Gradient Optimization of RF Amplifiers for
Digital Communications

Vuk Borich, Jack East, George Haddad

EECS Department, the University of Michigan, 1301 Beal Avenue,
2437 EECS, Ann Arbor, Michigan 48109

Received 23 May 2000; accepted 2 August 2000

ABSTRACT: A gradient optimization methodology for use with nonlinear envelope simula-
tion is presented. Emphasis is placed on efficient evaluation of cost function gradients. To
this end, an envelope sensitivity equation is derived and methods for its efficient solution are
proposed. In the case of circuits of moderate size, the solution of the sensitivity equation is
shown to be simple and inexpensive. The more troublesome case of larger circuits is treated
by a novel application of a recently developed iterative linear equation solver. The result
is a general-purpose, rigorous optimization methodology for the fine tuning of gain, adja-
cent channel power, power efficiency, and related performance measures in radio frequency
(RF) amplifiers for digital communications. As an illustrative example, the optimization of
a feedforward-linearized power amplifier is presented. © 2000 John Wiley & Sons, Inc. Int J RF

and Microwave CAE 10: 353-365, 2000.
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1. INTRODUCTION

There has been a growing interest in simulation
technology that is capable of efficient circuit anal-
ysis with modulated signal sources. The develop-
ment of the nonlinear envelope (NE) (also known
as modulation-oriented harmonic balance, circuit
envelope, envelope transient, etc.) method [1-3]
was an important contribution, providing an excel-
lent combination of accuracy, memory consump-
tion, and robustness for narrowband applications.
However, circuit optimization, in conjunction with
the NE technology, has not been treated in the
literature. The aim of this article is to bridge that
gap by offering a general-purpose, rigorous, and
efficient optimization methodology for use in the
design of digital communications amplifiers.
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Despite the known advantages of the NE
method, modulated signal analyses are slow rel-
ative to periodic and quasiperiodic analyses by
means of harmonic balance. Thus, any optimiza-
tion algorithm to be used with the NE method
must be designed in a way that minimizes the
number of necessary iterations and, hence, the
number of underlying simulations.

In this regard, gradient optimizers are viewed
as primary candidates—they are known for fast
convergence to the locally optimal solution and
are particularly effective when the initial design
is, in some sense, close to the optimal. However,
in order to exploit the power of gradient optimiz-
ers to the full extent, the computation of the cost
(objective) function gradient should be inexpen-
sive. Ideally, the computational overhead (that is,
the fraction of the computational effort expended
on gradient calculation) should be negligible. This
is especially important when designing an opti-
mizer in conjunction with the NE method where
individual iterations may be slow.
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In principle, it is always possible to calculate
the gradient by parameter perturbation using a
procedure known as finite-difference gradient com-
putation. Here, one evaluates the cost function
using the current set of parameters; then, for
each variable parameter, the evaluation of the
cost function is repeated with a small change in
the parameter; finally, the gradient is computed
by the finite-difference approximation to the par-
tial differentiation operator. Clearly, this results
in as many additional cost function evaluations
(and, hence, NE simulations) as there are vari-
able parameters—a costly process that is in some
cases impractical.

Instead, this article offers a considerably more
efficient approach, based on direct sensitivity
analysis of circuit envelope waveforms. Specifi-
cally, equations are derived for partial derivatives
(sensitivities) of envelope waveforms with respect
to variable parameters. As shown in the article,
the gradients follow in a simple way from the
knowledge of envelope sensitivities.

Most importantly, the article deals with effi-
cient methods for the solution of the envelope
sensitivity system. Here, it is necessary to treat two
separate cases depending on the underlying solu-
tion of the NE equations. Ultimately, the solution
of the NE system reduces to repeated solutions of
linear algebraic systems similar to those that arise
from the application of the Newton-Raphson
algorithm to the method of harmonic balance.
The conventional approach to the solution of
such linear systems is based on the application of
Gaussian elimination (direct) solvers. As circuit
size grows, however, direct solvers become slow
and memory consuming, presenting a problem
that had plagued the method of harmonic balance
until recently. In the last few years, the advent of
iterative linear solvers [4] and their use in circuit
analysis [5-9] extended the applicability of the
method to much larger circuits. It will be shown
that the underlying solution method for the NE
equations (direct or iterative) has a significant
impact on the efficiency of gradient computation.
For smaller circuits where direct methods may
be used effectively, gradient computation is sim-
ple and relatively inexpensive. For larger circuits
which necessitate the use of iterative solvers, gra-
dient computation carries more overhead. In the
latter case, the numerical expense is mitigated by
a novel application of a recently proposed iter-
ative algorithm, known as the hybrid generalized
minimal residual method for multiple right-hand
sides [10] and abbreviated as MHGMRES.

As remarked earlier, gradient optimization
works especially well when the initial set of vari-
able parameters is, in some way, close to the
optimal. Such an initial set is readily obtained by
the more conventional analysis and optimization
methods. For example, a modulated input sig-
nal may be approximated by a two-tone input of
equal available power, and the optimization may
be carried out by well-established means [11, 12].
Design optimization may also be carried out
by means of memoryless models extracted from
single-tone distortion characteristics. While both
of the above provide a good initial guess, nei-
ther is rigorous for general nonlinear circuits with
digitally modulated carrier excitations—two-tone
signals are a poor approximation to some modula-
tion formats, and the memoryless model may give
inaccurate results by ignoring envelope dynamics
and out-of-band nonlinear effects. Thus, the use
of conventional methods is appropriate in early
design stages. The proposed technique provides
an accurate optimization tool for the fine tuning
of the final design performance.

Several of the principles presented in this
article have already been reported [13]. This arti-
cle extends the authors’ previous work to allow
optimization of larger circuits in an efficient
way. Specifically, “large-scale” sensitivity meth-
ods of Sections 4.3 and 4.4 are presented for the
first time.

The article is organized as follows. Section 2
reviews the nonlinear envelope method and lays
the foundation for the development of optimiza-
tion and sensitivity analysis methods in Sections 3
and 4. A design example is presented in Section 5.
Conclusions are reserved for Section 6.

2. NONLINEAR ENVELOPE METHOD

All performance measures, to be optimized by
methods of Sections 3 and 4, are evaluated by
the NE method, considered as the most appro-
priate method for nonlinear analysis of radio
frequency (RF) circuits subject to narrowband
modulated excitations [14]. The implication of the
narrowband assumption will be apparent from
the discussion. This section gives a review of the
principles of NE simulation, providing the nec-
essary background for subsequent optimization
and sensitivity analysis; a detailed account of the
method is necessary because of its intimate con-
nection with the principles of sensitivity analysis



in Section 3. The discussion is based, with several
modifications, on the theory presented in ref. [1].

Consider an amplifier consisting of sources,
nonlinear RC, and linear RLC elements; linear
distributed elements are included at the end of
this section. The modified nodal formulation [15]
leads to a system of K nonlinear equations in K
circuit variables of the form

%q(x(t)) +i(x(1)) = b(1), )

where x(¢) € RX is the vector of node voltages and
certain branch currents, b(¢) € RX is the vector of
source contributions, and q, i : R€ — RX are dif-
ferentiable functions that describe the contribu-
tions of reactive and conductive elements, respec-
tively.

The driving source is a modulated carrier of the
form

0,(1) = 2Re{,(1)e’* "}, )

where, by convention, the tilde denotes a complex
envelope. Under the usual assumption of stable
and bandlimited behavior, all circuit waveforms
appear as

N
)= 3wt =3 (tw(r),  (3)
n=—N

where y(¢) is the (2N + 1)-vector of real and imag-
inary envelope components and w(¢) is the Fourier
basis vector:

- - - - - T
yO =[50 30 3 Wl
w(t)=[1 2cos(w.t) —2sin(wt) --- (4)

—2sin(No,.t)]".

When the assumed form of circuit waveforms

is substituted in eq. (1), following some manip-

ulation, each equation in the system may be
expressed as

Dl ) +al ®o0w + T Row

k=1,...,K. Q)

Here, )N((t) is the block K-vector of real and imag-
inary components of circuit envelopes,

X(1) = [ (1)---%%(0)]'; (6)
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Qg is the matrix of time-differentiation of the
Fourier basis,

X _ aw; )

and qy, i, by are vectors of envelope components
defined by analogy to eq. (4). Time dependencies
have been omitted for clarity.

If the envelopes were constant in time (hence,
if the source were a pure sinusoid), each of the
K equations (5) could be converted to a system
of 2N + 1 equations in the unknown envelope
coefficients, by an application of the familiar
orthogonality relationships for the Fourier basis.
The critical assumption in the NE method is that
similar orthogonality relationships hold, even in
the time-varying envelope case, due to the nar-
rowband nature of the signals and the implied
near constancy of the envelope components over
the carrier period 27/w,.. With this assumption,
eq. (5) implies

d_  ~ ~ o~
—q:(X) + U (X)) +1,(X) =
dtqk( ) + Qg @i (X) + 1 (X) = by, )
k=1,...,K.

Using eq. (8), one may recast the governing equa-
tion (1) in a system of (2N + 1)K equations in
the (2N + 1)K unknown envelope components by
defining

Q =diag(Qy ... Qy),
B()=[b/(t)---BL(]", )

QX)) =[al X)) ---ak X)),
(X)) =[iT X)) ---iE X))

to obtain the NE equation
d~ ~ TRS Yo 3
EQ(X) +0'Q(X)+ I(X) =B. (10)

The NE equation may be solved by any of the
available methods for numerical solution of non-
linear differential equations (DEs). All DE solvers
discretize the time axis in a set of time points
{#;} and solve for the unknown samples X(z;) one
at a time over the interval of interest; specific
techniques differ in the method of approximation
of the derivative operation, and circuit simula-
tors traditionally employ the trapezoidal or the
backward-difference approximation [15]. With no
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loss of generality, this article makes use of the
backward-difference formula, given as [15]

d~ ~ ~ o~ noo~ o
EQ(Xz‘) ~ a)Q(X;) + Xi a;Q(X;_;), (11)
Jj=

where «; are known constants, m is the order

of approximation, and X; is short for X(z,); for
simplicity eq. (11) assumes a constant time-step
approximation, but all of the following may be
applied to adaptive time-stepping algorithms as
well.

Upon substitution of the derivative approxima-
tion in the NE system, one obtains a set of non-
linear algebraic equations, one for each envelope
sample, of the form

F(ii) = aoa(ii) + QT(N)(X‘) +f(ii)

i (12)
+A,=0, i=0,..

LM -1,

where K,- is a vector of known quantities. At
each step i, the solution is found by the Newton—
Raphson iteration,

Te(XPOXP = Jp(XPOXP - FXP), (13)
where, as usual, Jp is the Jacobian matrix of F,
Jr = aplg + Q' J5 + Ji. (14)

The evaluation of a(il) [and T(X))] _pro-
ceeds in the following way. Recall that X; =
[xI'(t), ..., %(¢,)]", and recall the definition (3)
of X,(t;). By arguments that were used to arrive
at eq. (8), X, (¢;) may be viewed as a set of Fourier
coefficients that is related, by the inverse discrete
fourier transformation (DFT), to a set of samples
of x,(t); the samples are taken at a set of 2N + 1
time instants, spaced uniformly by 27/(2N + 1)w,
and denoted by ¢. This suggests that Q(X,) may
be calculated in a way that is similar to the pro-
cedure, well known in the method of harmonic
balance, for finding the phasor components of a
time-domain nonlinear function, given the pha-
sor components of its independent variables [16].
Let x = [ilT, ..., %£]T be the vector of sampled
nodal waveforms, where X, stores the samples of
x, () obtained from X, (#;) by an application of
the inverse DFT; for each k, the nonlinear rela-
tionship q,(x(¢)) is evaluated at time instants { to
obtain its samples q;(X); and the DFT is applied
to q,(x) to obtain q,(X;). Formally,

QX)) =TI'q(x) =g 'X)), (15)

and an analogous expression holds for T(f(,), r
is the matrix that transforms the nodal envelope
components to samples of nodal waveforms—
formally, a block-(K x K) diagonal matrix, each
block being a (2N + 1) x (2N + 1) DFT matrix.

From eq. (15) one also obtains the formula for
calculating JQ()N(i):

S(X) =181
T =12, (16)

and an analogous expression holds for Jf(ii). The
term dq/Jx is a block-(K x K) matrix with diago-
nal blocks, where the (j, k)th diagonal block con-
tains the samples of the (j, k)th element of dq/dx
evaluated at Z.

Distributed circuit elements are included in the
NE equation as follows. Each element contributes
a term of the form

[ W= ox(ryan (17)

to the left-hand side of the governing circuit equa-
tion (1). Here, h’(¢) is the inverse Fourier trans-
formation of H(w), the frequency-domain modi-
fied nodal description of the distributed element.
With the assumed form (3) of x(¢), the elements
of eq. (17) may be expressed as

K oo N A
> [ -] = sere .
i=1"7%°

n=—N
k=1...K. (18)

The impulse response of practical distributed ele-
ments decays to zero over an interval that is small
compared to the inverse of the bandwidth of com-
plex envelopes ; ,(t). Hence, a low-order Taylor
series expansion of X; ,(7), about ¢, may be used
to obtain an accurate approximation to the convo-
lution integrals; the first-order expansion reduces
eq. (18) to

K T
| M0 + B G500 | weo,

k=1,...,K. (19)

As before, %x;(f) is the (2N + 1)-vector of real
and imaginary components of the ith unknown
variable and H, ;, H; ; are tridiagonal matrices
constructed from real and imaginary parts of the
(k, i)th element of H’(w) and (d/dw)H’(w),
respectively. Equation (19) may be written in



block-matrix form and incorporated in a sim-
ple way in the NE equation (10) by appending
the contributions of distributed elements to
(d/dt)Q(X) and I(X).

A common application of the NE method—
and the one that is of primary interest in this
article—is the analysis with digitally modulated
signals for an accurate calculation of adjacent-
channel power and various measures of efficiency
and gain. Now, digital modulation envelopes are
random signals that must be approximated by
finite-length waveforms for the purposes of NE
analysis. To enhance the accuracy and repeata-
bility of the simulations, two conditions on the
input signal are imposed in this article: it should
be (1) “long” and (2) periodic. A long sequence
reduces the run-to-run variations of the results,
512 data pulses being commonly adopted as the
minimum for acceptable repeatability; the con-
dition of periodicity eliminates the potential loss
of accuracy in the spectral analysis of simulation
results.

Thus, the steady-state response of the NE
equation to a periodic waveform of a long period
is sought. Since the envelope period is long, and
since practical amplifiers exhibit startup transients
that last no more than a few envelope pulses, the
following approach is used to find the steady-state
response: if the envelope of the source signal
is periodic on [0, T], the circuit is solved over
[0, T + AT], where AT is a predefined interval
that is small in comparison to 7. The solution
X(¢) is assumed to have reached the steady state
on [AT, T + AT] and may be accurately Fourier
analyzed on that interval. This approach, although
heuristic, is inexpensive and adequate in practice.

Once the solution X(¢) is found, network func-
tions are computed by simple postprocessing
steps. The following presents a means of adjust-
ing circuit parameters in a way that performance
indicators match their specifications.

3. OPTIMIZATION

The formulation of the optimization problem is
based on the principles established in ref. [17]. Let
p denote the vector of P arbitrary variable param-
eters and let the desired performance be defined
as a set of S; lower bound and Sy upper bound
specifications of the form

j=17""SL’

j=1,...,SU,

rl,j(P)Zsz,j,

(20)
ru,j(p) = su,ja
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where s; = [s; ;] is the vector of lower bound spec-
ifications, s, = [s, ;] is the vector of upper bound
specifications, and r;(p), r,(p) are the vectors of
response functions that correspond to s; and s,,.
Note that equality requirements r;(p) = s; may be
imposed by simultaneous upper and lower bound
specifications of the form (20).

To quantify the discrepancy between the
desired and the actual response, vector e(p) of
S =8 + Sy error elements is defined as

e(p)=s.;—rp), j=1,...,5,
ol . e
eSL+j(p):ru,j_su,j(p), i=1...,8,

so that a nonpositive error indicates that the cor-
responding specification is satisfied.

Design optimization is based on searching for
the minimum of an objective (cost) function that
encompasses the goals defined by eq. (20). This
article makes use of the generalized least pth
objective function [18] given by

E _ [ZjeJ |ej|P]1/pr J nonempty,

(p) = - le(—ej)‘p]fl/p, otherwise,

(22)
where J denotes the index set J = {jle; > 0};
p is a parameter that allows for design flexibil-
ity [17, 18] and should not be confused with the
notation for variable parameters.

An appealing feature of the generalized least
pth objective is that it allows the optimization to
proceed once the specifications are satisfied. This
property is useful in the design of power ampli-
fiers where it is common to attempt to exceed the
linearity and efficiency requirements by as much
as possible.

As mentioned in the introduction, gradient
optimization is very effective in finding the set of
variable parameters that minimize cost functions
such as eq. (22). There are several mature gradi-
ent optimization algorithms, but central to their
effectiveness is efficient and accurate computation
of the parameter-space gradient

JE  JE T
V,E(p) = [——} . (23)
dp1  dpp
The next section deals with methods for efficient
gradient computation, designed specifically for
the NE method.
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4. GRADIENT CALCULATION

4.1. Preliminaries

Assume that all performance indicators are
expressible as functions of the vector Py, =
[Poi--- PQQ]T, where a generic P represents the
power dissipated in a branch of the circuit over
some frequency band (). The following methods
are not limited to such performance indicators,
but it is readily verified that those of present
interest—such as various gain, efficiency, and dis-
tortion definitions—may all be expressed in such
form.

Based on signal definition (3), the power dissi-
pated in any circuit branch, over a frequency band
Q located near the mth multiple of the carrier fre-
quency, is given as

Po=2Re[ ¥ V,.I5.). (24

n: mo +nwyef)

where I7m, , and 7,,17 ,, are the complex Fourier coef-
ficients of the mth envelope component of the
branch voltage and current and wy, = 27/MT is
the envelope frequency resolution. In the sequel,
the carrier index is dropped for simplicity.

By the chain rule of differentiation, the cost
function gradient becomes

VoE = Jp, (D) (Po) Ve E. (25)

The last two factors on the right-hand side are
known from explicit expressions for the cost
function and the performance indicators. What
remains to be found, therefore, are the elements
of the Jacobian Jp (p),

dPg

ap”’
for all Py € Py and p € p. From eq. (24), one
immediately obtains

(26)

JdP, o7V 071
—2_2Re Y} [ nT + } (27)
(9[7 n: mo +nwyef) (?p p
where
t?Vn l AT+T 9D ﬂnwut dt (28)

&pZT AT &p

and a similar expression holds for the current
derivative. Note, dV,,/dp is just the nth Fourier
coefficient of the partial derivative ¢v/dp. Thus,
the problem of derivative calculation has been
reduced to finding d9/dp and di/dp, the quanti-
ties that are in this article referred to as envelope
sensitivities.

4.2. Envelope Sensitivity Equation

In this section, an equation for parameter sensi-
tivities of the nodal envelope waveforms

~ aX(t)
Z,m=" (29)
is derived. Any voltage or current that is needed in
formulating the elements of the power vector (24)
follows from Zp(t), either directly or as a linear
combination of its elements.

To derive the envelope sensitivity equation, the
NE system is differentiated at X(t) with respect to
p, keeping in mind that X(t) = X(p, 1), Q(X(t)) =
Q(p, X(t)) and that similar dependencies on the
parameter vector hold for vectors I and B. Thus,

d . ~
(X7} + I(X)Z,
+5HX)Z, =C(p), (V)
where (NZ( p) is the vector of known elements,

~ J ~ =~ e d dQ.
C(p) = gp{B 1-07Q} - — o 20
observe that 6( p) may be computed explicitly,
using rules that are very similar to those used to
formulate the modified nodal circuit equations.

The envelope sensitivity equation is a linear dif-
ferential equation that may be solved in a manner
similar to numerical integration of the NE equa-
tion. Thus, by applying the backward-difference
formula to eq. (30), one obtains a set of M inde-
pendent linear algebraic systems

aOJ(N)(ii)Zpi + QTJa(ii)Zpi
+5(X)Z, =Dy(p),  (32)

where i =0, ..., M — 1 and the known quantities
have been collected in D;(p). By eq. (14), eq. (32)
may be expressed as

JF(ii)zpi = ﬁi(P)- (33)

The envelope sensitivity waveforms are assumed
to reach the periodic steady state on [AT, AT + T7],
as was the case with the NE waveforms in eq. (10).

Note that the computation of envelope sensi-
tivities involves solutions, one for each parameter,
of linear systems similar to those that arise in the
solution of the Newton—-Raphson iteration (13).



On the other hand, the size of problem (13) is the
deciding factor in the approach to its solution; by
“problem size,” one usually refers to the product
of the number of analysis frequencies, 2N + 1, and
the number of nonlinear elements in the circuit,
because these quantities influence the number and
the size of dense blocks in the Jacobian Jg [16].
For small problems, the solution of eq. (13) is han-
dled efficiently by Gaussian elimination (direct)
methods; one resorts to iterative means when the
problem size renders direct methods ineffective.
In either case, the solution method for the NE sys-
tem has an important impact on the solution of the
sensitivity equation, as discussed in the following.

4.3. Numerical Solution of the
Sensitivity Equation

If problem size permits an efficient solution of
the Newton—Raphson iteration by direct methods,
it is here referred to as a small-scale problem.
Given that eq. (13) is solved by direct means,
triangular factors of JF(XOId) are available upon
convergence; XOlGl is the next-to-last guess at the
solution X,. If one assumes that Jg(X,) is well
approx1mated by JF(Xf’ld), the triangular factors
may be reused in the calculation of eq. (33).
Hence, the cost of sensitivity calculation is one
back substitution and one forward elimination per
variable parameter. The substitution and elim-
ination steps are much more efficient than the
process of factoring the Jacobian, so the overhead
of gradient calculation tends to be small.

The assumption that Jp(X%9) represents a good
approximation to the Jacobian JF(ii) is an impor-
tant one, but the authors’ experience is that it does
not appear as an obstacle in accurate computa-
tion of cost function gradients. It is, of course,
possible to factor the Jacobian at the computed
solution and to reuse its factors in the calcula-
tion of sensitivities; this comes at an additional
expense, roughly equal to the reciprocal of the
average number of Newton—Raphson iterations in
the course of the NE simulation—a number in
the neighborhood of 20% in common applications.
However, in all of the authors’ experiments, one
of which will be described in Section 5, the first
approach worked just as well, with gradients that
stood in excellent agreement to those that were
computed by the finite-difference procedure.

A large-scale problem is one that necessi-
tates the application of iterative methods to the
solution of the Newton-Raphson iteration (13).
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Iterative solution methods, most notably the gen-
eralized minimal residual (GMRES) method [4],
have been found very effective in overcoming the
deficiencies of direct solvers in applications to
large problems [5-9]. Large problems result in
large and dense (more precisely, block-sparse with
many large and dense blocks) Jacobian matrices
[16]; since direct solvers require explicit com-
putation and storage of the Jacobian (14), and
since the factoring of large and dense matrices
is an expensive computational task, their effec-
tiveness diminishes with the growth of problem
size. Although iterative methods were introduced
as a means to handle extremely large simulation
tasks [5, 6], their advantages over direct methods
have been observed even in the case of problems
of moderate size [7, 8].

The “secret” of the success of iterative solu-
tion methods, such as GMRES, is that the only
required manipulation of the system matrix—in
this case the Jacobian—is the matrix-vector prod-
uct, and the particular structure of the Jacobian
allows an efficient exploitation of this fact. Recall,

aq aq ai

Jp = a(]F&—EF_l + QTra—gr-l +02T7 (34)
where dq/dx and di/dx are block-sparse matrices
with diagonal blocks (in the presence of dis-
tributed elements, the first and the third terms on
the right-hand side will contain some tridiagonal
blocks, too, as discussed in Section 2); thus, vec-
tor multiplication by Jg requires DFTs and sparse
multiplications only. The storage of Jq/Jx and
di/ox is inexpensive relative to explicit storage of
Jg, because of the absence of dense and large
blocks.

Because of the similar structure of egs. (13)
and (33), GMRES is directly applicable to gra-
dient computation in large-scale problems. How-
ever, recall that small-scale methods featured one
highly desirable property—once the NE iteration
converged, the computation of sensitivities was
a matter of triangular eliminations and substitu-
tions, a relatively inexpensive computational task.
This, in effect, sharing of information between the
NE solution and the sensitivity solution allowed
for efficient gradient computation.

Unfortunately, the GMRES solution of the
NE system does not provide information that
can be utilized for the solution of envelope
sensitivities—one NE iteration costs as much as
the solution of one sensitivity system. The number
of variable parameters, in contrast to small-scale
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methods, strongly influences the efficiency of
large-scale gradient computation. A straightfor-
ward application of GMRES to the solution of
eq. (33)—by repeating the procedure for each
variable parameter—is more efficient than finite-
difference computation, with the speed-up ratio
roughly equal to the average number of Newton—
Raphson iterations in the course of the NE
simulation; however, one is clearly motivated to
seek a better approach.

The authors achieved a noticeable reduction
in the computational overhead, as compared to
repeated application of GMRES to eq. (33)—
by means of the MHGMRES algorithm [10],
a GMRES-like method suitable for multiple
right-hand sides. The method reduces the com-
putational effort by a simultaneous consideration
of all the right-hand sides and a type of “infor-
mation sharing” that will be apparent in the
following. In order to introduce the algorithm,
some background on GMRES is needed [4].

The GMRES method belongs to the class of
Krylov subspace solvers, meaning that the solution
of the general linear system Ax = b is sought in
the form

X €Xy+ Km(A, ro), (35)

where x, is an initial guess, ry = b — Ax, is the
corresponding residual, and K,,(A, ry) is the vec-
tor space defined by span{ry, Ary, ..., A" 'r,}
and known as the Krylov subspace.

In GMRES, one constructs an orthonormal
basis for the Krylov subspace, so that the solution
may be expressed as

X = Xy +me7 (36)

where the columns of V,, are the Krylov basis vec-
tors and y is the vector of expansion coefficients
that is selected subject to minimizing the 2-norm
of the residual

r=>b—Ax. (37)

An orthonormal basis for the Krylov subspace
is constructed by means of the Arnoldi proce-
dure [4], which produces basis vectors that satisfy
the recursion AV,, = V, H, where H is an
(m+1) x m matrix. From eqgs. (36) and (37),
one may derive the following expression for the
residual norm:

Ivll = [V — Hy]l. (38)

Vector y, which minimizes, eq. (38), is the least-
squares solution of the rectangular system Hy =
vl +1¥o0-

By definition of the Krylov subspace, the
GMRES approximation (35) may be written
as Xy + ¢,,_1(A)ry, where g,,_(z) is a poly-
nomial of degree m — 1. Likewise, the resid-
ual (37) may be written as r = p,,(A)ry, where
Pm(z) = 1 — zq,,_,(z). The polynomial p,(z) is
referred to as the GMRES polynomial.

The m-dimensional Krylov approximation is
accepted if the norm of the residual, |r|, is
smaller than a prescribed tolerance. Larger m
lead to better approximations at the expense of
computational complexity and larger memory
requirements. Thus, m is usually fixed, and in the
case that the current approximation is not accept-
able, the GMRES algorithm is restarted with the
current approximation as the initial solution.

Besides restarting, preconditioning is often used
to improve the convergence of GMRES and is
crucial to its effectiveness in circuit analysis [5-8].
The preconditioned system is of the form A~'Ax =
A-'b, where A, the preconditioner, approximates
the system matrix in some sense. A successful pre-
conditioner is not only one that aids convergence
but also one that is inexpensive to store and factor.

With these preliminaries, one can easily sketch
the operation of the MHGMRES algorithm. Sup-
pose one is to solve the general block linear system
AX = B, where the columns of B = [by, ..., bp]
are the P right-hand sides and the columns
of X = [xq,...,Xp] are their solutions. Let
R = B — AX be the residual associated with X,
where R = [ry,...,rp]. In applications to the
problem at hand, the columns of B are the vec-
tors D;(p), and the columns of X are the envelope
sensitivity vectors Z ,;, for all p € p.

Starting from an initial guess X;, MHGMRES
selects the residual ry ,, called the seed, with the
largest initial norm. The seed solution is found in
the regular GMRES fashion, by performing the
Arnoldi procedure to find an orthonormal basis
V.o for the Krylov subspace K,,(A,r; ). The
seed solution is updated, as usual, according to
eq. (36).

In the next phase of the algorithm, one com-
putes the least-squares solutions to H)y; =
Viiio¥o,i for all i # o. Vectors y; are used to
approximate the nonseed solutions according to
eq. (36), and the nonseed residuals are computed
in the usual fashion.

In the final phase of the algorithm, the GMRES
polynomial of the seed, p,, ,(z), is applied to the



current residuals in the form of Richardson’s
iteration,

fori=1,m
X=X+ 'R
R =B - AX

end,

where A; are the roots of the seed polynomial,
constructed as in ref. [10]. The residuals are
checked for convergence, a new seed is selected,
and the procedure is restarted with the current
solution estimate as the initial guess.

The MHGMRES algorithm features a number
of advantages over repeated GMRES. For each
restart, it eliminates P — 1 Arnoldi procedures
that would be called by repeated application of
GMRES. It is memory conserving, in the sense
that Krylov subspace vectors are only generated
for the seed solution. Although the Richardson
iteration is not guaranteed to improve the qual-
ity of approximation, practical safeguards can be
implemented [19] that help prevent unsatisfac-
tory behavior; in all of the authors’ experiments it
behaved favorably, although no precautions were
taken to ensure its convergence. Finally, MHGM-
RES defaults to GMRES in the case of a single
right-hand side.

4.4. Numerical Comparison

The performances of the three methods for the
numerical solution of the sensitivity system—
Gaussian elimination (direct), repeated GMRES,
and MHGMRES—are now compared.

The comparison is illustrated on the circuit
shown in Figure 1, a power amplifier whose
performance is optimized in Section 5. The anal-
ysis was performed at the initial design point
and under normal operating conditions to be
explained in the next section.

The performance of each method was mea-
sured by the numerical overhead of gradient

C3

C1 C2
éjlé L2
L Vg vd -

Figure 1. Amplifier circuit.
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calculation, defined as the average value of the
ratio

Ty
-, 39
Tor (39)
where Ty is the time needed to solve for an enve-
lope sample and Ty is the time needed to calculate
the sensitivity of that sample with respect to all the
variable parameters; the averaging was performed
over the entire solution interval.

To conduct the comparison, the sensitivity vec-
tors Z,(f) were computed with the number of
parameters varying between 1 and 10. The param-
eters were arbitrarily chosen from the various
sources and linear circuit elements. The gradi-
ent of the cost function, also to be described, was
computed by each of the three methods, and the
results stood in excellent agreement (no less than
three significant digits) with each other and with
the finite-difference method. The overhead ratios
are plotted in Figure 2.

As expected, the direct solver is the least
expensive, with the moderate overhead of 22%
with as many as ten variable parameters. Among
the large-scale methods, MHGMRES clearly out-
performs the repeated GMRES method, being
nearly twice as efficient when the number of
parameters reaches 10.

The comparison between the two large-
scale methods was performed under identical
conditions—all the solutions were approximated
to a relative tolerance of 107'%||b||, where |b| is
the norm of the corresponding right-hand side,
and with the maximum Krylov subspace dimension
of 15. The preconditioner is the block-diagonal

250 S
-8 Repeated GMRES
-6- MHGMRES
2001 | = Direct 1
& 150f :
z )
3
=
g 1()()_
50 :

1 2 3 4 5 6 7 8 9 10
Number of variable parameters
Figure 2. Performance of repeated GMRES, MHGM-
RES, and direct methods in the solution of the envelope
sensitivity equation
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matrix obtained by evaluating the Jacobian at the
DC bias point. The algorithms were tested on cir-
cuits of different size (as few as 400 variables and
as many as 2000) and at different driving condi-
tions, so far with the same general result—a useful
improvement in the speed of gradient calculation
by means of MHGMRES.

5. EXAMPLE

The concepts of Sections 2-4 were applied to
design optimization of the circuit in Figure 1. The
aim was to achieve an output power of at least
24 dBm, a drain efficiency of at least 50%, and an
upper adjacent channel power ratio (ACPR) of at
most —35 dB. The circuit operates at 5 GHz, with
a fixed 5-V supply, and with an available source
power of 10 dBm. The input is a raised-cosine fil-
tered 7/4-DPQSK-modulated carrier (differential
phase shift keying), with a data rate of 10° sym-
bols per second. The field effect transistor (FET)
is described by the Curtice-cubic nonlinear model
that includes terminal parasitics.

The initial design was performed by single-tone
load pull simulations to find a gate bias and load
conditions that may achieve the specifications.
The input matching circuit was designed to match
the source resistance at the design frequency and
at the nominal gate bias. The initial design pro-
vided 25.4 dBm of single-tone output power and
a drain efficiency of 53%.

Next, a modulated signal simulation was per-
formed according to principles described in
Section 2. The circuit consisted of 23 nodal
variables and the analysis included 10 carrier
harmonics (including the DC component); this
results, at each time step (12), in a nonlin-
ear system of dimension 437. As in most cases
where a circuit is operated at the knee of the
gain compression curve, the output power of a
(varying-envelope) modulated input is lower than
that of a single-tone input with equal available
power. In this case, the output power decreased
to 24.9 dBm, with a corresponding decrease in
efficiency to 49.5%.

The circuit was next optimized using the meth-
ods of Section 3 and 4 to increase the output
power and efficiency to the specified levels;
the distortion specification was expected to be
unattainable under the operating conditions and
it was, for the time being, left out of consideration.

Letting r; ; denote the power measurement and
1, denote the efficiency measurement, the error

vector was defined as

eg=24—r, e; =50—r1,,, (40)
and the cost function was assembled according
to eq. (22), with p = 2. The optimization vari-
ables were the load matching elements C; and
L, and the bias level V,. The optimization algo-
rithm was a quasi-Newton gradient method from
the MATLAB suite of optimization utilities. The
optimized performance and the corresponding
parameter values are shown in Table I. Clearly,
the power and efficiency specifications were sat-
isfied, but the ACPR was well below desired. In
order to improve the linearity performance, the
amplifier was placed inside a feedforward loop, as
shown in Figure 3. The loop operates as follows.
The distorted signal at the output of the amplifier
may be thought of as a linearly scaled version of
the input plus a distortion component. The undis-
torted input and the distorted output are sampled
by the first two couplers, and their scaled and
phase-shifted versions are added to produce, at
the output of the combiner, a scaled version of
the distortion component only. The scaled distor-
tion is amplified, phase shifted, and added to the
output signal, through the last coupler, to reduce
the output distortion. The variable phase shifter,
attenuator, and small-signal amplifier are adjusted
to provide amplitudes and phases that result in
proper signal cancellations.

TABLE I. Amplifier Performance before and after
Optimization

Performance Before After
indicator optimization optimization
Output Power (dBm) 24.9 25.0
Efficiency (%) 49.5 56.0
ACPR (dB) -27.0 —24.6
Variable Before After
parameter optimization optimization
C; (pF) 1.27 1.84
L, (nH) 1.60 2.28
Vg V) —0.80 —-0.84
—1 |
— 1

Figure 3. Feedforward linearization network



TABLE II. Amplifier Performance before
Linearization and after Optimization of the
Feedforward Loop.

Performance Before After loop
indicator linearization optimization
Output power (dBm) 25.0 24.1
Efficiency (%) 56.0 51.5
ACPR (dB) —24.6 -37.0
Variable Before After loop
parameter linearization optimization
G, (pF) 0.45 0.56
L, (nH) 2.6 2.5
PH (deg.) 2.8 -5.7
ATT (dB) —-13.2 —124

G (dB) 46 46

The improved linearity comes at the expense
of some output power loss: unavoidably, small
amounts of power flow through the coupled ports,
and some power is lost in the direct path of the
three couplers. On the other hand, return losses
are, in principle, controllable. Although the initial
design provided low single-tone return loss, the
change in the load conditions and the gate bias
level had an adverse effect on power reflection at
the gate port. For this reason, in addition to vary-
ing the adjustable parameters PH, ATT, and G of
the feedforward loop, the components L; and C,
of the input matching circuit were varied too.

The optimization was carried out as before, this
time by adding a third specification as

63 = ru’1 + 35, (41)

where r, ; denotes the upper ACPR measure-
ment. The initial values of the loop elements
were selected by inspection of the amplifier’s
single-tone distortion curves and the scattering
characteristics of the various distributed compo-
nents. The performance of the amplifier and a
plot of the output spectra, before linearization
and after optimization of the feedforward loop,
are shown in Table II and Figures 4 and 5.

6. CONCLUSION

A method for optimization of RF amplifiers for
digital communications has been proposed. The
method is rigorous and efficient, based on the
following features: (1) performance indicators
are calculated by accurate NE simulations, (2) it
employs gradient optimization, and (3) gradients
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Figure 5. Output spectrum—optimized design.

are calculated by efficient means, starting from
sensitivity analysis of envelope waveforms.

The method finds use in many common design
tasks—adjustment of bias conditions for maxi-
mum power and efficiency, design of linearizing
networks, and the design of out-of-band load con-
ditions for optimal nonlinear performance. It is
easily extendible to other forced nonlinear cir-
cuits, such as RF and microwave mixers. Finally,
it is of immediate interest in transistor modeling
to improve model accuracy in digitally modulated
signal simulations.

ACKNOWLEDGMENTS

The authors would like to express their gratitude
to Dr. Valeria Simoncini of CNR, Italy, for provid-
ing them with an implementation of the MHGM-
RES algorithm. This research is supported by the
DDRE Multidisciplinary University Research Ini-
tiative (MURI) and managed by the ARO under
grant DAAH04-96-1-0377.



364

Borich, East, and Haddad

REFERENCES

1.

P. Feldmann and J. Roychowdhury, Computation
of circuit waveform envelopes using an efficient,
matrix-decomposed harmonic balance algorithm,
Proc Int Conf CAD, 1996, San Jose, CA, pp. 295-
300.

E. Ngoya and R. Larcheveque, Envelope transient
analysis: a new method for the transient and steady
state analysis of microwave communication circuits
and systems, Proc Int Microwave Symp, San Fran-
cisco, CA, 1996, pp. 1365-1368.

V. Rizzoli, A. Neri, F. Mastri, and A. Lipparini,
A modulation-oriented piecewise harmonic-balance
technique suitable for transient analysis and digi-
tally modulated signals, Proc European Microwave
Conf, Prague, 1996, pp. 546-549.

Y. Saad, Iterative methods for sparse linear sys-
tems, PWS, Boston, 1996.

R. Melville, P. Feldmann and J. Roychowdhury,
Efficient multi-tone distortion analysis of analog
integrated circuits, Proc Custom Integrated Circuits
Conf, Santa Clara, CA, 1995, pp. 241-244.

V. Rizzoli, F. Mastri, C. Cecchetti, and F. Sgallari,
Fast and robust inexact Newton approach to the
harmonic-balance analysis of nonlinear microwave
circuits, IEEE Microwave Guided Wave Lett (Oct.
1997), 359-361.

R. Telichevesky, K. Kundert, I. Elfadel, and
J. White, Fast simulation algorithms for RF circuits,
Proc Custom Integrated Circuits Conf, San Diego,
CA, 1996, pp. 437-444.

M. Gourary, S. Rusakov, S. Ulyanov, M. Zharov,
K. Gullapalli, and B. Mulvaney, Iterative solu-
tion of linear systems in harmonic balance
analysis, Proc Int Microwave Symp, Denver, CO,
1997, pp. 1507-1510.

V. Rizzoli, A. Neri, F. Mastri, and A. Lipparini,
Modulation-oriented harmonic balance based on

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Krylov-subspace methods, Proc Int Microwave
Symp, Anaheim, CA, 1999, pp. 771-774.

V. Simoncini and E. Gallopoulos, An iterative
method for nonsymmetric systems with multiple
right-hand sides, SIAM J Sci Comput (July 1995),
917-933.

V. Rizzoli and A. Neri, State of the art and
present  trends in  nonlinear = microwave
CAD techniques, IEEE Trans MTT (Feb. 1988),
343-365.

J. Bandler, Q.-J. Zhang, and R. Biernacki, A unified
theory for frequency-domain simulation and sensi-
tivity analysis of linear and nonlinear circuits, IEEE
Trans MTT (Dec. 1988), 1661-1669.

V. Borich, J. East, and G. Haddad, Computer-aided
optimization of adjacent channel power in nonlin-
ear communications amplifiers, Proc Int Microwave
Symp, Anaheim, CA, 2000.

J. Sevic, M. Steer, and A. Pavio, Nonlinear anal-
ysis methods for the simulation of digital wireless
communication systems, Int J Microwave Millime-
ter Wave CAE (May 1996), 197-216.

J. Vlach and K. Singhal, Computer methods for cir-
cuit analysis and design, Van Nostrand Reinhold,
New York, 1994.

K. Kundert and A. Sangiovanni-Vincentelli, Simula-
tion of nonlinear circuits in the frequency domain,
IEEE Trans CAD (Oct. 1986), 521-535.

J. Bandler and S. Chen, Circuit optimization:
the state of the art, IEEE Trans MTT (1988),
424-443.

J. Bandler and C. Charalambous, Practical least pth
optimization of networks, IEEE Trans MTT (Dec.
1972), 834-840.

N. Nachtigal, L. Reichel, and L. Trefethen, A hybrid
GMRES algorithm for nonsymmetric matrix iter-
ations, SIAM J Matrix Anal Appl (July 1992),
796-825.

BIOGRAPHIES

Vuk Borich was born in Serbia in 1973.
He earned the B.S.E.E degree (magna
cum laude) from the General Motors
Y Institute in 1996. During spring and
fall seasons of 1992-1996 he worked at
~ 28 Magnetek, Inc. and Krause Systems as
: an engineer-in-training, where his duties
included industrial control and network
programming. He joined the University

of Michigan as a research assistant in 1996 and obtained the

M.S

.E.E. degree in 1997. He is now a Ph.D. candidate at the

University of Michigan involved with studies of nonlinear dis-
tortion in microwave subsystems.

Jack East received his B.S.E., M.S. and
Ph.D. degrees from the University of
Michigan. He is presently at the Solid
State Electronics Laboratory at the Uni-
versity of Michigan. His research interests
include microwave and millimeter-wave
device design, fabrication and measure-
ments, and the analysis and design of
communications systems.



George 1. Haddad received the B.S.E.,
M.S.E., degrees in electrical engineering
from the University of Michigan. In 1958
he joined the Electron Physics Labora-
tory, where he was engaged in research on
masers, parametric amplifiers, detectors,
and electron-beam devices. From 1960 to
1969 he served successively as instruc-
tor, assistant professor, associate profes-
sor, and professor in the Electrical Engineering Department.
He served as director of the Electron Physics Laboratory
from 1968 to 1975. From 1975 to 1986 and 1991 to 1997
he served as chairman of the Department of Electrical Engi-
neering and Computer Science. From 1987 to 1990 he was
the director of both the Solid-State Electronics Laboratory
and the Center for High-Frequency Microelectronics. He is
currently the Robert J. Hiller Professor of Electrical Engi-
neering and Computer Science and the director of the Cen-

Optimization of RF Amplifiers 365

ter for High Frequency Microelectronics. His current research
areas are microwave and millimeter-wave solid-state devices
and monolithic integrated circuits, microwave-optical interac-
tions and optoelectronic devices and integrated circuits. Dr.
Haddad received the 1970 Curtis W. McGraw Research Award
of the American Society for Engineering Education for out-
standing achievements by an engineering teacher, the College
of Engineering Excellence in Research Award (1985), the Dis-
tinguished Faculty Achievement Award (1986) of the Univer-
sity of Michigan, and the S. S. Attwood Award of the College
of Engineering for Outstanding Contributions to Engineering
Education, Research and Administration. He is the recipient of
the 1996 IEEE-MTT Distinguished Educator Award and the
IEEE Third Millennium Medal. He is a member of Eta Kappa
Nu, Sigma Xi, Phi Kappa Phi, Tau Beta Pi, the American
Society for Engineering Education, and the American Physi-
cal Society. He is a Fellow of the IEEE and a member of the
National Academy of Engineering.



	1.INTRODUCTION
	2.NONLINEAR ENVELOPE METHOD
	3.OPTIMIZATION
	4.GRADIENT CALCULATION
	Figure 1.
	Figure 2.

	5.EXAMPLE
	TABLE I.
	Figure 3.
	TABLE II.

	6.CONCLUSION
	Figure 4.
	Figure 5.

	ACKNOWLEDGMENTS
	REFERENCES
	BIOGRAPHIES

