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Y ou are immersed in a world that has two resources

distributed in patches, call them “shelter” and “food,”

and your needs are determined by the levels of two

internal reservoirs, one for each resource. The reservoirs are

depleted at a constant rate to keep your system running, so

that a low reservoir level implies high need for that resource.

At each instant, you can execute one of six simple actions:

rest, approach, flee, turn right 45�, turn left 45�, consume.

You can increase the level of a reservoir only by giving an

appropriate response when the resource is present: “rest”

when “shelter” is present, “consume” when “food” is pres-

ent. Your information about the world is supplied by a

“vision cone” that indicates resource locations relative to a

line of sight: resource at present location, or straight ahead,

or within an angle of 45� to the left or right. Question: Is

there a simple adaptive algorithm that can, on the basis of

experience, discover action sequences (e.g., “turn until food

is visible,” “approach,” “consume”) that exploit opportuni-

ties for filling the reservoirs?

Though the format seems one of animal cognition, the

question applies equally to other systems requiring coordi-

nated responses, such as ecosystems, and the Web, and

signaling networks in biological cells. In this broader con-

text, we come to more difficult questions: Are there “general

purpose” adaptive algorithms that can discover good action

sequences over a wide variety of environments, without

prior tuning for each environment? If so, what kinds of on-

togeny and phylogeny should we expect to see as the adap-

tive algorithms modify the system? The objective of this

article is to explore these questions, starting from a simple

computer-based model of the “cognitive world” just

described.

To answer these questions, we must first describe the

“cognitive” repertoire of the adaptive agent—the system do-

ing the adapting. Here I will restrict the repertoire to a fa-

miliar set of possibilities: sets of IF(condition satisfied)/

THEN(action) rules. Such rules, in the simplest case, imple-

ment the stimulus-response repertoires of classical
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behavioral psychology. However, we can extend this reper-
toire considerably by defining the conditions and actions in
terms of messages. That is, the agent is given a message-
processing repertoire: The detectors (e.g., the vision cone)
produce messages, the effectors (e.g., the elementary ac-
tions) are activated by messages, and internal processing
(e.g., internal feedback and computation) is accomplished
by message circulation and transformation. Such systems
are called classifier systems. There is a considerable litera-
ture on such systems, well-summarized with introductory
overviews in the recent collection Learning Classifier Sys-
tems [1]. The present article only presents details directly
relevant to the questions being asked, so the reader inter-
ested in related earlier work, alternative formulations, and
the like, should refer to Lanzi et al. Classifier systems, in
several standard formulations, are computation-universal,
in the sense that any program that can be written for a
general-purpose computer can be executed by an apropos
collection of these message-processing rules. This means
that any signaling network that can be modeled by a com-
puter simulation can also be modeled by a classifier system.

U sing a classifier system to define repertoire refines the
earlier question to: What kinds of adaptive algorithm
can discover useful sequences of message-processing

rules? Of course, the agent can accomplish the task by sim-
ply trying rules at random, gradually collecting those that
“work,” but such trial-and-error algorithms are neither in-
teresting nor feasible. Under random trials it takes an un-
reasonably long time to find even short rule sequences. Is
there something better? Can evolutionary processes pro-
duce useful sequences in feasible times? Classifier systems
are designed for “on-line” modification by genetic algo-
rithms and other adaptive algorithms. This feature opens
the possibility of computer-based observation of adaptive
changes in simple versions of signaling networks. In par-
ticular, simple classifier system models have the possibility
of mimicking aspects of the ontogeny and evolution of
bio-circuits—the complex signaling networks of molecular
biology.

The article begins (section 1) with a general description
of complex signaling networks and then uses this descrip-
tion as a guide to present (section 2) an exploratory com-
puter-based model of an adaptive agent in the two-resource
world described in the first paragraph. As already suggested,
the agent will be implemented (section 3) as a classifier
system that evolves as the agent accrues experience. Execu-
tion of this model demonstrates (section 4) the adaptive
evolution of a resource-seeking signaling network, going
from a single rule that produces a random walk to se-
quences of rules that provide compatible resource-seeking
actions. Though the model is quite simple, the underlying
program is written to provide easy extensions to much more
complex worlds. In particular, the adaptive mechanisms ap-

ply without change to the full panoply of agents that can be

modeled by classifier systems. The article closes (section 5)

with a discussion of the implications of the model for

broader questions about the evolution of complex signaling

networks.

1. COMPLEX SIGNALING NETWORKS
Complex signaling networks abound, integrating systems as

widely different as biological cells and the Web. Despite

substantial differences in implementation, complex signal-

ing networks share important characteristics. Chief among

these are the following.

(i) Parallelism and coordination. Complex signaling net-

works, by definition, consist of large numbers of “transmit-

ter/receiver” nodes that send and receive signals. The net-

works of interest here involve massive simultaneity: many

nodes act at the same time, producing large numbers of

simultaneous signals. Bio-circuits, for example, typically use

proteins as signals. These proteins operate in reaction cas-

cades and cycles, providing positive and negative feedback

to other cascades and cycles. A biological cell has large

numbers of active proteins, and their interactions must be

tightly coordinated if the cell is to continue to function.

Indeed, in all the networks of interest, coordination is a

major problem. Each signal must go to appropriate desti-

nations, and it must be appropriately interpreted at those

destinations.

(ii) Conditional action. In complex signaling networks,

nodes only act when they receive an appropriate signal.

That is, they have the IF/THEN structure discussed earlier:

IF [an apropos signal is present] THEN [act]. The act may

itself be a signal, allowing quite complicated feedbacks, or

the act may be an overt action such as such as shutting off

a mechanism or binding to some site. Interlocking se-

quences of message-processing rules become programs that

are executed in parallel, with all that implies for flexibility

and breadth of repertoire.

(iii) Modularity. In a sense, a complex signaling network

is automatically modular, the nodes being the modules. But

that is not what is meant here. If we look to the rules asso-

ciated with the nodes, it is unlikely that the system can

handle a broad range of situations by having one rule for

each distinct situation. A rule for reacting to “a red Saab by

the side of the road with a flat tire” has many elements, or

building blocks, in common with a rule for “a blue Chevy

stalled at the intersection.” It is better if the agent can ac-

tivate a set of rules that react to the elements of the situa-

tion. The foregoing situations can be handled easily by com-

bining rules dealing with “car,” “roadside,” “flat tire,”

“stalled,” and the like. Reaction cycles that serve as building
blocks are a common feature of bio-circuits. For example,
the Krebs cycle of eight proteins is used by almost all aero-
bic organisms.

© 2002 Wiley Periodicals, Inc. C O M P L E X I T Y 35



The agent, by simultaneously activating a set of building
block rules, can react to a broad range of novel situations,
making combinatorics work for the system instead of
against it. Also, because appropriate building blocks are
used frequently in a wide range of situations, they are tested
and confirmed at a high rate. When tested building blocks
work in a parallel, coordinated fashion they provide great
flexibility, but they force the coordination problem dis-
cussed in (i).

(iv) Adaptation and evolution. Complex signaling net-
works change over time. Many of these changes are more
than random variations, they are adaptations that improve
performance. The performance itself is the result of an in-
tricate skein of interactions extended over space and time.
Most of the interactions are distant, in both space and time,
from the direct causes of changes in performance. As a re-
sult, there is a considerable problem in determining which
interactions were responsible for the changes. This problem
is often called the credit assignment problem. The play of a
game of strategy, such as checkers or chess, provides a use-
ful metaphor for understanding the need for credit assign-
ment: After a long sequence of moves, the player receives
notification of a “win” or a “loss” and, perhaps, an indica-
tion of the size of the win or loss. There is little information
about which moves along the way were critical to that per-
formance. The problem, then, is to determine which moves
might be useful in future games. Similarly, in a biological
cell, the “reward” of reproduction results from the interac-
tions of hundreds to thousands of signaling proteins over
hours or days. The general question is: How does a signaling
network allocate credit for desirable outcomes back to the
responsible nodes (rules)?

There is a mitigating factor that is helpful in resolving
this problem: The environments in which signaling net-
works operate do exhibit perpetual novelty, as does a com-
plicated game like chess, but there are repeating subpat-
terns in those environments. In chess these repeating sub-
patterns have names like “fork,” “pin,” “gambit,” and so on.
In the environment described at the outset the patches con-
stitute repeating elements that can be exploited. In general,
such subpatterns can be exploited by particular arrange-
ments of the signaling nodes, the modules alluded to in (iii).
Close attention to the origins and ontogeny of modules used
by a signaling network offers vital clues to its organization
and performance in response to different environments.

It is the thesis of this article that exploratory models built
around these shared characteristics can give insights into
the operation and evolution of natural and artificial signal-
ing networks.

2. SIGNALING NETWORKS IMPLEMENTED AS
CLASSIFIER SYSTEMS
This section starts with a definition of classifiers (section
2.1), then goes on to systems of such rules (section 2.2), and

concludes with the description of an adaptive agent defined
with the help of a classifier system (section 2.3).

2.1. Classifiers
The components of a classifier system are condition-action
rules, called classifiers. The condition part of a classifier
“looks for” certain kinds of messages; when the rule’s con-
ditions are satisfied, the action part specifies a message to
be sent. A computer-based definition of these rules requires
a proper language for representing classifiers. I will first give
the symbols used and then explain their use.

In this version, all messages are strings of length k, where
each position contains one letter from the three-letter al-
phabet {1,0,?}. For example, if k = 5, a typical message would
be 110?0. The set of all possible messages is the set M =
{1,0,?} k. In a similar fashion, the set of all possible condi-
tions, C = {1,0,# } k, is the set of all strings of length k over the
alphabet {1,0,# }. A classifier rule has either one condition, c
drawn from C, or two conditions, c and c� drawn from C. The
action part of the classifier is a message m drawn from M. A
rule is written as c/m (one-condition rule) or c&c�/m (two-
condition rule). In the rest of this section I will present defi-
nitions for two-condition rules, assuming the obvious sim-
plifications for one-condition rules.

(It is easy to provide for messages of variable length and
rules with multiple conditions, but it does complicate the
exposition. Interestingly, the restricted system described
here, with the addition of a single additional symbol called
a “pass through,” is still computationally complete; see pp.
104–106 of Holland et al. [2]).

A classifier is satisfied when its two conditions are satis-
fied. A condition c is satisfied by a message m if:

(i) at each position in c that has a 1, the message has
either a 1 or ? at that position;

(ii) at each position in c that has a 0, the message has
either a 0 or ? at that position.

A ccordingly, at positions where c has a #, no require-
ment is made on the message (i.e., the condition
“doesn’t care” what occurs at positions where it has a

# ). It is also clear from (i) and (ii) that a ? in a message
satisfies any condition requirement at that position (that is,
the message “fits all” possible condition requirements, {1, 0,
or # }, at all positions where it has a ?). For example, with k
= 5, the message 100?1 satisfies the conditions 1# # # # and
10# 11, but it does not satisfy either the condition 0# # # # or
the condition 10111.

2.2. Classifier Systems
For simplicity of modeling and exposition I will use a par-
ticularly simple version of a classifier system, though there
are many varieties [1]. In this version, each rule has a
strength that indicates its past usefulness to the system and,
when a classifier is satisfied, it enters a strength-based com-
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petition to post its message. The details of strength assign-
ment and the competition will be discussed next; for now,
simply note that many rules can simultaneously win the
competition. As a result many messages can be posted si-
multaneously. From a computational point of view, it is
convenient to think of the messages as collected in a list. A
posted message stays on the list only one time-step. To keep
a message on the list it must be repeatedly posted by a
winning classifier; as is the case for a television image, the
list must be “refreshed” each time step. Messages provide
communication between classifiers.

Strengths in a classifier system are modified in two ways.
When an effector causes input to a reservoir, classifiers that
have posted messages activating that effector are strength-
ened (classical conditioning). All other strength changes in a
classifier system are the outcome of an ongoing competition
that treats the whole classifier system as a kind of market-
place. Each classifier in the system is treated as a go-
between (middleman, broker) in this market. At any given
time, the “suppliers” of a classifier are those classifiers that
posted messages satisfying its conditions. When classifier
wins a competition it is the “consumer” of each classifier
that has just posted a message a message satisfying its
conditions.

I n more detail, a satisfied classifier makes a bid based on
its strength, treating its strength as “cash-in-hand.” The
highest bidders win the competition, paying the bid to

their suppliers. For this payment, the winners win the right
to sell (post) their messages, hoping for consumers that will
let them recoup their payments. Classifiers gain in strength
if they make a “profit,” paying out less than they receive in
these transactions. This procedure for adjusting strengths is
called the bucket brigade algorithm [see Holland (3; pp. 53–
56) for details].

The following is the basic cycle for this system:

1. All messages originating from the system’s environment
(via detectors) are added to the message list.

2. All rules check all messages on the message list to deter-
mine which rules are satisfied.

3. All messages are deleted from the message list.
4. Satisfied rules enter a strength-based competition; the

winning rules post their messages to the message list.
5. The bucket brigade algorithm adjusts the strengths of the

winning rules.
6. Changes in the system’s environment, caused by mes-

sages activating effectors, are executed.
7. Return to step (1).
Classifier systems model each of the characteristics of com-
plex signaling networks listed in section 1. The simulta-
neous activity of the nodes of a signaling network is directly
modeled by the simultaneous activity of the classifiers in a
classifier system. The coordination provided by the signals

in the networks is modeled by the message-passing of the

classifier system, and conditional action is directly built into

the IF/THEN format of the rules. As will be shown in section

3, modularity is provided by tagging loci in the messages [3;

pp. 12–15]. Tags serve much like headers on Web messages;

modules result when a subset of rules coordinates its activ-

ity by the use of a common tag. Most importantly, classifier

systems are designed to be modified by adaptive algorithms

(see sections 3 and 4), so that we can examine the ontogeny

and evolution of the system under various adaptive regimes.

2.3. Defining an Adaptive Agent with a
Classifier System

This article centers on agents that use classifier systems to

determine their behavior and adaptation. The agents have

five principle components:

1. A list of classifiers.

This list may be modified in various ways as the agent

adapts to its environment.

2. A list messages. This list changes each time step, in

accord with the output of the classifiers that win the

competition.

3. A set of detectors. Detectors code information about the

environment into messages.

4. A set of effectors. Effectors have conditions, like those of the

classifiers, that are satisfied by messages. The action part of

an effector causes some change(s) in the environment.

5. A set of reservoirs.

Certain effector actions, at appropriate places in the envi-

ronment, cause the reservoirs to be filled. As in the intro-

ductory scenario (section 1), reservoirs are depleted at a

constant rate.

In the implementation that follows (section 3), the agent

will use a “vision cone” to collect information from a two-

dimensional environment with patches of resources. This

detector will produce a single message that encodes that

information. In addition, each reservoir will send a message

when it is “low.” As a result, the message list will contain the

messages generated by active rules, the vision cone mes-

sage, and any messages from low reservoirs. A further agent-

environment interaction must be defined to make adapta-

tion meaningful: There must be some actions the agent can

take that provide needed resources from the environment.

For the agents defined here that means that there must

be actions that fill the reservoirs. The efficiency with which

the agent manages to fill its reservoirs gives a measure of

performance.
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3. IMPLEMENTATION
This section describes a particular implementation (in
Mathematica) of the agent described more generally above.
This simple version serves as an existence proof, exhibiting
an adaptive procedure that takes a signaling system from a
simple one-rule “founding” repertoire to a more complex,
more effective repertoire. It is worth emphasizing that com-
parison to other implementations (see again [1]), e.g., as to
relative efficiency or difficulty of environment, is not rel-
evant here. The only objective is to show that there exists a
system that can build a default hierarchy from a simple
starting point. There are several easy generalizations of this
implementation—more resources, more environmental de-
tectors, more effectors—most of them attained by simply
changing parameters in the program. Moreover, we will see
(section 5) that the mechanisms have counterparts in
broader contexts.

T he section begins (3.1) by setting some of the param-
eters for the classifier system, message length and the
like. It continues (3.2) by describing the agent’s envi-

ronment, presenting details of the agent’s input and output
in that environment. Then the section describes (3.3) the
details of the agent’s classifier system, including the bucket
brigade. The section concludes (3.4) with a detailed descrip-
tion of the rule discovery mechanisms used by the agent.

3.1. General Parameters
All messages in this implementation have length k = 30. The
first five loci in each message are used as a tag that identifies
the origin of the message:

Messages originating from the reservoirs have a prefix
tag 01010.

Messages originating from the environment have a prefix
tag 101??.

Messages originating from the classifiers have tag prefix
10000.

Classifiers have either one or two conditions and one
outgoing message. There is no limit on the number of clas-
sifiers or the number of messages on the message list.

3.2. Environment, Detectors, and Effectors
The environment is a 20 � 20 grid wrapped around in both
dimensions (a torus) so that there are no edges. 4 � 4
patches of resources of two kinds—call them “shelter” and
“food”—are distributed irregularly in the grid; all other grid
points are treated as empty. The adaptive agent “lives” con-
tinuously in this world, rather than being “lifted out” and
“placed back” at some selected position each time it attains
a resource (as is typical, for instance, of learning experi-
ments that involve running a rat in maze). The agent is
trying to learn from experience how move around in this
world ad lib while effectively collecting resources.

This agent uses a single detecting mechanism to acquire

information from the environment, a “vision cone.” At any

time, the vision cone points in a specific direction, some

multiple of 45�, and can be rotated in 45 degree increments

by appropriate effector action (see below). It encompasses

all grid points to a depth of four grid points within 45� to the

left and right of the vision direction. The agent is always

assumed to be oriented in the same direction as the vision

direction.

The vision cone produces the following 30-locus en-

coded message:

1 0 1 ? ? �v1��v2��v3��v4� … �v14� ? ? ? ? ? ? ? ? ? ? ?.

The values v1 through v14 at loci 6 through 19 encode

information from the environment as follows:

v1 = 1 if and only if resource 1 is abundant at the current

location of the agent, otherwise v1 = 0.

[A resource is considered abundant if its level exceeds the

threshold set by the parameter rare.]

v2 = 1 if and only if resource is available, but not abun-

dant, at the current location of the agent, otherwise v2 = 0.

v3 and v4 are similarly assigned with respect to resource 2.

v5 through v8 are assigned similarly, but with respect to

the grid point that is one layer ahead in the current vision

direction.

v9 = 1 if and only if resource 1 is present in some amount

at any grid point that is two to four layers ahead in the

current vision direction.

v10 is similarly assigned with respect to resource 1.

v11 = 1 if and only if resource 1 is present in any grid

point within 45� left of the vision direction, not including

the center line, up to four layers away.

v12 is similarly assigned with respect to resource 2.

v13 and vi14 are similarly assigned for resources to the

right of the vision direction.

The agent has six effectors, each of which is capable of

one specific action. The actions are as follows:

〈r〉, “rest,” stay in the same location with the same

orientation.

〈a〉, “approach,” move one grid point forward in the vi-

sion direction.

〈f〉, “flee,” move one grid point backward, retaining the

same vision direction.

〈l〉, “turn left,” rotate the vision direction 45� to the left,

while staying in the same location.

〈s〉, “turn right,” rotate the vision direction 45� to the

right, while staying in the same location.

〈c〉, “consume,” deplete resource 2 if it is present at the

current site.

Each effector has an associated condition that can be
satisfied by an appropriate message:
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? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 1 1 0 0 ? �s�
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 1 1 1 1 ? �a�
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 0 0 0 0 ? �f�
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 0 0 0 1 ? �l�
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 1 1 1 0 ? �r�
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 1 0 0 0 ? �c�

Note that sequence 001 at loci 21–23 serves as an internal
tag that distinguishes messages directed to the effectors.

If the response 〈c〉 is given when resource 2 (“food”) is
present, the level of that resource at that site is reduced by
an amount determined by the parameter twodec. The res-
ervoir level for resource 2 is increased by that amount until
the reservoir is full. The resource at a depleted site recovers
at the rate inctwo. If the response 〈s〉 is given when resource
1 (“shelter”) is present, that resource is not depleted, but the
reservoir level is increased by the amount onedec.

3.3. Classifier Execution and the Bucket Brigade

A s pointed out earlier, each classifier on each time step
checks the message list to see if its condition part is
satisfied. If so, the classifier bids to place its outgoing

message on the message list for the next time step. Because
messages are only interpreted in terms of the classifier or
effector conditions they satisfy there is no possibility of con-
flict at this level: additional active classifiers simply mean
additional messages on the message list.

Most classifiers in this system belong to one of three
broad categories:

(i) A default classifier is a classifier with one condition,
that is satisfied by one of the “low reservoir” messages, and
an outgoing message that activates one or more effectors.

(ii) A bridging classifier is a classifier with a condition,
that is satisfied by one of the “low reservoir” messages, and
an outgoing message that does not activate any effector.

(iii) A bridge-supported specialist is a classifier with one
condition, that is satisfied by some environment mes-
sage(s), a second condition, that is satisfied by a message
from a bridging classifier, and an outgoing message that
satisfies some effector condition(s).

These categories will be directly useful when we come to
the agent’s discovery mechanisms (3.4). Also, as we will see
in a moment, the categories simplify the determination of
bids.

Just how is the size of a classifier’s bid determined once
its conditions are satisfied? A classifier is assigned a speci-
ficity constant spc at the time it is formed, and typically the
bid is calculated as a simple product,

bid�t� = �spc�∗�strength�t��.

In many classifier systems [3; pp. 57–60], the specificity of a
condition is determined by the number of # s in the condi-

tion: the fewer # s, the greater the specificity. Here, to sim-
plify the model, specificity is assigned according to
category:

Default rules are assigned spc = .02.

Bridging rules are assigned spc = .03.

Specialist rules are assigned spc = .05.

For technical reasons that I will describe later in this sec-
tion, it is better to make the bid an S-shaped function of the
strength rather than using the strength directly.

In this model, the winners of the bidding competition are
the satisfied classifiers that make the largest bids. The actual
procedure is stochastic (so that lower bidders can some-
times become winners):

Probability �win�j,t�� = probability that classifier j wins at time t

= �bid�j,t��maxbid�t��1�2,

where bid(j,t) is the bid of classifier j at time t, and maxbid(t)
is the maximum of all bids made at time t. The square root
is used here as a simple way of strongly favoring bids near
the current maximum bid; any other method of strongly
favoring near-maximal bids would work as well.

Once we have determined the winners, we can execute
the bucket brigade. The exchange is between the current
winning classifiers and the winning classifiers of the previ-
ous time step. Each current winning classifier has its
strength reduced by the amount of its bid. The bid is dis-
tributed to its “suppliers”—the classifiers that posted mes-
sages satisfying the winning classifier’s conditions—
increasing their strengths. In the present model, the bid is
apportioned among the suppliers according to their
strengths. The intuitive idea behind this means of appor-
tioning credit, as outlined earlier, is that classifiers belong-
ing to a supplier-consumer chain leading to a “good prod-
uct” (reservoir filling) will prosper, as in the economic
counterpart.

It is useful to determine the equilibrium (fixed point)
strength, str*, of a classifier under the assumption that it
receives a fixed income I each time it is active. At equilib-
rium, the bid, spc*strength, must equal the income I, so

str* = I�spc.

At equilibrium, then, the bids of all classifiers with the same
income will be the same, regardless of specificity. This de-
feats the intent that more specific classifiers should override
(outbid) less specific classifiers in a default hierarchy. This
difficulty can be corrected by making a bids an S-shaped
function of strength, as suggested earlier in this section.
Indeed, a simple function suffices,
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spc∗str ∗ �2 − str�maxstr�,

where maxstr is the maximum strength that can be
assigned.

Classifier strengths also enter into the resolution of con-
flicts when the conditions for several incompatible effectors
are satisfied. The strengths of the suppliers of each effector
condition are summed, and the two effectors with the high-
est associated sums, maxind and secind, respectively, enter
a stochastic competition. In the present model the compe-
tition is resolved by

Prob�maxind� = 1 − ��seceff�maxeff�2��2�,

where seceff is the sum associated with the classifier with the
second highest sum, maxeff is the highest sum, and secind is
executed if maxind does not win. As in the favoring of near-
maximal bids, any function that strongly favors an effector
(maxind) receiving messages with a cumulative strength
well above the nearest competitor (secind) will suffice here.

3.4. Rule Discovery
A genetic algorithm (GA) is usually used to generate new
classifiers in a classifier system [3; pp. 60–80]. However, this
article centers on the triggered generation of classifiers. So,
in the interests of getting a clear picture of the possibilities
of triggered generation, the GA is not used in this imple-
mentation. I emphasize that the GA is compatible with trig-
gered generation and provides a good way of exploiting
“building blocks” discovered by triggered generation. The
earlier work of Rick Riolo [4] gives an example of triggered
coupling and chaining in conjunction with GAs.

Triggered generation provides an experience-based pro-
cedure for bridged classifier sequences, without waiting for
the classifiers to appear under mutation and recombina-
tion. The basic idea is to produce a lengthening sequence of
coupled specialists supported by a bridge that is activated
by a low-reservoir condition. If this bridge-supported se-
quence captures causal (or highly correlated) interactions
leading to a needed resource in the environment, then the
bucket brigade establishes the sequence as an established
part of the repertoire.

There are two objectives that serve as a sine qua non in
setting up a triggered generation procedure.

1. The mechanism(s) should be general-purpose in the
sense set forth in the introduction; that is, the mecha-
nisms should be effective over a wide range of environ-
ments, requiring no “tuning” that depends on prior
knowledge of the environment.

2. The mechanism(s) should not generate large numbers
irrelevant classifiers; such “clutter” is almost certain to

destroy the effectiveness of other routines for credit as-
signment, recombination of building blocks, and the like.

T wo triggering mechanisms are used in this model. One
provides bridging classifiers when none exist, and the
other provides new bridge-supported specialists

coupled to already existing bridge-supported specialists.
Some additional notation will make it easier to illustrate the
description that follows; this notation is also useful in de-
scribing other signaling networks.

[m1, m2] indicates a classifier condition that is satisfied
by either of messages m1 or m2.

〈a〉 indicates a message that satisfies the condition for
effector a.

The mechanism for generating a new bridging classifier is
invoked only when the following three criteria are satisfied:

(i) the agent has just received a significant input to a
reservoir;

(ii) the corresponding “low reservoir” message is on the
message list;

(iii) there is no active bridging classifier.
If these conditions are met, a new classifier is added to

the system. It has a single condition that is satisfied only by
the particular “low reservoir” message meeting criterion (ii).
The outgoing message has a distinctive bridge-tag and is
designed so that it does not satisfy any extant conditions
(typically achieved by hash-coding the non-tag part of the
message).

At the same time the bridging classifier is formed, as part
of the same triggered operation, a specialist supported by
that bridge is also formed. This specialist classifier has two
conditions. The first condition is satisfied by the bridge’s
outgoing message, and the second condition is satisfied by
relevant parts of the current message from the environment.
The specialist’s outgoing message satisfies the condition of
the just executed effector. Note that all information to form
this pair of classifiers is directly available at the time they
are formed.

For example, assume the “low food reservoir” message
hunger-mess is on the message list, that “food present” is
indicated by environmental message food-pres, and the re-
sponse consume has just been executed. The following two
classifiers would then be added to the system:

�hunger−mess��m1

�m1�&�food−pres��m2 �c�,

where m1 is hash-coded and m2 is a message that satisfies
the condition for effector consume.

The mechanism for generating a bridge-supported spe-
cialists is invoked only when the following three criteria are
satisfied:

(i) a bridging classifier was active on the previous time-
step and remains active;
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(ii) a bridge-supported specialist is currently active;
(iii) there was no bridge-supported specialist active on

the previous time-step.
When these criteria are met a new two-condition, bridge-

supported specialist is generated using the following
information:

time t − 1 t

environment env�t − 1� env�t�

active classifiers bridge bridge

spec�t�

effector eff�t − 1� eff�t�

The first condition of the new specialist, [bridge], is satisfied
by the bridge message, while the second condition, [env(t �

1)], is satisfied by the relevant parts of the previous message
from the environment, env(t � 1). The specialist’s outgoing
message satisfies the condition of the effector eff(t � 1)
executed on the previous time step. When the specialist is
formed the conditions of the active bridge and the pre-
existing bridge-supported specialist spec(t) are generalized
so that each is satisfied by new specialist’s message. That is,
the bridge’s revised condition, [new spec, low reservoir], now
accepts the specialist message as well as the “low reservoir”
message, and the revised condition of the pre-existing spe-
cialist, [new spec,bridge], now accepts the new specialist’s
message as well as the bridge classifier’s message.

By way of example, assume that

�hunger−mess��m1

is active at time-step t � 1, but no bridge-supported spe-
cialist is active at that time. Further, assume that environ-
mental message f-targ indicates that food is “in sight,” and
that the “approach” response is currently being executed.
Let

�m1�&�food−pres��m2 �c�

be activated at time-step t. The three criteria for generating
a bridge-supported specialist have been satisifed, so the
new bridge-supported specialist

�m1�&�food−targ��m3 �a�

is formed. The bridge condition and one condition of the
pre-existing specialist are simultaneously generalized, so
that the bridging classifier now has the form

�hunger−mess,m3��m1,

and the pre-existing specialist now has the form

�m1,m3�&�food−pres��m2 �c�.

The bridge-generating mechanism clearly works hand-
in-glove with the bridge-supported-specialist mechanism.
The first mechanism provides the “founders” upon which
increasingly long sequences of specialists are built. The spe-
cialists formed by the specialist mechanism are coupled so
that the bucket brigade transfers credit back up the line.
Moreover, the bridge’s strength is immediately increased by
the bucket brigade, because the bridge is active at the time
of reinforcement. As a result, when the sequence is next
activated, there is a quick increase in the strength of the
initial specialist classifier in the sequence, because the
bridge is a “supplier” to that initial classifier. In other words,
because of the bridge, credit need not filter back slowly,
trial-by-trial, to the stage-setting initiator.

4. EXECUTION

A lthough it seems plausible that an agent using these
mechanisms will generate effective resource-
acquiring behaviors, “the proof is in the pudding.” No

amount of abstract argumentation will provide a “proof”—
there are just too many ways the process can go wrong. For
example, the generating mechanisms may generate an un-
wieldy clutter of classifiers that interfere with each other or
the bucket brigade may interfere with the long-term stabil-
ity of the bridge-supported sequences, preventing critical
overrides of default rule(s). An executable, proof-of-
principle model is necessary, the counterpart, in this more
mundane context, of von Neumann’s model [5] showing
that self-reproducing machines are possible. Von Neu-
mann’s model is an atrociously inefficient machine, but that
is not the point. The only point is to show that a self-
reproducing machine exists, a point that was seriously in
doubt before he exhibited the machine. The same objective
holds for the current quest.

To this end, the foregoing model has been implemented
in Mathematica. The agent starts with a single classifier [fa-
tigue-mess, hunger-mess]⁄m 〈s,a,f,l,r,c〉. This classifier serves
as a broad default, with enough ‘?’ in its output message to
assure that the conditions of all six effectors are satisfied. To
resolve the effector conflict, as detailed above, the effectors
go into a competition where each is equally likely to be a
winner. The result is a random sequence of effector actions,
producing a kind of random walk in the environment.

Under the action of the generating mechanisms, the
agent acquired the following repertoire after just 250 time
steps in a typical run of the program:

© 2002 Wiley Periodicals, Inc. C O M P L E X I T Y 41



�1� �fatigue−mess, hunger−mess��m �s,a,f,l,r,c�.

�2� �hunger−mess,m3��m1

�3� �m1,m3�&�food−pres��m2 �c�

�4� �m1,m4�&�food−targ��m3 �a�

�5� �fatigue−mess,m7��m5

�6� �m5,m7�&�shelter−pres��m6 �s�

�7� �m5�&�shelter−targ��m7 �a�

There were no other classifiers; the strengths of these
classifiers at time-step 300 were, in the order given,

�1000, 958, 1000, 685, 733, 995, 500	,

where 1000 is the maximum strength allowed.
At the end of 500 time-steps the repertoire had expanded

to include

�8� �m5�&�no shelter��m8 �r�

with classifiers (5) and (7) modified to

�5�� �fatigue−mess,m7,m8��m5

�7�� �m5,m8	&�shelter−targ��m7 �a�

There still was no clutter, and the strengths of the classifiers
were

�1000, 1000, 1000, 787, 733, 926, 1000, 500	.

Logic alone would suggest that the generated classifier
sequences produce an improved search for patches, com-
pared with the random search generated by the default clas-
sifier. Still, a rough measure of the improvement is helpful.
One way to measure performance in this context is to keep
track of the average level of the reservoirs. As a control ex-
periment, the above run was repeated without triggered
generation. For this run, the average reservoir levels be-
tween time steps 200 and 500 were 108 and 109, respec-
tively. During the same time interval, in the above triggered
generation run, the average reservoir levels were 212 and
182.

Of course, a few runs like these only hint at the long-run
structure of the agent, and they only suggest the effects of
these generating mechanisms alongside the GA in more
complex environments. However, the run described does
constitute an existence proof that an agent can use experi-
ence to go from a simple default to a more complex goal-
directed repertoire, without external supervision.

5. Relevance to the Evolution of Signaling Networks
Because of the message-passing basis of the demonstration,
this existence proof is suggestive for other signaling net-

works. There are details, of course, that only have clear
counterparts in some signaling networks.

Strength and the bucket-brigade, for instance, have a
clear counterpart in economic networks, but the counter-
parts in a bio-circuit are less straightforward: Strength bi-
ases competition for activation, so it has an effect like pro-
moters and enhancers; the bucket brigade, in modifying
strength, acts like the control loops that activate and sup-
press genes producing promoters and enhancers. Despite
these details, there is a clear path from this model to models
that are much closer to real bio-circuits. In this section I will
sketch that path for bio-circuits, noting that the relation
extends mutatis mutandis to other signaling networks with
agents that employ message-passing, such as food webs,
neural networks, ecosystems, and markets.

C ontrol, synthesis, and transport in biological cells are
all mediated by the complex signaling networks we
have been calling bio-circuits. The interactions are

typically conditional interactions that use proteins and
other bio-molecules as signals. They involve positive and
negative feedback, repression and de-repression of genes,
and coactivation of multiple genes. The ubiquitous Krebs
citric acid cycle and the lambda switch in Escherichia coli
are familiar examples of highly regulated bio-circuits. Che-
motaxis in E. coli and the formation of the fruiting body in
slime mold offer more complex examples, and the interac-
tion of induction and competence in a developing meta-
zoan provides a still more complex example. Ultimately,
bio-circuits underpin “epistatic” interactions among genes,
giving rise to effects ranging from the repression and de-
repression of genes to the directed placement of proteins,
such as cell surface receptors.

Even when the same genes are being expressed, bio-
circuitry produces dynamic sequences of protein synthesis,
modification, and regulation. But the complexity does not
end there: Because bio-circuitry can turn genes on and off,
there can be complex, time-mediated interactions between
genes. For example, in a circuit as simple as the lambda
switch in E. coli, which of two gene-controlled pathways is
invoked (lysis or lysogenesis) depends upon a complex bio-
circuit with sophisticated interactions triggered by the cell’s
environment.

There are useful commonalties between bio-circuits and
classifier systems. First of all, classifier systems exhibit the
characteristics of signaling networks set out in section 1:

● Parallelism and coordination
● Conditional action
● Modularity
● Adaptation and evolution.

In addition to these characteristics, tagging is a mechanism
that is shared with bio-circuits. Tags in a bio-circuit are
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exemplified by the particular amino acid sequences that
identify antigens, the sets of amino acids that define active
site in enzymes and the amino acid sequences that bind to
specific loci in DNA. Tags go under a variety of names in
molecular biology—receptors, ligands, motifs, active sites,
and so on—and they are critical in controlling reactions
involving transcription factors, enhancers, activators, and
co-activators, and the like. In each case, there is a subcon-
figuration of the carrier (polypeptide, RNA, DNA,…) that
satisfies some binding condition. The counterpart in a clas-
sifier system is a rule of the form

IF �message with apropos tag present	 THEN

�send message with new tag�.

T ag-like motifs identify, and coordinate, modules in a
bio-circuit, much as a coordinated group of classifiers
is activated by messages with similar tags. The condi-

tion for activation of a module can be more or less precise,
the equivalent of adding or deleting # s in a classifier con-
dition. For example, one major enhancer for cancerous
growth is a reduced selectivity for growth factors in the cas-
cade initiating cell division, allowing the cell to divide in
foreign contexts. We will come shortly to the evolutionary
“tuning” of tags as a critical feature of cell phylogeny.

There is a straightforward way to go from simple classi-
fier models, of the kind examined in the last section, to
more realistic classifier models of bio-circuits. One starts
with a coarse-grained, over-general model that describes a
few well-established generalizations. Then through a series
of iterations, one reaches a classifier model of a bio-circuit,
wherein each classifier specifies what happens to some ac-
tual biomolecular cell constituent (signaling protein, pro-
moter, repressor, or the like).

For example, starting with a healthy cell, we might adopt
as a starting point four simple rules to model the transfor-
mation of a normal cell to a cancer mass:

�1� IF �healthy cell & THEN �apoptosis or

DNA damage� immortality�.

�2� IF �immortality� THEN �stable existence or

genetic instability�.

�3� IF �genetic instability� THEN �ephemeral clonal

expansion or robust

clonal expansion�.

�4� IF �robust clonal THEN �cancer mass�.

expansion�

This initial set of rules serves as a framework for more
elaborate models that are more closely connected to actual
observations. Rule (1), for instance, might be elaborated to

�1.1� IF �healthy cell & THEN �apoptosis or mutation

DNA damage� for resistance to

apoptosis�
�1.2� IF �resistance to THEN �susceptibility to

apoptosis� growth inhibitory

signals or mutation

for loss of susceptibility

to growth inhibitory

signals�
�1.3� IF �loss of THEN �selective growth

susceptibility to advantage and growth

immortality� inhibitory signals�.

It takes several such iterations to arrive at a model where
(i) the conditions (the IF part) are specified in terms of ac-
tual cell constituents (signaling proteins, promoters. repres-
sors, and the like) and (ii) the actions (the THEN part), like-
wise involve the production of cell constituents (e.g.,
through gene expression). Rules at this level may also rep-
resent DNA loci that are repressed or de-repressed by pro-
teins having particular tags (e.g., configurations that provide
binding action). Representing DNA loci allows us to exam-
ine a critical aspect of cell development: the effects of re-
pressors, promoters, and the like, on the dynamics of the
bio-circuit. A classifier model at this level can be tested
against data produced, for example, by microassays.

There is a fragment of a bio-circuit involved in tumor
growth that can be used to exemplify an IF/THEN model at
the level of bio-molecules.

The rule

IF �ras gene expressed� THEN �tumorigenesis�

can serve as the default starting point. The specialist rules at
the bio-molecule level have a growth factor (gf) as their
central component. Growth factors control the growth and
replication of cells; normal cells only replicate when a highly
selective, organ-specific growth factor receptor is activated
by the appropriate growth factor:

�initiation� IF �apropos growth factor� THEN

�gf receptor activated�

The cascade of events leading to mitotic transcription (rep-
lication) is initiated by the bio-molecule Ras-GTP. Ras-GTP
is obtained by adding a phosphorous ion (P) to Ras-GDP, a
reversible process controlled by the bio-molecules GDS and
GAP. These relations can be represented by the following
simple set of IF/THEN rules:

© 2002 Wiley Periodicals, Inc. C O M P L E X I T Y 43



�regulation� IF �gf receptor activated� THEN �Ras−GTP�.

&�GDS�&�Ras−GDP�
IF �gf receptor activated� THEN �Ras−GDP�.

&�GAP�&�Ras−GTP�
�execution� IF �Ras−GTP� THEN �mitotic

transcription

& stress fiber

cascades�.

Even this simple set of rules suggests several factors relevant
to tumor growth:

(i) genes producing GAP could be tumor suppressors.
(ii) genes producing GDS could be oncogenes.
(iii) a mutation in the ras gene, allowing susceptibility of

Ras to inappropriate growth factors, could cause inappro-
priate activation of Ras.

(iv) stress fiber cascades in inappropriate conditions, e.g.,
production of membrane ruffles, could be used as indica-
tors of aberration.

Because this bio-circuit fragment is so simple—a single
two-component regulatory process and one expressed
gene—these suggestions are readily apparent to “common
sense.” However, when we come to more complex bio-
circuits with interlocking feedback loops and interacting
gene expression, the resulting behavior is far from apparent.
The situation then is much like trying to determine the be-
havior of a lengthy computer program using only the listing
of instructions, a notoriously difficult task.

Even when the full description of the bio-circuit is avail-
able, it is quite difficult to anticipate the effects of gene
mutations, exogenous signals, and the like. Yet, it is just
these interlocking causative factors that offer possibilities
for targeted intervention. As with a computer program, ex-
ecution of the bio-circuit “program” under controlled con-
ditions becomes one of the few feasible ways of attaining
this understanding. Sometimes in vivo or in vitro experi-
ments can serve this purpose, but control can be extremely
difficult, as decades of benchwork in the study of cancer has
made clear. Computer-based models of bio-circuits offer a
powerful complement to this benchwork, suggesting lines
of research that might not be apparent otherwise.

Once the classifier system reaches the bio-molecular
level, there are several useful properties of the model
that aid in exploring the activities of the corresponding
bio-circuit:

(i) There is a clear correspondence between each com-
ponent rule of the model and each component of the
bio-circuit.

(ii) It is easy to develop standard models of important
modular bio-circuits such as the Krebs cycle or the lambda
switch. By using appropriate tags to mimic receptors and
ligands, these modules are easily incorporated in larger bio-

circuits, offering a convenience like that of standard sub-
routines in a computer program.

(iii) Because the classifier system is computation-
universal, the model is easily modified to account for any
shortcomings or errors vis-a-vis the bio-circuit. In contrast,
models using simultaneous linear differential equations
(typical in physics and chemistry) can handle conditional
actions only with great difficulty, limiting such models to
the simplest bio-circuits.

(iv) Classifier systems are built to be used as grist for a
genetic algorithm, so they can be subjected to artificial evo-
lution, making it possible to explore phylogenetic relation-
ships between different bio-circuits. It is easy to trace gen-
eralizations or specialization of conditions under an evolu-
tionary regime, say by point mutation, because of the role of
# (“don’t care”) and ? (fits all) in defining conditions and
messages. As an example, a good classifier system model for
early-stage cancer would enable us to observe the likelihood
of mutations that transform the cancer to a more aggressive
stage.

W hen constructing a bio-circuit model, it is impor-
tant to look for basic building blocks in the system
being modeled. Just as enzymes have basic struc-

tural components—alpha helices, beta sheets, and the
like—constructed from a 20-amino-acid alphabet, so there
are standard “signaling” proteins for turning genes “on” and
“off.” There are also standard “autocatalytic bio-circuits,”
such as the citric acid cycle, that perform similar functions
over extraordinarily wide ranges of species. The goal is to
come up with building blocks that can be fitted together to
make larger building blocks.

Extracting building blocks is accomplished by examining
the quantities measured to keep track of the system’s be-
havior. The construction of a flight simulator provides an
easy example: You list the modules that generate the instru-
ment readings in the plane’s cockpit; you then determine
the rules that describe how the modules interact. The pro-
cess has much in common with defining a new board game
by listing the pieces and rules. This description in terms of
modules or building blocks is not just a matter of conve-
nience; when we look to the evolution of bio-circuits, we see
the same basic building blocks occurring over and over
again in different combinations.

Models built around classifiers complement, but con-
trast strongly with, the statistical models produced by bio-
informatics. Genome sequencing has made it possible for us
to identify the building blocks of important signaling net-
works, whereas new tools such as automated gene sequenc-
ing, cDNA micro-assays, and tissue arrays produce torrents
of data about these components. It is difficult to organize
this torrent in ways that tell us more about the signaling
networks. As with building blocks sitting in a box, many
known components await assembly into coherent struc-
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tures. In attempting to assemble these building blocks, it is
helpful to note again that modules in bio-circuits, as chains
of conditional interactions with feedback loops, are quite
like subroutines for a computer.

It is impossible to reconstruct a computer program from
the statistics of its output. For similar reasons, the interac-
tions in a bio-circuit (e.g., cooperative repression) are usu-
ally hidden from bio-informatic data searches. This limita-
tion on statistical techniques is familiar in other areas: No
one would expect to use the statistics of a chess game (e.g.,
the number of times each piece was moved) to recover the
conditional strategic maneuvers of the game. On the other
hand, we can execute a classifier system model, much like
playing a game of chess, to see if it simulates known data
(cascades, feedbacks, and the like). In particular, we can
examine the dynamic time sequence of gene expression, so
we can learn how the action of the bio-circuit is altered by
transformations in the cell DNA. Correlations, regressions,
and similar statistical techniques can increase confidence
that a proposed bio-circuit reconciles the data, but statisti-
cal techniques alone cannot reveal the circuit.

There is a particular role for bio-circuit models as pro-
visional hypotheses for guiding and refining experiments:
They tell us “where to look.” To see just what this means, it
is helpful to turn to physics. In physics, the theory of rela-
tivity suggested that the path of light passing near a sub-
stantial mass would be bent. In particular, the image of a
distant star, observed from earth as it orbited the sun, would
be displaced if the sun came close to the line of sight to the
star. Theory, then, suggested observations of relative star
positions during an eclipse (which would allow star images
near the sun to be seen). These new and unusual observa-
tions were one of the first verifications of the theory of rela-
tivity. In a similar fashion, bio-circuits models should sug-
gest new experiments for filling in missing signal pathways.

There is a question about the bio-circuits of different
species that, if answered, will make a strong contribution to
our understanding of biological signaling networks: Why
and how do certain motifs become common in bio-circuits,
acting as building blocks for a wide range of functionally
similar proteins, whereas other configurations remain par-
ticular and local? In short: How are building blocks selected
and how do they spread across species? Darwin gained in-
sights into the origin of species by tracing the origin and
variations of the beaks of Galapagos finches. Similarly, a
phylogeny of the origin and variations of common bio-

circuit modules should tell us much about the origins and
organization of bio-circuits. And, if some of these modules
are implicated in diseases or cancers, we gain targets for
targeted intervention.

6. RECAPITULATION

T his article uses a simple computational model of sig-
naling networks, a classifier system, to illustrate the
origin and increase in complexity of signaling chains

under the influence of general-purpose mechanisms that
trigger the formation of new signals and signaling nodes
(rules). Although the model is quite simple, it does serve as
an existence proof for (i) the emergence of hierarchies in
signaling networks as an adaptive response to the environ-
ment and (ii) the increasing efficiency provided by this in-
crease in complexity. The article concludes by outlining the
expansion of this simple proof-of principle model to more
realistic models of bio-circuits and, by extension, other sig-
naling networks. The discussion of more realistic bio-circuit
models ends by discussing the role of computational mod-
els as a critical complement to the statistical techniques
currently used in analyzing the torrents of data in molecular
biology.

ACKNOWLEDGMENTS
The urge to undertake this line of investigation was much
amplified by three SFI meetings on resilience, robustness,
and the evolution of language, respectively. I particularly
thank Buzz Holling, Jim Brown, Erica Jen, and Bill Wang for
gathering these working groups and for discussing with me
what I might contribute to the effort.

REFERENCES
1. Lanzi, P.L., Stolzmann, W., Wilson, S.W., Eds., Learning Clas-

sifier Systems. Springer: Berlin, 2000.
2. Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R. Induc-

tion: Processes of Inference, Learning, and Discovery. MIT
Press: Cambridge, 1989.

3. Holland, J.H. Hidden Order. Addison Wesley: Reading, 1995, pp
53–56.

4. Riolo, R.L. The emergence of coupled sequences of classifiers.
In: Proceedings of the Third International Conference on Genetic
Algorithms. Shaffer, J.D., Ed., Morgan Kaufmann: San Ma-
teo,1989, pp 256–4.

5. von Neumann, J. Theory of Self-Reproducing Automata. Burks,
A.W., Ed., University of Illinois Press: Urbana, 1966.

© 2002 Wiley Periodicals, Inc. C O M P L E X I T Y 45


