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ABSTRACT Chemokines constitute a large family of chemotactic cytokines that belong to a
super-gene family of 8–10 kDa proteins. The chemokines are considered to be primarily beneficial
in host defense against invading pathogens. However, the reactions induced by chemokines can be
occasionally excessive, resulting in a harmful response to the host. Recent studies in chemokine
biology have elucidated that chemokines are involved in the initiation, development, and mainte-
nance of numbers of diseases including lung diseases. In addition to its chemotactic activity,
evidence suggests that chemokines can modify the outcome of the cell-mediated immune responses
by altering the Th1/Th2 cytokine profile. Chemokines are also capable of dictating the direction of
specific immune responses. Chemokine action is mediated by a large super-family of G-protein
coupled receptors, and the receptors are preferentially expressed on Th1/Th2 cells. Certain chemo-
kine receptors are constitutively expressed in immune surveying cells such as dendritic cells and
naive T cells. The corresponding chemokines are present in normal lymphoid tissues, suggesting a
role of chemokines/receptors in cell homing and cell-cell communication in lymphoid tissue that can
be an initial step for immune recognition. Thus, comprehension of the chemokine biology in immune
responses appears to be fundamental for understanding the pathogenesis of T cell–mediated
immune responses. The following review will highlight the current insight into the role of chemo-
kines and their receptors in the cell-mediated immune response, with a special focus on lung
diseases. Microsc. Res. Tech. 53:298–306, 2001. © 2001 Wiley-Liss, Inc.

INTRODUCTION
Due to a unique anatomical feature that achieves

effective gas exchange, the lung is constantly exposed
to the outer environment, which may allow a great
variety of infectious microbes and small foreign parti-
cles to invade the lung. This can cause infection and
inflammation, which may threaten host survival. How-
ever, the lung and respiratory tract are protected from
invading pathogens by the host defense system (Roitt
et al., 1998; Roussos, 1995). The nasal hair functions as
a rough “filter.” The Waldeyer’s ring, a mucosa-associ-
ated lymphoid tissue complex at the entrance of the
airway, reacts to pathogens that have entered via the
surface barriers. The lining cells of the respiratory
tract secrete mucus that traps small microbes and for-
eign particles, enabling the host to eject them from the
respiratory tract. In the alveoli of the lung are the
alveolar macrophages, which can ingest and destroy
pathogens. Certain macrophages and dendritic cells
carry processed antigens to adjacent draining lymph
nodes, where the cells present antigens to naive T cells.
The T cells release cytokines, that enable the phago-
cytes to destroy the pathogens that they have internal-
ized. T cells also help B cells produce antibody that
binds to pathogens and their products. The phagocytes
then recognize the complex through Fc receptor bind-

ing, allowing them to clear these pathogens. These
adoptive immune responses are memorized and pro-
vide a more effective and rapid response when the host
is re-infected with the same pathogens (Roitt et al.,
1998; Roussos, 1995).

However, this normally beneficial immune response
can occasionally cause an overwhelming inflammatory
response and tissue damage when an adaptive immune
response occurs in an exaggerated or inappropriate
form. In granulomatous hypersensitivity reactions
such as pulmonary tuberculosis, sarcoidosis, and hy-
persensitivity pneumonia, antigen-sensitized T cells
traveling to the site of foci secrete excessive levels of
cytokines, following a secondary contact with the same
antigen. The cytokines activate macrophages, and ac-
tivated macrophages amplify the inflammatory re-
sponses via releasing inflammatory mediators. These
events can cause differentiation of macrophages to ep-
ithelioid cells and multinuclear giant cells, resulting in
the formation of pulmonary granuloma (Agostini et al.,
1998; Ando et al., 1999; Condos et al., 2000; Moller,
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1999). In allergic airway inflammation such as asthma,
T cells secrete cytokines after antigen recognition,
which include IL-4, IL-5, IL-10, and IL-13. These cyto-
kines induce the production of antigen (allergen)-spe-
cific IgE from B cells. IgE enters the circulation and
binds to mast cells throughout the body. Upon encoun-
tering the same allergen in the airway, the sensitized
mast cells release inflammatory mediators inside the
cells, which trigger a series of inflammatory cascades
seen in asthma (Kay, 1998; Kon and Kay, 1999; Le
Gros et al., 1998; also reviewed by Van Rijt and Lam-
brecht, pages 256–272, this issue). Recent studies have
revealed that chemokines play an essential role in the
initiation and maintenance of these types of lung dis-
eases (Lukacs et al., 1999; Rothenberg, 2000; Rothen-
berg et al., 1999).

Historically, chemokines have been viewed as leuko-
cyte chemoattractants that regulate cellular movement
from the circulation into inflamed tissue (Baggiolini et
al., 1997). However, as investigators continue to exam-
ine the function of chemokines in both disease and
homeostatic circumstances, the identification of novel
functions of chemokines in the regulation of immune
responses has begun. Recent evidence suggests that
certain chemokines and their receptors appear to be
involved in dendritic cell and lymphocyte homing and
cell-cell communication in lymphoid tissue (Allavena et
al., 1999; Cyster, 1999). The recruitment, regulation,
and activation of CD41 T helper (Th) cells, and cyto-
kine production from the cells may be the most critical
issue in immune responses (Moser, 1998). It is now
known that chemokine receptors have been found to be
differentially associated with Th1/Th2 subsets (Sal-
lusto et al., 1998a, 1999). Certain chemokine members
are produced in infectious foci, allowing chemokines to
traffic Th1/Th2 cells into inflamed sites (D’Ambrosio et
al., 2000; Syrbe et al., 1999). Furthermore, CC chemo-
kine members appear to alter the outcome of the im-
mune responses through altering Th1/Th2 balance
(Mantovani et al., 1998). Thus, chemokines and their
receptors appear to affect the immune response at mul-
tiple levels.

CHEMOKINES AND THEIR RECEPTORS
A decade ago, two functional chemotactic cytokines

with different activities were identified, which were
designated IL-8 and MCP-1 (Yoshimura et al., 1987;
1989). After these initial discoveries, family members

of chemotactic cytokines has been identified at a stag-
gering pace through broad-based searches for sequence
homology in EST databases. To date, over 50 members
have been reported, and the number of chemokines is
still growing (Baggiolini et al., 1997; Zlotnik and Yo-
shie, 2000). Chemokines belong to a super-gene family
of 8–10 kDa basic heparin-binding proteins, and have
been divided into 4 sub-families based upon their se-
quence homology and the position of cysteine residues
in the proteins (Table 1). Two of these constitute quite
a large number of chemokines, CC and CXC. CC che-
mokines attract monocytes, dendritic cells, eosinophils,
or lymphocytes. CXC chemokines preferentially attract
neutrophils, but some of them attract T or B cells. CXC
chemokines can be divided into two subsets based on
the presence or absence of specific amino acid residues
Glu-Leu-Arg (ELR). CXC chemokines that contain the
ELR motif are angiogenic factors, while non-ELR CXC
chemokines that lack the ELR motif are angiostatic
factors (Keane and Strieter, 1999). Recent evidence
suggests that ELR-CXC chemokines, but not non-ELR-
CXC chemokines, are capable of inducing hepatocyte
proliferation (Hogaboam et al., 1999b) as well as wound
healing (Richmond et al., 1999). Very recently,
lungkine, a novel ELR-CXC chemokine, has been iden-
tified, which is selectively expressed in lung epithelial
cells, up-regulated in various lung inflammation mod-
els, and detected in fetal lung tissue. These activities
suggest a role for this chemokine in lung-specific neu-
trophil trafficking as well as lung development (Rossi
et al., 1999).

Chemokine receptors also constitute a subfamily of
rhododopsin-like, 7 transmembrane, G protein-coupled
receptors. To date, 18 chemokine receptors are known,
and classified into 4 subtypes depending on which che-
mokine subfamily is recognized (Table 1). These che-
mokine receptors commonly bind multiple chemokines,
although some of the chemokine receptors appear to
bind a specific chemokine. Different receptors for the
same chemokines can be co-expressed on the same cell
type, even on the same cell (Murphy, 1997). The ex-
pression of a CC chemokine receptor (CCR) was be-
lieved to be restricted to cells that can respond to a
specific CC chemokine. However, recent studies have
shown that neutrophil can express CCR1, 2, and
3 under specific inflammatory conditions (Bonecchi et
al., 1999; Johnston et al., 1999). Although CC chemo-
kines were regarded to bind CCRs, a recent study has

Abbreviations

Cytokines:
IFN interferon
IL interleukin
TGF transforming growth factor
CC chemokines:
CTACK cutaneous T cell-attracting chemokine
ECF eosinophil chemotactic cytokine
HCC human CC chemokine
LCC liver-specific CC chemokine
MCP monocyte chemoattractant protein
MDC macrophage-derived chemokine
MIP macrophage inflammatory protein
MPIF myeloid progenitor inhibitory factor
RANTES regulated on activation, normal T expressed and se-

creted

TARC thymus and activation-regulated chemokine
TECK thymus-expressed chemokine
TCA thymus-derived chemotactic agent
CXC chemokines:
BLC B lymphocyte chemoattractant
ENA epithelial neutrophil activating protein
GCP granulocyte chemotactic protein
GRO growth-related oncogene
IP interferon-g-inducible protein
I-TAC IFN-inducible T cell alpha chemoattractant
MIG monokine induced by interferon-g
NAP neutrophil activating protein
PF platelet factor
SDF stromal cell-derived factor
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revealed that CC chemokine 6Ckine binds the CXC
chemokine receptor CXCR3 (Soto et al., 1998). Thus, re-
ceptor expression and its recognition by chemokines ap-
pear to be more complicated than anticipated. It is possi-
ble that the overlapping receptor recognition by chemo-
kines may be important for inducing an efficient signal
transduction or may function as a back-up system.

CHEMOKINES AS CENTRAL MEDIATORS OF
CELL-CELL COMMUNICATION IN

LYMPHOID TISSUE

The antigen presentation to T cells is the initial step
for the immune response. In this regard, dendritic cells
(DC) play a crucial role as a sentinel of the adoptive

TABLE 1. Chemokines and their sources, target cells and receptors

Chemokines
Proposed

nomenclature Sources Target cells Receptors

CC chemokines
TCA-3/I-309 CCL1 T, MC T CCR8
MCP-1/MCAF CCL2 M, L, F, EC, EP, N, MC, G, ME M, T, NK, DC, N,

SM, BA
CCR2, 10, 11

MIP-1a/LD78a CCL3 M, L, N, E, F, MC, BA, NK M, T, NK, E, DC,
BA

CCR1, 5

MIP-1b/Act-2/HC21 CCL4 M, L, N, F, MC M, T, NK, DC CCR5, 8
RANTES CCL5 T, M, F, ME T, E, NK, BA,

NK
CCR1, 3, 5, 11

C10/MPR-1 (murine) CCL6 M, E, microglia M ?
MCP-3 CCL7 P, M, MC, F M, T, NK, DC, E,

SM, BA
CCR1, 2, 3, 10, 11

MCP-2 CCL8 M, F M, T, NK, DC, E,
SM, BA

CCR2, 3, 11

MIP-1g/MPR-2/CCF-18 (murine) CCL9/10 M, DC, liver, thymus, lung,
pancreas

DC, T CCR1

Eotaxin-1 CCL11 EC, EP, E, lung E, BA CCR3
MCP-5 (murine) CCL12 M, lymph node M, E CCR2
MCP-4/CKb10 CCL13 DC, thymus, lung, colon, intestine M, T, E, BA CCR2, 3, 11
HCC-1 CCL14 bone marrow, spleen, liver, gut,

SM
M, myeloid

progenitor
CCR1

HCC-2/MIP-1d/LKN-1/MIP-5 CCL15 DC, M, T, B M, T CCR1
HCC-4/LEC/NCC-4/LMC CCL16 M M ?
TARC CCL17 DC, M, Reed-Sternberg cell DC, Th2 CCR4, 8
MIP-4/PARC/DC-CK1/AMAC-1 CCL18 DC, M T ?
MIP-3b/ELC/Exodus-3 CCL19 thymus, lymph node, appendix,

spleen, gut
T, B, NK CCR7

MIP-3a/LARC/Exodus-1 CCL20 M, T, liver, lung, thymus, placenta,
appendix

DC, T, NK CCR6

6Ckin/SLC/TCA-4/Exodus-2/CKb9 stromal cells in lymph node, EC T, NK CCR7
MDC/STCP-1/ABCD-1 CCL22 DC, M, B, T, EP (thymus) DC, Th2, NK CCR4
MPIF-1/CKb8 CCL23 DC, M, lung, liver M, T CCR1
Eotaxin-2/MPIF-2/CKb6 CCL24 M, T, lung, liver, spleen, thymus E, BA CCR3
TECK CCL25 DC, EC, gut T, thymocyte CCR9
Eotaxin-3 CCL26 EC, heart, ovary E, BA CCR3
CTACK/ILC, ESkine (murine) CCR27 skin, placenta T CCR10
LCC-1 liver ? ?
ECF-L spleen, bone marrow, lung, heart E ?

CXC Chemokines ELR-motif
GROa/MGSA-a CXCL1 1 M, N, EC, F, melanoma cell N, MC CXCR2.R1
GROb/MGSA-b CXCL2 1 M, N, EC, F, melanoma cell N CXCR2
GROg/MGSA-g CXCL3 1 M, N, EC, F, melanoma cell N CXCR2
PF4 CXCL4 2 P, megakariocyte M, EC ?
ENA-78 CXCL5 1 EC, P N, MC CXCR2
GCP-2 CXCL6 1 EC, osteosarcoma cell N CXCR1, 2
NAP-2/CTAP-III CXCL7 1 P, EC N, MC CXCR2
IL-8/NAP-1/MDNCF CXCL8 1 M, T, F, K, H, EP, EC, N, P, AS,

G, ME, BA, NK
N, MC, E, NK CXCR1, 2

MIG CXCL9 2 M, N T, NK, EC CXCR3
IP-10/CRG-2 CXCL10 2 M, K, N, F, EC, AS, G T, NK, EC CXCR3
I-TAC/beta-R1/H174/IP-9 CXCL11 AS, M, N T, NK CXCR3
SDF-1/PBSF CXCL12 2 stromal cell T, M, DC, NK CXCR4
BLC/BCA-1 CXCL13 2 spleen, lymph node B, T, M CXCR5
BRAK/bolekine CXCL14 2 ?
Lungkine (murine) 1 EC (lung) N ?

C Chemokine
Lymphotactin-a/SCM-1a XCL1 T, NK T, NK XCR1
Lymphotactin-b/SCM-1b XCL2 T, NK T XCR1

CX3C Chemokine
Fractalkine/Neurotactin CX3CL1 EC, DC, T, brain M, DC, T, NK CX3CR1

Cell abbreviations: AS, astrocyte; B, B cell; BA, basophil; DC, dendritic cell; EC, endothelial cell; EP, epithelial cell; E, eosinophil; F, fibroblast; G, glioblastoma; H,
hepatocyte; K, keratinocyte; L, lymphocyte; M, monocyte/macrophage; MC, mast cell; ME, mesangial cell; N, neutrophil; P, platelet; SM, smooth muscle cell; T, T cell.
The nomenclature was proposed by Drs. O. Yoshie and A. Zlotnik (Immunity, 12, 121–127, 2000).
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immune system (Ludewig et al., 1999). Immature DCs,
which localize in non-lymphoid tissue, capture and pro-
cess antigens. Upon stimulation, DCs travel to adja-
cent lymphoid tissue and present the processed antigen
to naive T cells. Chemokines and their receptors ap-
pear to be involved in this cell movement and traffick-
ing (Cyster, 1999). Immature DCs respond to an array
of CC and CXC chemokines including MIP-1a, MIP-1b,
MIP-1g, MIP-3a, MCP-1, MCP-2, MCP-3, MCP-4,
TARC, MDC, SDF-1, and Fractalkine (Table 1). The
most potent chemoattractant of DCs is MIP-3a, and the
receptor CCR6 is expressed on immature DCs. Upon
stimulation, the CCR6 expression is shown to be down-
regulated, whereas CCR7 expression is upregulated
(Dieu et al., 1998). MIP-3a is present only in inflamed
site, while CCR7 ligand 6Ckine is expressed by high
endothelial venules (HEVs) in lymphoid tissue. 6Ckine
and another CCR7 ligand MIP-3b are also expressed in
the T cell area of lymphoid tissue (Dieu et al., 1998),
suggesting a role of CCR7 and its ligands in DC traf-
ficking into lymphoid tissue (Saeki et al., 1999). Corre-
spondingly, CCR7 knockout mice showed decreased mi-
gration of DCs into the T cell area (Forster et al., 1999;
Gunn et al., 1999). Mature DCs secrete T cell chemoat-
tractants, such as MIP-3b (Dieu et al., 1998; Ngo et al.,
1998) and MIP-4 (Adema et al., 1997; Guan et al.,
1999), probably enabling naive T cells to scan effi-
ciently for antigen that is presented by DCs. When
naive T cells are activated, the T cells undergo a tran-
sient switch in receptor expression, depending on the
Th1/Th2 polarization (Sallusto et al., 1999). The acti-
vated T cells may decrease CCR7 expression and up-
regulate CXCR5 expression, and become responsive to
BLC, while at the same time losing response to 6Ckine
and MIP-3b (Ansel et al., 1999; Walker et al., 1999),
probably allowing T cells to encounter B cells. CXCR5
is also expressed on B cells, and BLC-CXCR5 interac-
tion is essential for follicle formation, as migration of
lymphocytes into the follicles is impaired in CXCR5
deficient mice (Forster et al., 1996). These findings
suggest that chemokines and their receptors are essen-
tial for the immune recognition that is an initial step
for immune responses.

DIFFERENTIAL EXPRESSION OF
CHEMOKINES RECEPTORS

ON Th1/Th2 CELLS
It is well known that CD41 T helper (Th) cells have

two subsets based on the profile of cytokine production.
Th1 cells are characterized by the production of IFNg,
IL-2, and IL-12, whereas Th2 cells are typified by the
production of IL-4, IL-5, IL-10, and IL-13. Cytokines
produced from Th1 cells inhibit the actions of Th2 cells,

and vice versa (Romagnani, 1997). The selective differ-
entiation of either subset is established during prim-
ing, depending on their antigenic experience and a
variety of surrounding factors (Constant and Bottomly,
1997). Recent in vitro data using polarized human T-
cell lines suggest that chemokine receptors are prefer-
entially expressed on Th1/Th2 cells, as part of the cell
differentiation (Table 2). CCR5 and CXCR3 are prefer-
entially found on Th1 cells, whereas CCR3, CCR4, and
CCR8 are on Th2 cells (Bonecchi et al., 1998;
D’Ambrosio et al., 1998; Sallusto et al., 1998b; Imai et
al., 1999). It is thus conceivable that Th1/Th2 cells
selectively migrate in response to the corresponding
chemokines, which can be produced at the sites (Bag-
giolini, 1998; Sallusto et al., 1999; Zlotnik et al., 1999).
Th1/Th2 cells produce sets of chemokines, including
MIP-1a, MIP-1b, RANTES, MDC, TARC, and TCA-3,
which may amplify the recruitment of Th1/Th2 cells at
sites of antigenic recognition. Recent clinical studies
have shown the existence of flexible programs of che-
mokine receptor expression during the development of
diseases. CCR5 was found on memory T cells from
Crohn’s disease, a Th1-dominated disorder, whereas
CCR3 was found on the cells from systemic sclerosis, a
Th2-dominant disorder (Annunziato et al., 1999). Like-
wise, an elevated serum level of MDC was detected in
patients with mycosis fungoides/Sezary syndrome or
atopic dermatitis, a Th2-dominant disorder (Galli et
al., 2000). Animal studies have shown that chemokines
play an essential role in attracting Th1/Th2 cells to
inflammatory sites, depending on the Th1/Th2 polar-
ization (Yoneyama et al., 1998; Vestergaard et al.,
1999; Lloyd et al., 2000). Evidence from recent studies
also suggest that CCR1 and CCR2 may play an impor-
tant role in tissue-specific localization of Th1 and Th2
cells, respectively, as Th1-type cytokine up-regulated
the expression of CCR1 while inhibiting CCR2 (Penton-
Rol et al., 1998; Bonecchi et al., 1999; Colantonio et al.,
1999).

CHEMOKINES IN Th1/Th2-CELL MEDIATED
PULMONARY GRANULOMA

As discussed above, the Th1/Th2 paradigm appears
to direct the feature of immune responses, and the
recruitment of Th1/Th2 cells is likely to be regulated by
chemokines. In the context of T cell–mediated pulmo-
nary disease, models have been established that pre-
dominantly exhibit either a Th1- or Th2-type cytokine
profile (Kunkel et al., 1996, 1998). Mice sensitized with
purified protein derivative (PPD) from Mycobacteria
bovis or Schistosoma mansoni eggs challenged with
beads coated with PPD or Schistosoma egg antigen
(SEA) develop a granuloma formation that is associ-
ated with the production of either Th1 or Th2-cytokine,
respectively (Chensue et al., 1994a,b; Henderson et al.,
1991, 1992). The importance of Th1/Th2 cytokines in
the development of the granuloma formation has been
confirmed by using antibodies against Th1/Th2 cyto-
kines and gene technology (Chensue et al., 1992,
1995a,c, 1997a,b; Fallon et al., 2000; Lukacs et al.,
1997a). Thus, specific cytokine phenotype apparently
dictates the progression of cell-mediated pulmonary
immune response.

Histologically, the Th1-type granuloma typically con-
sists of macrophages and lymphocytes, whereas the

TABLE 2. Preferential expression of chemokine receptors
on Th1/Th2 cells

Th1/Th2
cells Receptors Chemokines

Th1 cells CCR5 MIP-1a, -b, RANTES
CXCR3 MIG, IP-10, I-TAC

Th2 cells CCR3 RANTES, MCP-2, -3, -4, Eotaxin-1, -2, -3
CCR4 TARC, MDC
CCR8 TCA-3, MIP-1b, TARC
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Th2-type granuloma contains mononuclear cells and
eosinophils (Fig. 1), suggesting that different chemo-
kines are likely to be involved in the development of the
granuloma formation. Recent studies have begun to
provide insight into the mechanism(s) whereby chemo-
kines, especially CC chemokines, play an essential role
in the granuloma formation in experimental models.
CC chemokine production in the lung has been prefer-
entially observed between the models. The level of
RANTES in Th1-type granuloma was greater than that
in Th2-type granuloma (Chensue et al., 1999), while
higher levels of MCP-1 (Chensue et al., 1996; Hoga-
boam et al., 1999a) and eotaxin (Ruth, 1998) were
detected in Th2-granuloma. Consistently, the expres-
sion of CCR2 and CCR3, a receptor for MCP-1 and
eotaxin, respectively, is preferentially up-regulated in
Th2-granuloma (Ruth et al., 1998; Hogaboam et al.,
1999a). Evidence from neutralizing studies using anti-
bodies against specific chemokines and from mice with
specific disrupted chemokines/receptors gene has al-
lowed us to understand the involvement of chemokines
in the evolution of granuloma formation. Table 3 sum-
marizes the current results of the studies addressing
the role of chemokines in these models. The data sug-
gest that MCP-1 contributes more to the Th2-type

granuloma than Th1-type granuloma, as mice treated
with anti-MCP-1 antibodies and mice deficient in
MCP-1 gene showed reduced granuloma formation in
the Th1-type model whereas no change was observed in
the Th1-type model after anti-MCP-1 treatment (Chen-
sue et al., 1995b, 1996; Lu et al., 1998). Correspond-
ingly, CCR2 deficient mice showed a decreased size of
granuloma in the Th2-type model (Warmington et al.,
1999). Interestingly, IL-4 production was decreased in
these studies, and, in turn, IL-4 blockade in mice de-
veloping Th2-type granuloma reduced the production
of MCP-1 (Chensue et al., 1996). Thus, an immuno-
regulatory role of MCP-1/CCR2 appears to be related,
in part, to the development of Th2-type granuloma. In
the Th1-type model, neutralization of MCP-1 did not
inhibit the granuloma formation while CCR2 2/2 mice
showed a smaller granuloma than wild-type, which
was associated with decreases in the level of IFNg and
IL-2 (Boring et al., 1997; Chensue et al., 1996). The
data suggest that chemokines other than MCP-1 that
can bind CCR2 (i.e., MCP-2, MCP-3, MCP-4, and
MCP-5) may be involved in the progression of Th1-type
granuloma. MIP-1a and RANTES appear to be prefer-
entially involved in the development of Th1-type gran-
uloma. MIP-1a deficient mice developed a smaller

Fig. 1. Histology of experimental models of pulmonary granuloma. Mice were sensitized to PPD from
Mycobacteria or Schistosoma mansoni egg and were challenged i.v. with PPD (Th1-type) or Schistosoma
mansoni egg (Th2-type). The photos are representative of Th1-type (A,B) and Th2-type (C,D) granuloma
models (H&E staining). Magnification: A and C, 3200; B and D, 3400.
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granuloma than the wild-type which was associated
with decreased IFNg and IL-2, and in contrast, in-
creased IL-4/IL-5, whereas no change was found in the
Th2-type granuloma although the level of IL-4 and IL-5
was decreased (Hogaboam et al., 1999c). MIP-1a is
shown to enhance the production of IFNg by activated
T cells (Karpus et al., 1997). RANTES blockade de-
creased the granuloma size in the Th1-type model,
while increasing the Th2-type lesion that was accom-
panied by the increase in the level of IL-4, IL-5, IL-10,
and IL-13 (Chensue et al., 1999). Convincingly, infu-
sion of RANTES reduced the Th2-type lesion, but not
the Th1-type lesion, and augmented type 1 and im-
paired type 2 responses in the lymph nodes. In vitro,
RANTES caused selective, dose-related inhibition of
IL-4 that was largely dependent on ligation of CCR1
receptors (Chensue et al., 1999). CCR1 deficient mice,
the receptor for MIP-1a and RANTES, showed de-
creased granuloma formation in the Th2-type model,
which was associated with the decreased level of IL-4
while increasing IFNg (Gao et al., 1997). Neutraliza-
tion of eotaxin decreased the IFNg level in regional
lymph nodes and granuloma size in Th1-type model, as
well as reduced the IL-5 level and granuloma size in
the Th2-type model (Ruth et al., 1998). All these find-
ings suggest that chemokines/receptors influence the
granuloma formation not only through direct effects on
leukocyte chemotaxis, but also through altering the
Th1/Th2 cytokine balance.

CHEMOKINES DIRECT
THE IMMUNE RESPONSE

In addition to altering the Th1/Th2 cytokine balance
in the evolution of immune responses, chemokines ap-
parently direct the immune system toward a specific
response. In particular, CC chemokines are capable of
regulating T cell activation and function during specific
immune responses. Earlier studies have demonstrated
that RANTES can directly activate T cells in vitro,
specifically activating relevant signal transduction
pathways (Bacon et al., 1995, 1996). Other evidence
suggests that CC chemokines, such as MIP-1a, MIP-
1b, RANTES, and MCP-1 enhance adjuvant activity
and increase T cell activation and IL-2 production

(Taub et al., 1996a,b). MCP-1 is shown to inhibit the
production of IL-12 in peritoneal macrophages (Chen-
sue et al., 1996). MCP-1 can induce the production of
suppressive cytokines TGFb that may impact on the
production of Th1 type responses, such as IL-12 pro-
duction (Gharaee-Kermani et al., 1996). Chemokines
may also influence the differentiation of native T cells
to Th1 or Th2 cells, as MCP-1 contributes to the pro-
duction of IL-4 from antigen activated T cells, while
MIP-1a enhances IFNg production (Karpus et al.,
1997; Lukacs et al., 1997b; Hogaboam et al., 1998). In
vivo, MCP-1 regulates oral tolerance in the develop-
ment of experimental autoimmune encephalomyelitis
through the regulation of IL-12 production as well as
antigen-specific Th1 cell responses (Karpus et al.,
1998). MCP-1 attenuates the severity of septic re-
sponse via decreasing the production of IL-12, IFNg,
and TNFa (Matsukawa et al., 2000a; Zisman et al.,
1997). Interestingly, MCP-1 transgenic mice failed to
clear bacteria, possibly reflecting an altered ability to
generate the Th1 immune response (Rutledge et al.,
1995). Our recent data in pulmonary granuloma mod-
els have shown that the over-expression of MCP-1 at
specific phases of the developing responses appears to
differentially alter the outcome of the immune re-
sponses (Matsukawa et al., 2000b). When MCP-1 was
over-expressed at the beginning of the immune re-
sponse at a time when T cells would first be in contact
with antigen, a decreased size of granuloma was ob-
served in the Th1-type model while increasing the Th2-
type granuloma. The regulation of Th1/Th2-type cyto-
kine by MCP-1 is likely the mechanism, as activated T
cells recovered from MCP-1 treated mice showed de-
creased production of IFNg and IL-12 in the Th1-type
model, and, in contrast, increased production of IL-10
and IL-13 in the Th2-type model. When MCP-1 was
over-expressed during the elicitation phase of the re-
sponses, neither the Th1-type nor the Th2-type granu-
loma was altered, suggesting that the function of
MCP-1 may depend upon the stage and type of immune
response (Matsukawa et al., 2000b). Thus, chemokines,
in particular MCP-1, appear to have multiple effects on
a developing immune response and influence the direc-
tion of an immune response.

TABLE 3. Chemokines and their receptors in the development of Th1- and Th2-type pulmonary granuloma models1

Targetting
chemokines Depletion2

Granuloma size
(vs. control) Th1/Th2 cytokine profile References

Th1-type granuloma
MCP-1 Antibodies No change No change Chensue et al. (1996)
MIP-1a Gene knockout 2 Decreased IFNg/IL-2, increased IL-4/IL-5 Hogaboam et al. (1999c)
RANTES Antibodies 2 No change Chensue et al. (1999)
Eotaxin Antibodies 2 Decreased IFNg Ruth et al. (1997)
CCR2 Gene knockout 2 Decreased IFNg/IL-2 Boring et al. (1997)

Th2-type granuloma
MCP-1 Antibodies 2 Decreased IL-4/IL-5 Chensue et al. (1995b, 1996)

Gene knockout 2 Decreased IL-4/IL-5 Lu et al. (1998)
MIP-1a Gene knockout No change Decreased IL-4/IL-5 Hogaboam et al. (1999c)
RANTES Antibodies 1 Decreased IL-4/IL-5/IL-10/IL-13 Chensue et al. (1999)
Eotaxin Antibodies 2 Decreased IL-5 Ruth et al. (1997)
CCR1 Gene knockout 2 Decreased IL-4, increased IFNg Gao et al. (1997)
CCR2 Gene knockout 2 Decreased IL-4 Warmington et al. (1999)

1Mice were sensitized to PPD from Mycobacteria or Schistosoma mansoni egg and were challenged i.v. with PPD (Th1-type) or SEA (Th2-type). Granuloma size was
measured by lung sections. Cytokines were measured in the lung or draining lymph nodes.
2Results were obtained from mice using neutralizing antibodies against specific antibodies, or mice desrupted chemokine/receptor gene.
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CONCLUDING REMARKS
In addition to its original chemotactic activity toward

specific types of cell populations, chemokines have a
broad spectrum of activities ranging from immune cell
homing and immune recognition in lymphoid tissue to
the regulation of immune responses against specific
antigens. Therefore, chemokines aid in determining
the direction and intensity of the acquired immune
responses. Chemokines are also well known to govern
innate immunity (Mahalingam and Karupiah, 1999).
Innate immune responses are tightly linked to ac-
quired immune responses, suggesting that chemokines
may play a key role in connecting these immune re-
sponses. There is little doubt that a further under-
standing of the chemokine biology will shed light on the
therapeutic approach for the treatment of refractory
pulmonary diseases.
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