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SUMMARY

This paper prezents a full Bayesian analysis of circular data paying special at-
tention to the von Mises distribution. ‘We obtain samples from the posterior
distribution, given an independent sample from the von Mises distribution,
using the Gibbs sampler after the introduction of some strategic latent vari-
ables which ensures all the full conditional distributions are of known type.
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1 Introduction

The aim of this paper is to provide the basis for a full Bayesian analysis
for circular data. In particular we will be concentrating on the von Mises
distribution (von Mises, 1918) though our method of analysis should also be
applicable to spherical and cylindrical data.

Circular data arise naturally in a number of areas and for a recent survey
from a frequentist perspective the reader is referred to the book of Fisher
et al. (1987). Frequentist approaches have also been Arnold (1941), Fisher
(1953), Gumbel (1954), Mardia (1972, 1975) and Bingham (1964). Some
theoretical results in this context also appears in Lévy (1939). The Bayesian
literature is far less extensive and to some extent has not been very success-
ful. This has been due to the difficulties in working with the parametric
distributions commonly associated with circular data, in particular, the von
Mises distribution. The von Mises distribution is the most important distri-
bution in the statistics of circular data and is the ‘natural’ analogue on the
circle of the normal distribution on the real lins.

The earliest attempt at Bayesian inference for the von Mises distribution
was given by Mardia and El-Atourn (1976). However these authors assume
the concentration parameter to be known and only provide point eatimates
for the directional parameter, Guttorp and Lockhart (1988) consider the
case when both paramsters are unknown but are forced to use the poste-
rior maximum likelihood (mode) estimate for the concentration parameter
(Lenth, 1981).

The Bayesian analysis of Bagchi (1987) and Bagcht and Guttman (1988)
also restrict their attention to the von Mises distribution. More recently
Bagchi and Kadane (1991) developed Laplace approximationa to posterior
distributions involving the von Mises distribution. They only provide Bayes
estimates (porterior means) for the cosine of the directional parameter after
taking the concentration parameter to be known,

In this paper we implement a full Bayesian analysis involving the von
Misea distribution in which both parameters are assumed unknown and as-
signed the conjugate prior distribution introduced by Guttorp and Lockhart
(1988). We derive the posterior distribution and via the introduction of
strategic latent variables (Damien and Walker, 1996) are able to use & Gibbs
sampler (Smith and Roberts, 1993) to simulate from this posterior, providing
the basis for & full Bayesian analysis.



2 The von Mises distribution

The von Mises distribution is a symmetric unimodal distribution which is the
most common'model for unimodal samples of circular data. The probability
denaity function is given by

f(Bp, k) = [2rIo(x)} texp[ncos(@ = p)] <8 <27, £ 20,

where e
Iy(x) = (2n)"? /o exp|x cos ¢]dé

is the modified Bessel function of order zero. The mean direction i# 4 and =
is the concentration parameter. .

Prior distribution
We use the conjugate prior suggested by Guttorp and Lockhart (1988).
This ie given, up to a constant of proportionality, by

Fpy 6) o I57%(x) exp{xRo con(s = po)].
We will only be considering the case when c is a non-negative integer which
iz in the spirit of the interpretation of the prior parameters. Essentially the
prior parameters can be thought of as representing ¢ observations in the di-
rection g and Ry can be thought of as the component on the z axis (i.e., in
the known direction) of the resultant of ¢ observations. The uniform distri-
bution on the circle is & limiting case of this prior distribution.

Posterior distribution
Let 8 = (6y,...,04) be a sample of size n. The posterior distribution of
(1, k) 18 given, up to a constant of proportionality, by
f(p, £16) o I7™ () exp[x R cos(i — in)],
where m = ¢+ n and y, and R, are obtained from

Rpcosptn = Rycospig + ) cos 6

and
Rusinp, = Rosinpo + ) _ siné..

In the next section we develop a Gibbs sampler for generating random vari-
ates from the posterior.



3 Inference via the Gibbs sampler

Our approach will depend on the introduction of latent variables to define a
joint distribution with (p,x). This joint distribution will be constructed to
ensure that all full conditional distributiona (required for the Gibbs sampler)
are of known type and can be sampled directly. Damien and Walker (1996)
exemplify this concept in a variety of applications after developing aujtable
theory, and Walker and Damien (1996) extend the ideas to the analysis of
data in the context of neutral to the right processes. Consider first the latent
variables w, with w defined on (0,o0), and v, also defined ou (0,00), and
define their joint distribution with (p,x) by

f(p, &, w,0) e~Fnng (v < eRuA[l-i-ml(ﬂ—ﬂn)]) {wm-l e—w’a(a)}'

Clearly the marginal distribution for (u,x) is 28 required. Our next step
involves writing Io(x) in the form

) = 32w,
k-0
where A = (k!)~?0.5%*. Therefore the joint distribution becomes
o) < o)y Ff )
k0

Next we introduce the latent variable u = (uy,u,...) and z and define the
joint distribution with (i, x,w,v) by
f(p, %y w04, 2)

e‘R""I(v < ePmrliteosly—inll £ < w"‘“){c"“ ﬁ I(u;, < e"‘””"")}.
k=t

Again it is clear that the marginal for distribution for (u, x) is as required.

To implement the Gibbs sampler we need the full conditional distributions
(denoted by a *). Also the symbol U denotes the uniform distribution. The
full conditional for z ia given by

f(z)=U(0,u™1)
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and for v is given by
)=V (0’ enﬂ"(lhﬂ(“-#n)l).
The full conditional for 4 is given by

fH(w) =U(A),

where A is given by the set p, +cos™![(Rax)~? log v = 1]. The full conditional
for w is given by

fr(w) o< eI [z < w < min{—(Are?*) log ).
and the full conditional for x is given by
£7() oc 6B I{max{0, v} < % < ming {[~(wAx)™ log w]/eNY),

where vy =logv/[R4 + Ry, cod(ps — pn)]. Lastly, the full conditional for each
of the uy is given by .
[lu) = U(U, g ohnn )

[t is clear that we cannot sample all the uis since there are an infinite number
of them. However we do not need to sample all of them in order to implement
the Gibbs sampler (recall it is the (4, k) samples we are interested in). In fact
it it easy to see from the full conditionals of w and x that we only need to
obtain ming{—(Ack?*)~ loguz} and ming{[={whi) " logu,)/@M}. We will
only concern ourselves with the former of these as the latter will follow by
essentially the same method,

Since the full conditional for uy is the uniform distribution on (0, e=%***)
we can take uy = nye~ " where 1, are iid U (0,1) and 1@ is the ‘current’ w.
Therefore the upper bound for the (exponential) full conditional distribution
of w is given by

' miny {® — ax(x)log x},

where ag(x) = (Myx?*)~1, and note that ay — co. Essentially then we only
need to consider {fFx(x) = —ax(x)log m}. In figure 1 wa illustrate 8,(x) (on
log scale) for x =1, 5,10,20,40 and 80 and for each of these it is clear that
obtaining the minimum value is very tractable,

From figure 1 we observe that the minimum value seems to occur when
k is approximately x/2 (certainly for the larger values of x.) This can be
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explained theoretically. Our interest in the following discussion is in under-
standing £ = k : M, = —ay(x)logn where M, = ming{—as(x)logn)}.
Recall that the 748 are iid U(0,1) and so clearly the ‘expected’ value of k
will be that k£ minimising (k!)?(x/2)=**. Taking logarithms we see that this
reduces to finding that k¥ which minimises log k! — klog(x/2). If we allow &k
to take non-integral values and replace k! by T'(k+1), where ' represents the
gamma function, then we want that k such that ¥(k+ 1) =-log(rx/2) (here ¢
is the digamma function), According to Abramowitz and Segun (1968) the
asymptotic formula for ¥ is given by ¥(k) = logk — 1/(2k) — 1/(12k)? ...
and so a good approximation for the required k (in particular for large ) is
provided by x/2.

To investigate this point further and to see what the variance of k looks
like we simulated 1000 Mso random variables and the resulting histogram
representation of the sample is given in figure 2, The mean value of the
sample is 39.8 and the standard deviation is 4.6.

4 Numerical examples

Ezample 1, Here we consider the von Mises distribution and the roulette
data with sample size 9 (see Mardia 1972, p.2). We simulated from the joint
posterior distribution for (g, 4) using the algorithm described in Section 3.
We take ¢ = 0, go = 0 and Ry = 0 and the resulting marginal posterior
distributions for cosp and « are presented in figure 3.

Ezample 2, We also consider the data set presented in Guttorp and Lock-
hart (1988, Table 1.) Seven signals from an unknown location (the target)
are picked up at observed compass readings by receiver stations at known
locations. If y; is the true direction from station i to the target then

F(6i}pi, x) m [2xIo(x)] ™" exp|x coa(8; — ).

Therefore only minor modifications are required to the algorithm outlined in
the previous section. We take a flat prior for the y; and take

F(x} o< I5%(x) exp( Ror)
as the prior for » with (Ro,c) = (5,5) (see Guttorp and Lockhart for this

prior and alternatives). The posterior plot of the location of the target is
given in figure 4.



5 Discussion

In this paper we have provided a full Bayesian analysis of circular data mod-
elled via the von Mises distribution. It is quite straightforward to extend
the idea of latent variable substitution resulting in full conditional distribu-
tions of known type in the Gibba sampler to observations on the surface of
& p-dimensional hypersphere S, of unit radius and centered on the origin.
This would make use of the von Mises-Fisher digtribution (see, for example,
Mardia and El-Atoum, 1976) with density function given by

F(8lp, &) = cp(x) explep'd],

whera as before u is the mean direction, x the concentration parameter and
cp(k) = xE=VA/[(20)?/1,_1)/] i the constant factor where I,(x) is the
modified Bessel function of the first kind given (which is important to us) as

the series .
_ & (x/2)5k4~f
B = L S Tk DTG )

where I is the gamma function. Therefore we can procesd in the same way as
for the circular data using the conjugate or noninformative priors proposed
by Kardia and El-Atoum (1976).
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Figure 1: Plots of log beta (k,x) versus k for x=1,5,10,20,40 and 80
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Figure 2: Histogram approximation of the densty for Mg
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Figure 3: Histogram approximation of the marginal posterior densities for
cosp (top) and « (bottom)
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Figure 4: Posterior plot of location of the target
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