0ðDAÞðAþ DAÞ4OðP Þ; P 2 N; DA 2 U: ð5Þ

The following result, which is slightly stronger form of Theorem 3.1 of Reference [17]
provides a bound for J ðUÞ:

Theorem 1
Let ðO; P0Þ be a bounding pair and assume there exists P 2 N satisfying

ATP þ PAþ OðP Þ þ R40 ð6Þ

Then ðAþ DA;EÞ is detectable for all DA 2 U if and only if Aþ DA is asymptotically stable for all
DA 2 U: In this case,

PDA4P þ P0ðDAÞ; DA 2 U; ð7Þ

where PDA 2 Nn is given by (3), and

J ðUÞ4JðUÞ ð8Þ

where

JðUÞ ¼4 tr PV þ sup
DA2U

tr P0ðDAÞV : ð9Þ

Remark 1
If there exists %PP0 2 Sn such that

P0ðDAÞ4 %PP0; DA 2 U; ð10Þ

then

JðUÞ4 %JJ ð11Þ

where
%JJ¼4 tr½ðP þ %PP0ÞV �: ð12Þ

Remark 2
In Theorem 3.1 of Reference [17], inequality (6) appears as an equation. Inequality (6) is
desirable since it permits the use of LMI techniques.
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A bounding pair ðO; P0Þ is parameter dependent if P0 is not constant. Alternatively, a bounding
pair ðO; P0Þ is parameter independent if P0 is constant. In this case, P0ðDAÞ is replaced by P0 and
%PP0 ¼ P0 so that %JJ ¼ JðUÞ ¼ tr½ðP þ P0ÞV �:
The remainder of the paper is concerned with the construction of bounding pairs ðO; P0Þ: To

construct a bounding pair ðO; P0Þ we must specify the set N � Sn along with the functions
O :N ! Sn and P0 :U ! Sn that satisfy (4) and (5). No other assumptions on O and P0 are
required. To apply Theorem 1, however, requires the existence of a solution P 2 N to inequality
(6). LMI techniques will be used to obtain such solutions.

For a given bounding pair ðO; P0Þ; the following immediate result yields an equivalent
bounding pair ð #OO; #PP0Þ:

Proposition 1
Let O :N � Sn ! Sn; P 2 N; and P0 :U ! Sn satisfy (4)–(6), and let %PP0 2 Sn satisfy (10).
Furthermore, let %#PP#PP0 2 Sn; and define #NN � Sn; #OO : #NN ! Sn and #PP0 :U ! Sn by

#NN¼4 Nþ %PP0 �
%#PP#PP0; ð13Þ

#OOð #PPÞ ¼4 Oð #PP� %PP0 þ
%#PP#PP0Þ � ATð %PP0 �

%#PP#PP0Þ � ð %PP0 �
%#PP#PP0ÞA; #PP 2 #NN; ð14Þ

and

#PP0ðDAÞ ¼
4
P0ðDAÞ � %PP0 þ

%#PP#PP0: ð15Þ

Then (4)–(6) and (10) are satisfied with N; O; P ; P0; and %PP0 replaced by #NN; #OO; P þ %PP0 �
%#PP#PP0; #PP0; and

%#PP#PP0: Furthermore, the bounding pairs ðO; P0Þ and ð #OO; #PP0Þ yield the same performance
bound JðUÞ:

Remark 3
If there exists DA 2 U such that P0ðDAÞ ¼ 0; then (4) implies P50 for all P 2 N; and thus
without loss of generality we can assume N � Nn:

Remark 4
Let ðO; P0Þ be a parameter-independent bounding pair with %PP0 ¼ P0: Letting %#PP#PP0 ¼ 0 in
Proposition 1 yields the equivalent parameter-independent bounding pair ð #OO; 0Þ: Thus, without
loss of generality, we can consider parameter-independent bounding pairs of the form ðO; 0Þ;
where, by Remark 3, N � Nn:

In the following sections, U is given by either the parametric uncertainty set

UpðRÞ ¼ DA: DA ¼
Xr
i¼1

diAi; where ðd1; . . . ; drÞ 2 R

( )
; ð16Þ

where R � Rr and Ai 2 Rn�n; i ¼ 1; . . . ; r; or the factored uncertainty set

Uf ðFÞ ¼ fDA : DA ¼ B0FC0; where F 2 Fg; ð17Þ

where F � Rl1�l2 ; B0 2 Rn�l1 and C0 2 Rl2�n:
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Note that the parametric uncertainty set UpðRÞ requires specification of the set R; while the
factored uncertainty set Uf ðFÞ requires specification of the set F: These sets will be specified in
later sections for each bounding pair that we consider.

Next we show that UpðRÞ is a special case of Uf ðFÞ for a special choice of F: To show this,
let Bi 2 Rn�ki and Ci 2 Rki�n satisfy

Ai ¼ BiCi; i ¼ 1; . . . ; r; ð18Þ

and define

B0 ¼
4 ½B1 � � �Br� 2 Rn�k ; C0 ¼

4

C1

..

.

Cr

2
6664

3
7775 2 Rk�n; ð19Þ

where k¼4
Pr

i¼1 ki: Then

DA ¼
Xr
i¼1

diAi ¼ B0FC0; ð20Þ

where F ¼ diagðd1Ik1 ; . . . ; drIkr Þ 2 Rk�k so that l1 ¼ l2 ¼ k: Hence, with (18) and (19), it follows
that

Uf ðFRÞ ¼ UpðRÞ; ð21Þ

where Uf ðFRÞ is the factored parametric uncertainty set, where

FR ¼4 fF 2 Sk : F ¼ diagðd1Ik1 ; . . . ; drIkr Þ; ðd1; . . . ; drÞ 2 Rg: ð22Þ

3. VERTEX LMIs FOR ROBUST PERFORMANCE

In this section linear matrix inequalities are used to construct parameter-independent bounding
pairs. For g > 0 define the polytopic uncertainty set

UpðRgÞ ¼
4 DA : DA ¼

Xr
i¼1

diAi; where jdij4g; i ¼ 1; . . . ; r

( )
; ð23Þ

where

Rg ¼
4 fðd1; . . . ; drÞ : jdij4g; i ¼ 1; . . . ; rg: ð24Þ

With (18) and (19), the factored polytopic uncertainty set is given by

Uf ðFRg Þ ¼ UpðRgÞ; ð25Þ

where, with R ¼ Rg in (22),

FRg ¼ fF 2 Sk : F ¼ diagðd1Ik1 ; . . . ; drIkr Þ; jdij4g; i ¼ 1; . . . ; rg: ð26Þ

Lemma 1
P 2 Nn satisfies the 2r LMIs

ATP þ PA� gðAT
1 P þ PA1Þ � � � � � gðAT

r P þ PArÞ þ R40 ð27Þ
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if and only if P satisfies

ðAþ DAÞTP þ P ðAþ DAÞ þ R40; DA 2 UpðRgÞ: ð28Þ

The following result shows that the set of solutions to the 2r vertex LMIs (27) gives rise to a
parameter-independent bounding pair ðOLMI; 0Þ: Define

P¼4 fP 2 Nn : P satisfies ð27Þg:

Proposition 2
Let U ¼ UpðRgÞ and define OLMI :P ! Nn by

OLMIðP Þ ¼
4 �R� ATP � PA: ð29Þ

Then ðOLMI; 0Þ is a bounding pair. Furthermore, J ðUpðRgÞÞ4tr PV for all P 2 P:

The next result shows that every bound JðUÞ obtainable from a parameter-independent
bounding pair ðO; 0Þ is also obtainable from vertex LMIs.

Proposition 3
Let U ¼ UpðRgÞ; let ðO; 0Þ be a bounding pair, where O :N � Nn ! Sn; and assume there exists
P 2 N satisfying (6). Then P satisfies (27).

Propositions 2 and 3 show that there is an equivalence between the performance bounds
obtainable from vertex LMIs and the performance bounds obtainable from parameter-
independent bounding pairs ðO; 0Þ: This equivalence does not suggest, however, that parameter-
independent bounding pairs ðO; 0Þ are of no interest. Rather, as can be seen in Table III, the
bounding pairs ðO; 0Þ may entail LMIs that are of lower dimensionality than vertex LMIs. With
this motivation in mind, we turn our attention to the construction of parameter-independent
and parameter-dependent bounding pairs.

Table III. LMI dimensions for continuous-time polytopic uncertainty bounds. For the linear and inverse
families of bounds, a must be chosen separately.

Bound Variables Variable size LMI dimension

Vertex LMI Prop. 2 P n2 2rn2

Shifted bounded real Prop. 8 P ; N ; Yi n2 þ 2
P

k2i ðnþ kÞ2 þ 2
P

k2i
Bounded real P n2 ðnþ kÞ2

Shifted Popov Prop. 11 P ; %PP0; *XX ; Y ; *NN; *HH 3n2 þ 3k2 ðnþ kÞ2 þ ð2rþ1 þ 1Þn2

Cor. 1 P ; Pi; *XX ; Yi; *NN; *HH ð2r þ 1Þn2 þ 3k2 ðnþ kÞ2 þ ð4r þ 5Þn2

Popov P ; Pi; *NN; *HH ðr þ 1Þn2 þ 2k2 ðnþ kÞ2 þ ð2r þ 3Þn2

Shifted linear Prop. 15 P ; Ni; Y ðr þ 2Þn2 ð2r þ 2Þn2

Cor. 2 P ; N ; Yi ðr þ 2Þn2 ð2r þ 2Þn2

Linear P n2 2n2

Shifted inverse Prop. 18 P ; Ni; Mi; Y ð2r þ 2Þn2 ðr þ 1Þ2n2 þ ð2r þ 1Þn2

Remark 12 P ; Ni; Mi; Yi ð3r þ 1Þn2 ðr þ 1Þ2n2 þ ð2r þ 1Þn2

P ; Ni ðr þ 1Þn2 ðr þ 1Þ2n2 þ n2

Inverse P n2 ðr þ 1Þ2n2 þ n2
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4. SHIFTED BOUNDED REAL BOUND

Define FBRðMÞ � Rl1�l2 by

FBRðMÞ ¼4 fF 2 Rl1�l2 : F TF4Mg; ð30Þ

where M 2 Nl2 : The following result concerns the classical bounded real bound [3,5].

Proposition 4
Let U ¼ Uf ðFBRðMÞÞ; N ¼ Nn; and

OðP Þ ¼ PB0BT
0 P þ CT

0MC0: ð31Þ

Then ðO; 0Þ is a bounding pair.
Next, define

FBRsðM ;N Þ ¼4 fF 2 Rl1�l2 : ðF þ N ÞTðF þ N Þ4Mg; ð32Þ

where M 2 Nl2 and N 2 Rl1�l2 : Note that FBRsðM ; 0Þ ¼ FBRðMÞ: The following result concerns
the shifted bounded real bound [18].

Proposition 5
Let U ¼ Uf ðFBRsðM ;N ÞÞ; N ¼ Nn; and

OðP Þ ¼ PB0BT
0 P � ðB0NC0Þ

TP � PB0NC0 þ CT
0MC0: ð33Þ

Then ðO; 0Þ is a bounding pair.

The shifted bounded real bound inequality is given by (6) with O given by (33), which has the
form

ðA� B0NC0Þ
TP þ P ðA� B0NC0Þ þ PB0BT

0 P þ CT
0MC0 þ R40: ð34Þ

Remark 5
Note that

AþUf ðFBRsðM ;N ÞÞ ¼ fAþ B0FC0 : F 2 FBRsðM ;N Þg

¼ fAþ B0FC0 : ðF þ N ÞTðF þ N Þ4Mg

¼ fAþ B0ð #FF � N ÞC0 : #FF
T #FF4Mg

¼ fAs þ B0
#FFC0 : #FF

T #FF4Mg

¼As þUf ðFBRðMÞÞ;

where As ¼
4 A� B0NC0: This identity suggests that the shifted bounded real bound is not more

general than the bounded real bound. However, this is definitely not the case. Rather, the shifted
bounded real bound has the form of the bounded real bound for a shifted nominal dynamics
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matrix As that is different from the original nominal dynamics matrix A: The numerical results in
Section 8 show that, for the examples considered, the shifted bounded real bound is markedly
less conservative than the standard bounded real bound.

Remark 6
Other factorizations can be used in place of (32). In particular, [18] uses a factorization of the
form

#FFBRsðMs;N Þ ¼4 fF 2 Rl1�l2 : ðFC0 þ N ÞTðFC0 þ N Þ4Msg;

where N and Ms are chosen to have appropriate dimension. Example 3 in Section 8 uses a
factorization of this form for the shifted bounded-real bound.

Next we apply the shifted bounded real bound to the factored polytopic uncertainty set
Uf ðFRg Þ ¼ UpðRgÞ with B0;C0 given by (18) and (19), so that F ¼ diagðd1Ik1 ; . . . ; drIkr Þ 2 FRg :
Note that if g2I4M then FRg � FBRðMÞ: Now let N ¼ diagðN1; . . . ;NrÞ 2 Rk�k ; where Ni 2
Rki�ki ; i ¼ 1; . . . ; r: Then

FBRsRðM ;N Þ ¼4 FBRsðM ;N Þ \FR

¼fF ¼ diagðd1Ik1 ; . . . ; drIkr Þ : ðF þ N ÞTðF þ N Þ4M ; ðd1; . . . ; drÞ 2 Rg:

Proposition 6
Let M be given by

M ¼ NTN þ g2I þ Y ; ð35Þ

where Y ¼4 diagðY1; . . . ; YrÞ; and Yi 2 Nki ; i ¼ 1; . . . ; r; satisfies

diðNi þ NT
i Þ4Yi; jdij4g; i ¼ 1; . . . ; r: ð36Þ

Then

FRg � FBRsðM ;N Þ: ð37Þ

With M given by (35), (34) becomes

ðA� B0NC0Þ
TP þ P ðA� B0NC0Þ þ PB0BT

0 P þ CT
0 ðN

TN þ g2I þ Y ÞC0 þ R40: ð38Þ

The next proposition gives two choices of Yi that satisfy (36).

Proposition 7
Let Yi 2 Nki ; i ¼ 1; . . . ; r; and consider the conditions

Yi ¼ gjNi þ NT
i j; i ¼ 1; . . . ; r; ð39Þ

and

�Yi4gðNi þ NT
i Þ4Yi; i ¼ 1; . . . ; r: ð40Þ

Then ð39Þ ) ð40Þ , ð36Þ:
Next, we formulate an LMI to obtain a feasible solution P 2 Nn to the shifted bounded real

inequality (34) along with M and N : The following result follows from the equivalence of (36)
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and (40) as well as by using Schur complements to rewrite (38). Let N ¼ diagðN1; . . . ;NrÞ and
Y ¼ diagðY1; . . . ; YrÞ:

Proposition 8
Let U ¼ Uf ðFRg Þ and let P 2 Nn; N 2 Rk�k ; and Y 2 Sn: Then P ;N ; Y satisfy (40) and

ATP þ PAþ CT
0 ðg

2I þ Y ÞC0 þ R PB0 � CT
0 N

T

BT
0 P � NC0 �I

" #
40 ð41Þ

if and only if P ;N ; Y satisfy (36) and (38).

Remark 7
The LMI (41) is a special case of (24) in Reference [15] with

#QQ ¼ CT
0 ðg

2I þ Y ÞC0 þ R; #SS ¼ CT
0 N

T; #RR ¼ �I ; B ¼ B0; C ¼ I :

5. SHIFTED POPOV BOUND

Let l1 ¼ l2 ¼ k and define FP � Sk ; HP � Pk and NP � Rk�k by

FP � fF 2 Sk : ML4F4MUg; ð42Þ

HP ¼
4 fH 2 Pk : HF ¼ FH ; F 2 FPg; ð43Þ

NP ¼
4 fN 2 Rk�k : NTML ¼ MLN ; NTF ¼ FN ; F 2 FPg; ð44Þ

where ML;MU 2 Sk are such that

M ¼4 MU �ML > 0: ð45Þ

The following result concerns the Popov bound [17].

Proposition 9
Let U ¼ Uf ðFPÞ; N ¼ Nn; N 2 NP and H 2 HP: Assume that

R0 ¼
4 ðHM�1 � NC0B0Þ þ ðHM�1 � NC0B0Þ

T > 0 ð46Þ

and let

OðP Þ ¼ ðHC0 þ NC0
*AAP þ BT

0 P Þ
TR�1

0 ðHC0 þ NC0
*AAP þ BT

0 P Þ

þ ðB0MLC0Þ
TP þ PB0MLC0; ð47Þ

where *AAP ¼
4 Aþ B0MLC0; and

P0ðDAÞ ¼ CT
0 ðF �MLÞNC0: ð48Þ

Then ðO; P0Þ is a bounding pair.
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Remark 8
If m 2 Sk satisfies m5ðF �MLÞN for all F 2 FP; then %PP0 ¼ CT

0 mC0 satisfies (10).

The following result concerns the shifted Popov bound [19].

Proposition 10
Let U ¼ Uf ðFPÞ; let X 2 Rk�k and Y 2 Sn satisfy

B0XTðF �MLÞC0 þ CT
0 ðF �MLÞXBT

04Y ; F 2 FP ð49Þ

let N ¼ Nn; N 2 NP, and H 2 HP; let R0 be given by (46), define

OðP Þ ¼ ðHC0 þ NC0
*AAP þ BT

0 P � XBT
0 Þ

TR�1
0 ðHC0 þ NC0

*AAP þ BT
0 P � XBT

0 Þ

þ ðB0MLC0Þ
TP þ PB0MLC0 þ Y ; ð50Þ

and let P0ðDAÞ be given by (48). Then ðO; P0Þ is a bounding pair.

The shifted Popov bound inequality is given by (6) with O given by (50), which has the form

ðAþ B0MLC0Þ
TP þ P ðAþ B0MLC0Þ þ ðHC0 þ NC0

*AAP þ BT
0 P � XBT

0 Þ
T

� R�1
0 ðHC0 þ NC0

*AAP þ BT
0 P � XBT

0 Þ þ Y þ R40: ð51Þ

Remark 9
Setting X ¼ 0 and Y ¼ 0 in Proposition 10 yields Proposition 9.

Next, define HPd � Pk ; NPd � Sk and #II1; . . . ; #II r 2 Sk by

HPd ¼
4 fH 2 Pk : H ¼ diagðH1; . . . ;HrÞ; Hi 2 Pki ; i ¼ 1; . . . ; rg; ð52Þ

NPd ¼
4 fN 2 Sk : N ¼ diagðN1; . . . ;NrÞ; Ni 2 Ski ; i ¼ 1; . . . ; rg; ð53Þ

and

#II i ¼
4
diagð0k1 ; . . . ; 0ki�1

; Iki ; 0kiþ1
; . . . ; 0kr Þ;

where k ¼
Pr

i¼1 ki: Let �ML ¼ MU ¼ gI and let FP � FR: Then FP ¼ FRg : The following
result provides an LMI satisfying (49) and (6) with U ¼ Uf ðFRg Þ ¼ UpðRgÞ and with O given by
(50).

Proposition 11
Let U ¼ UpðRgÞ; and let *NN denote the set of ðP ;X ; Y ;N ;H Þ 2 Nn � Rk�k � Sn �NPg �HPd

satisfying

AT
PP þ PAP þ Y þ R CT

0H þ *AA
T

PC
T
0 N þ PB0 � B0XT

HC0 þ NC0
*AAP þ BT

0 P � XBT
0 NC0B0 þ BT

0C
T
0 N � g�1H

2
4

3
550 ð54Þ
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and the 2rþ1 LMIs

� gðB0XTC0 þ CT
0 XB

T
0 Þ � gðB0XT #II1C0 þ CT

0
#II1XBT

0 Þ

� � � � � gðB0XT #II rC0 þ CT
0
#II rXBT

0 Þ4Y : ð55Þ

Then (6), with O given by (50), and (49) are satisfied for all ðP ;X ; Y ;N ;H Þ 2 *NN: Furthermore, if
%PP0 2 Sn satisfies the 2rþ1 LMIs

gCT
0 ð�I � #II1 � #II2 � � � � � #II rÞNC04 %PP0; ð56Þ

then (10) is satisfied.

Corollary 1
Let X 2 Rk�k and let Y1; . . . ; Yrþ1 2 Sn satisfy

�Yi4gB0XT #II iC0 þ gCT
0 X #II iBT

04Yi; i ¼ 1; . . . ; r; ð57Þ

�Yrþ14gB0XTC0 þ gCT
0 XB

T
04Yrþ1; ð58Þ

let N 2 NPg and let P1; . . . ; Prþ1 2 Sn satisfy

�Pi4gCT
0
#II iNC04Pi; i ¼ 1; . . . ; r; ð59Þ

�Prþ14gCT
0 NC04Prþ1: ð60Þ

Then Y ¼
Prþ1

i¼1 Yi satisfies (49). Finally, let P0ðDAÞ be given by (48). Then %PP0 ¼
Prþ1

i¼1 Pi satisfies
(10).

6. SHIFTED LINEAR BOUND

In this section we consider the linear bound [22–24].

Proposition 12
Let U ¼ UpðRgÞ; a > 0 and N ¼ Nn; and define

OðP Þ ¼ arP þ
g2

a

Xr
i¼1

AT
i PAi: ð61Þ

Then ðO; 0Þ is a bounding pair.

Next, the shifted linear bound is obtained.

Proposition 13
Let U ¼ UpðRgÞ and a > 0; let N1; . . . ;Nr; Y 2 Sn satisfyXr

i¼1

diðAT
i Ni þ NT

i AiÞ4Y ; jdij4g; i ¼ 1; . . . r; ð62Þ

and define N ¼ Nn \
Tr

i¼1 ½N
n þ Ni�

� �
and

OðP Þ ¼
Xr
i¼1

aðP � NiÞ þ
g2

a
AT
i ðP � NiÞAi

� �
þ Y : ð63Þ

Then ðO; 0Þ is a bounding pair.
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Remark 10
Setting N1 ¼ � � � ¼ Nr ¼ 0 and Y ¼ 0 in Proposition 13 yields Proposition 12.

The shifted linear bound inequality is given by (6) with O given by (63), which has the form

ATP þ PAþ
Xr
i¼1

aðP � NiÞ þ
g2

a
AT
i ðP � NiÞAi

� �
þ Y þ R40: ð64Þ

The next result provides a method for computing P satisfying

ATP þ PAþ
Xr
i¼1

aðP � NiÞ þ
g2

a
AT
i ðP � NiÞAi

� �
þ Y þ R ¼ 0: ð65Þ

Proposition 14
Let a > 0; N1; . . . ;Nr 2 Sn; and Y ¼ g

Pr
i¼1 jA

T
i Ni þ NT

i Aij: Suppose

A¼4 Aþ
at
2
I

� �
� Aþ

ar
2
I

� �
þ

g2

a

Xr
i¼1

ðAi 	 AiÞ ð66Þ

is invertible. Then (65) has the unique solution

P ¼ �vec�1ðA�T vec R0Þ; ð67Þ

where

R0 ¼
4
Xr
i¼1

gjAT
i Ni þ NiAij � aNi �

g2

a
AT
i NiAi

� �
þ R:

If, in addition, A is asymptotically stable and R0 is non-negative definite, then P50:

Remark 11
The last statement of Proposition 14 follows from techniques used in Reference [26].

Proposition 15
Let U ¼ UpðRgÞ; let a > 0; and let *NN denote the set of ðP ;N1; . . . ;Nr; Y Þ 2 Nn � ðSnÞrþ1 satisfying

ATP þ PAþ
Xr
i¼1

aðP � NiÞ þ
g2

a
AT
i ðP � NiÞAi

� �
þ Y þ R40 ð68Þ

and the 2r LMIs

�gðAT
i N1 þ N1A1Þ � � � � � gðAT

r Nr þ NrArÞ4Y : ð69Þ

Then (62) and (63) are satisfied for all ðP ;N1; . . . ;Nr; Y Þ 2 *NN:

Letting N1 ¼ � � � ¼ Nr ¼ N in Proposition 13 yields the following specialization of the shifted
linear bound.

Corollary 2
Let a > 0 and let N ; Y1; . . . ; Yr 2 Sn satisfy

diðAT
i N þ NAiÞ4Yi; jdij4g; i ¼ 1; . . . ; r; ð70Þ
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and define N ¼ Nn \ ðNn þ N Þ and

OðP Þ ¼ arðP � N Þ þ
Xr
i¼1

g2

a
AT
i ðP � N ÞAi þ

Xr
i¼1

Yi: ð71Þ

Then ðO; 0Þ is a bounding pair.

7. SHIFTED INVERSE BOUND

The following result concerns the inverse bound [4].

Proposition 16
Let U ¼ UpðRgÞ; a > 0 and N ¼ Pn; and define

OðP Þ ¼ agrP þ
g
4a

Xr
i¼1

ðAT
i P þ PAiÞP�1ðAT

i P þ PAiÞ: ð72Þ

Then ðO; 0Þ is a bounding pair.

The inverse bound inequality, which is given by (6) with O given by (72), has the form

ATP þ PAþ agrP þ
g
4a

Xr
i¼1

ðAT
i P þ PAiÞP�1ðAT

i P þ PAiÞ þ R40: ð73Þ

Equation (73) can be written as

*AA
T

invP þ P *AAinv þ
g
4a

Xr
i¼1

ðAT
i PAi þ PAiP�1AT

i P Þ þ R40; ð74Þ

where *AAinv ¼
4 Aþ arg

2
I þ g

4a

Pr
i¼1 A

2
i :

Next, the shifted inverse bound is obtained.

Proposition 17
Let U ¼ UpðRgÞ and a > 0; and let M1i;M2i 2 Rn�n; i ¼ 1; . . . ; r; and Y 2 Sn satisfyXr

i¼1

di
2
½AT

i ðM1i þMT
2iÞ þ ðM2i þMT

1iÞAi�4Y ; jdij4g; i ¼ 1; . . . ; r: ð75Þ

Let N1; . . . ;Nr 2 Sn; and define

N ¼ Nn \
\r
i¼1

½Pn þ Ni�

 !
ð76Þ

and

OðP Þ ¼
Xr
i¼1

�
g
4a

½AT
i ðP �M1iÞ þ ðP �M2iÞAi�ðP � NiÞ

�1

� ½AT
i ðP �M1iÞ þ ðP �M2iÞAi�T þ agðP � NiÞ

�
þ Y : ð77Þ

Then ðO; 0Þ is a bounding pair.
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Substituting OðP Þ into (6) yields the shifted inverse bound inequality

ATP þ PAþ
Xr
i¼1

�
g
4a

½AT
i ðP �M1iÞ þ ðP �M2iÞAi�ðP � NiÞ

�1

�½AT
i ðP �M1iÞ þ ðP �M2iÞAi�T � agNi

�
þ agrP þ Y þ R40: ð78Þ

Let Mi1 ¼ M2i ¼ Mi 2 Sn; i ¼ 1; . . . ; r: The next result uses LMIs to find P 2 Pn and M1; . . . ;
Mr;N1; . . . ;Nr and Y 2 Sn satisfying (75) and (78).

Proposition 18
Let U ¼ UpðRgÞ and let a > 0: Let *NN denote the set of ðP ;N1; . . . ;Nr;M1; . . . ;Mr; Y Þ 2 Nn �
ðSnÞ2rþ1 satisfying

ATP þ PAþ ag
Pr

i¼1 ðP � NiÞ þ Y þ R AT
1 ðP �M1Þ þ ðP �M1ÞA1 � � � AT

r ðP �MrÞ þ ðP �MrÞAr

AT
1 ðP �M1Þ þ ðP �M1ÞA1 � 4a

g ðP � N1Þ 0 0

..

.
0 . .

.
0

AT
r ðP �MrÞ þ ðP �MrÞAr 0 0 � 4a

g ðP � NrÞ

2
666664

3
77777550

ð79Þ

and the 2r LMIs

�gðAT
1M1 þM1A1Þ � � � � � gðAT

r Mr þMrArÞ4Y : ð80Þ

Then (75) and (78) are satisfied for all ðP ;N1; . . . ;Nr;M1; . . . ;Mr; Y Þ 2 *NN:

Remark 12
As in Corollary 1, (80) can be recast as 2rn2 constraints.

Corollary 3
Assume Aþ AT50 and Ai þ AT

i ¼ 0; let b > 0 satisfy bðAþ ATÞ þ R50; let a > 0;
and define Ni ¼ ðagrÞ�1½bðAþ ATÞ þ R� þ bI and M1i ¼ M2i ¼ 0; i ¼ 1; . . . ; r: Then P ¼ bI
satisfies (78).

8. EXAMPLES

In this section we use LMI methods to calculate solutions along with optimal scalings
for the linear, bounded real, inverse, and Popov bounds, as well as their shifted counter-
parts. In the case of the inverse and linear bounds, the a scalings must be chosen separately.
In Example 1 through Example 3, vertex LMIs were used to obtain the best para-
meter-independent bound from Proposition 2 (marked LMI), along with the Popov and shifted
Popov bounds.
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Example 1
Let

A ¼

�0:0002 0:2208 0 0

�0:2208 �0:0002 0 0

0 0 �0:0103 1:4322

0 0 �1:4322 �0:0103

2
666664

3
777775; A1 ¼

02�2 I2

�I2 02�2

" #
;

where the uncertainty represents modal coupling. Furthermore, let R ¼ I4 and V ¼ I4; and let B1

and C1 be given by

B1 ¼
I2 02�2

02�2 �I2

" #
; C1 ¼

02�2 I2

I2 02�2

" #
:

Each plot in Figure 1 shows the exact worst-case performance along with the LMI bound
given by Proposition 2. As can be seen in Figure 1(a), the bounded real bound given by
Proposition 4 guarantees stability for jdj50:0003: Applying Proposition 8, the shifted bounded
real bound is shown in Figure 1(a) and guarantees stability for all d 2 R: Next, the Popov bound

Figure 1. Comparison of shifted, unshifted, and vertex LMI bounds for Example 1
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in Figure 1(b) guarantees stability for jdj50:1; while the shifted Popov bound using Proposition
11 is less conservative than the parameter-independent LMI bound given by Proposition 2. The
linear bound in Figure 1(c) guarantees stability for jdj56� 10�4; while the shifted linear bound
is less conservative for jdj56� 10�4: Finally, the inverse bound in Figure 1(d) guarantees
stability for all d 2 R; while the shifted inverse bound withM1 ¼ 0 coincides with the vertex LMI
bound given by Proposition 2. It can be seen that the shifted bounds provide significant
improvement over their classical counterparts.

Example 2
Let

A ¼
�0:005 1

�1 �0:005

" #
; A1 ¼

0:001 10

�10 0:001

" #
;

R ¼
0:25 0:12

0:12 2:5

" #
; V ¼

0 0

0 12

" #
:

Although the uncertainty is nearly skew symmetric, it is destabilizing. Figure 2 shows the exact
worst case performance. Now let B1 and C1 is given by

B1 ¼ 0:001I2; C1 ¼
1 10000

�10000 1

" #
:

With this choice, the bounded real and linear bounds guarantee stability for jdj54� 10�4; while
the shifted linear bound yields an improved robust performance bound for jdj54� 10�4: The
shifted Popov bound, using Proposition 11, guarantees stability for jdj55 and is less
conservative than the vertex LMI bound. The shifted inverse bound guarantees stability for
jdj55 and coincides with the vertex LMI bound.

Example 3
Here we consider several variations of Example 1 with two uncertain parameters. First, consider
the non-destabilizing skew-symmetric uncertainties

A1 ¼

0 0 0 0

0 0 0 1

0 0 0 0

0 �1 0 0

2
666664

3
777775; A2 ¼

0 0 1 0

0 0 0 0

�1 0 0 0

0 0 0 0

2
666664

3
777775; ð81Þ

and let B0 and C0 be given by (19), where

B1 ¼

0 0

1 0

0 0

0 �1

2
666664

3
777775; C1 ¼

0 0 0 1

0 1 0 0

" #
; B2 ¼

1 0

0 0

0 �1

0 0

2
666664

3
777775; C2 ¼

0 0 1 0

1 0 0 0

" #
: ð82Þ

Figure 3(a) shows the performance bound given by the shifted bounded real bound and the
shifted Popov bound, which coincide with the vertex LMI bound given by Proposition 2.
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Next, consider the symmetric and skew-symmetric uncertainties

A1 ¼

0 0 0 0

0 0 0 0:1

0 0 0 0

0 0:1 0 0

2
666664

3
777775; A2 ¼

0 0 1 0

0 0 0 0

�1 0 0 0

0 0 0 0

2
666664

3
777775; ð83Þ

and let B0 and C0 be given by (19), where

B1 ¼

0 0

0:1 0

0 0

0 0:1

2
666664

3
777775;

and C1; B2 and C2 are given in (82). In this case, the first uncertain parameter is destabilizing.
Figure 3(b) shows the performance bound given by the shifted bounded real bound, which
coincides with the vertex LMI bound, and the shifted Popov bound, which does slightly better
for higher levels of uncertainty.

Figure 2. Performance bounds for Example 2 for a destabilizing uncertainty.
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Next, consider the nilpotent and skew-symmetric uncertainties

A1 ¼

0 0 0 0

0 0 0 0:1

0 0 0 0

0 0 0 0

2
666664

3
777775; A2 ¼

0 0 1 0

0 0 0 0

�1 0 0 0

0 0 0 0

2
666664

3
777775; ð84Þ

and let B0 and C0 be given by (19), where

B1 ¼

0

0:1

0

0

2
666664

3
777775; C1 ¼ ½ 0 0 0 1 �;

Figure 3. Performance bounds for Example 3 comparing the shifted bounded real, shifted Popov and vertex
LMI bounds with two uncertain parameters: (a) two skew-symmetric uncertainties, (b) symmetric and skew-

symmetric uncertainty, (c) nilpotent and skew-symmetric uncertainty, (d) two nilpotent uncertainties.
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and B2 and C2 are given in (82). In this case, the first uncertain parameter is destabilizing. Figure
3(c) shows the performance bound given by the shifted bounded real bound, which coincides
with the vertex LMI bound, and the shifted Popov bound, which does slightly better for higher
levels of uncertainty.

Finally, consider the nilpotent uncertainties

A1 ¼

0 0 0 0

0 0 0 0:1

0 0 0 0

0 0 0 0

2
666664

3
777775; A2 ¼

0 0 0 0

0 0 0 0

0:01 0 0 0

0 0 0 0

2
666664

3
777775; ð85Þ

and let B0 and C0 be given by (19), where

B1 ¼

0

0:1

0

0

2
666664

3
777775; C1 ¼ ½0 0 0 1�; B2 ¼

0

0

0:01

0

2
666664

3
777775; C2 ¼ ½1 0 0 0�:

In this case, both uncertain parameters are destabilizing. Figure 3(d) shows the performance
bound given by the shifted bounded real bound and the shifted Popov bound, which coincide
with the vertex LMI bound.

9. CONCLUSIONS

In this paper the shifted bounded real bound [18], the shifted linear bound, the shifted inverse
bound, and the shifted Popov bound [19] have been considered. These bounds were compared
with the bounded real bound, the linear bound, the inverse bound, the Popov bound, and the
vertex LMI bound. It was shown that these shifted bounds can be recast as guaranteed cost
inequalities described by LMIs. For several examples, it was shown that the shifted bounded
real bound and shifted inverse bound are comparable to the best possible parameter-
independent bound given by Proposition 2. It has also been shown for several numerical
examples that the shifted Popov bound, which is a parameter-dependent bound, may be less
conservative than parameter-independent bounds.

Table III lists the various bounds discussed in this paper. The dimensionality of each LMI is
compared along with the number of variables required. As can be seen from Table III, there are
tradeoffs between the dimension of the constraints and the size of the free variables. The
bounded real bound is a more conservative bound and has a lower dimension than the shifted
bounded real bound. Similarly, the shifted bounded real bound has a lower dimension than the
less conservative Popov and shifted Popov bounds.
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APPENDIX A

Proof of Lemma 1
For arbitrary x 2 Rn; define fx :R ! R by fxðdÞ ¼ xT½ðAþ

Pr
i¼1 diAiÞ

TP þ P ðAþ
Pr

i¼1 diAiÞ þ
R�x: Note that R defined by (24) is the convex hull of the corner points RH of a cube in Rr: By
convexity of fx; fxjR 4 0 if and only if fxjRH

40: Since x is arbitrary, the result follows. &

Proof of Proposition 2
Let P 2 P: Thus, from Lemma 1, an immediate consequence of (28) is

04� R� ATP � PA� DATP � PDA

¼ OLMIðP Þ � DATP � PDA:

Therefore ðOLMI; 0Þ is a bounding pair. &

Proof of Proposition 3
Since ðO; 0Þ is a bounded pair and P satisfies (6) then

ðAþ DAÞTP þ P ðAþ DAÞ þ R4ATP þ PAþ OðP Þ þ R40:

By Lemma 1, P satisfies (27). Therefore P 2 P; and (28) follows as an immediate
consequence. &

Proof of Proposition 7
To prove (39)) (40), suppose (39) is satisfied. Then it follows that, for i ¼ 1; . . . ; r;

�Yi ¼ �gjNT
i Ci þ CT

i Nij4gðNT
i Ci þ CT

i NiÞ4gjNT
i Ci þ CT

i Nij ¼ Yi;

thus (40) is satisfied. Finally, to prove that (40),(36), methods from the proof of Lemma 1 can
be used. &

Proof of Proposition 11
First, using the technique used in the proof of Lemma 1, it can be shown that if %PP0 satisfies (56),
then %PP05P0ðDAÞ where P0ðDAÞ is given by (48). Similarly, it can be shown that if Y satisfies (55),
then Y also satisfies (49). To show that (54) implies (6) with OðP Þ given by (50), premultiply and
postmultiply (54) by S and ST; where S is given by

S ¼
I ðCT

0H þ AT
PC

T
0 N þ PB0 � B0XTÞR�1

0

0 I

" #
;

and

R0 ¼ g�1H � NC0B0 � ðNC0B0Þ
T > 0:

Now from Theorem 1, it follows that J ðUÞ4tr ðP þ %PP0ÞV : &

Proof of Corollary 1
The proof uses some of the techniques used in the proof of Lemma 1. &
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Proof of Proposition 13
Note that

04
Xr
i¼1

a�1ðdiAT
i � aIÞðP � NiÞðdiAi � aIÞ

¼
Xr
i¼1

½aðP � NiÞ þ a�1d2i A
T
i ðP � NiÞAi þ diðAT

i Ni þ NiAiÞ� � DATP � PDA

4
Xr
i¼1

½aðP � NiÞ þ a�1g2AT
i ðP � NiÞAi� þ Y � DATP � PDA

¼OðP Þ � DATP � PDA: &

Proof of Proposition 15
The proof uses some of the techniques used in the proof of Lemma 1. &

Proof of Proposition 17
Note that

04ga
Xr
i¼1

di
g
ðP � NiÞ �

1

2a
ðAT

i ½P �M1i� þ ½P �M2i�AiÞ
� �

ðP � NiÞ
�1 di

g
ðP � NiÞ �

1

2a
ðAT

i ½P �M1i� þ ½P �M2i�AiÞ
� �T

¼
Xr
i¼1

�
g
4a

ðAT
i ½P �M1i� þ ½P �M2i�AiÞðP � NiÞ

�1ðAT
i ½P �M1i�

þ ½P �M2i�AiÞ
T þ

a
g
d2i ðP � NiÞ �

di
2
ðAT

i ½2P �M1i �MT
2i�

þ ½2P �M2i �MT
1i�AiÞ

�

¼
Xr
i¼1

�
g
4a

ðAT
i ½P �M1i� þ ½P �M2i�AiÞðP � NiÞ

�1ðAT
i ½P �M1i�

þ ½P �M2i�AiÞ
T þ

a
g
d2i ðP � NiÞ �

di
2
ðAT

i ½M1i þMT
2i� þ ½M2i þMT

1i�AiÞ
�

� DATP � PDA

4
Xr
i¼1

�
g
4a

ðAT
i ½P �M1i� þ ½P �M2i�AiÞðP � NiÞ

�1ðAT
i ½P �M1i�

þ ½P �M2i�AiÞ
T þ agðP � NiÞ

�
þ Y � DATP � PDA

¼OðP Þ � DATP � PDA: &
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Proof of Proposition 18
Let P50; a > 0; N1; . . . ;Nr; M1; . . . ;Mr 2 Sn satisfy (79). To show that (79) is equivalent to (78)
with P 2 N; premultiply and postmultiply (79) by S and ST; where S is given by

S ¼

I g
4a½A

T
1 ðP �M1Þ þ ðP �M1ÞA1�ðP � N1Þ

�1 � � � g
4a½A

T
r ðP �MrÞ þ ðP �MrÞAr�ðP � NrÞ

�1

0 I 0 0

..

.
0 . .

.
0

0 0 0 I

2
666664

3
777775: &

Proof of Corollary 3
Suppose P ¼ bI : Then (78) becomes

0 ¼ATP þ PAþ
Xr
i¼1

agðP � NiÞ þ R

þ
g
4a

Xr
i¼1

½AT
i ðP �M1iÞ þ ðP �M2iÞAi�ðP � NiÞ

�1½AT
i ðP �M1iÞ þ ðP �M2iÞAi�T

¼ bðAT þ AÞ þ
Xr
i¼1

ag bI �
1

ag
b
r
ðAþ ATÞ þ R

� �
� bI

� �
þ R

¼ bðAT þ AÞ �
b
r

Xr
i¼1

ðAþ ATÞ: &

APPENDIX B: NOMENCLATURE

Rd d � 1 real column vectors
Rm�n m� n real matrices
In; 0n;S

n n� n identity matrix, n� n zero matrix, n� n symmetric matrices
Nn;Pn n� n non-negative-definite matrices, n� n positive-definite matrices
A4B; A5B B� A is non-negative definite, B� A is positive definite
tr trace
jH j ðHHTÞ1=2; where H 2 Rk1�k2

vec;�;	 column stacking operator, Kronecker sum, Kronecker product
½G;H � GH � HG
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