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STRUCTURAL EQUATION MODELS WITH
UNOBSERVABLE VARIABLES 'AND MEASUREMENT ERROR:
ALGEBRA AND STATISTICS

ABSTRACT

Several issues relating to goodness of fit in structural equations are
examined. It is shown that the convergence and differentiation criteria, as
applied by Bagozzi, do not stand up under mathematical or statistical analy- }

sis.

It is argued that the choice of interpretative statistic must flow from the
research objective. When this is done, it is demonstrated that the Fornell-
Larcker Testing System is internally consistent and that it conforms to the

rules of correspondence for relating data to abstract variables.



STRUCTURAL EQUATION MODELS WITH UNOBSERVABLE VARTABLES
AND MEASUREMENT ERROR: ALGEBRA AND STATISTICS

Introduction

Although structural equation models with unobservables represent a con-
siderable step forward for our ability to study marketing phenomena,
there are several unresolved problems and many areas of confusion related to
the application of these models. In his comment, Professor Bagozzi (1981) makes
an important contribution to a much needed debate of some of the issues in-
volved. He questions our results because parts of our numerical analysis do
not conform with certain "logical" criteria} Further, Bagozzi contends that

our proposed testing system suffers from inconsistencies and violations of

model specification.

This reply will show that this criticism is unfounded. Algebraic ana-
lysis will demonstrate that the criteria proposed by Bagozzi are not rele-

vant. Statistical theory indicates that they are unreliable. It will also

be shown that there are no inconsistencies or violations in our testing

system.

The Algebra of Factor Analytic Structural Modeling

Our original article demonstrated the irrelevance of the overall likeli-
hood ratio chi-square test for the evaluation of relationships betwen abstract
variables (latent variables, theoretical constructs, unobservables). In view
of the common practice of proclaiming support for one's theory on the basis of a
good chi-square fit (sometimes without even considering that most of the degrees
of freedom may be associated with the measurement model), it seemed to us that

there was a need to explain the nature of the test.



Although it is perhaps "well-known" that the chi-square statistic evaluates

the structure of underlying relationships and not their strengths, there is,
nevertheless, a relationship between structure and strength of variable rela-
tionships. As shown in our original article, it is what we termed "structural
consistency" that determines the degree of fit. It was also shown that struc-
tural consistency is easier to achieve when the observed correlations are
small. This means that, givén an imposed theoretical structure, high correla-
tions will result in a higher chi-sqﬁare (i.e., a worse fit) than low correla-
tions. 1In other words, structural consistency can decline as both measurement
and theory improve (as measured by the size of correlation coefficients) and

vice versa.

According to Bagozzi, many of the "anomalous" findings of our simulations
can be explained in terms of three characteristics of the cotrrelation matrix.
For example, the good fit (p=.589) of the correlation matrix in the lower right
hand cell of Table 1 in Fornell and Larcker (1981) is presumably due to the
fact that "each of the four cross-construct correlations is (1) in the same
direction, (2) approaches statistical significance, and (3) is not grossly
different in magnitude from its sisters" (Bagozzi, 1981, pP. 7). We will now
show that these three characteristics of the correlation matrix do ggg»explain'

the goodness of fit.

First, the stafistical significance of correlations is irrelevant to. the
chi-square statistic, 2 Second, the direction of sign is neither a necessary
nor a sufficient criterion for goodness of fit. Third, uniformity among cross-
correlations is sufficient, but not necessary. Instead, it is structural con-

sistency that determines the degree of fit. From our numerical analysis it



was shown that the degree of fit was accounted for by the divergence of ob-
served correlation coefficients in the data matrix. However, the manner in
which the matrices were generated (to assure matrices that were positive-

definite, internally consistent, and with elements without very low values)

did not distinguish between necessary and sufficient criteria. Let us, there-

fore, derive the definition of structural consistency algebraically.

The objective of factor analytic structural equations is to find (determine,
test) an underlying model that accounts for the observed correlations. Fol-
lowing the assumptions given by Joreskog (1979) and assuming standardization
for all variables, the expected variance-covariance matrix, §, (i.e., the cor-
relation matrix) for the two—indicator/two—conétruct model with uncorrelated

3
measurement errors can be written:
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In order for I to equal the observed correlation matrix S, certain require-

ments are evident from equation (1).

By multiplying corresponding cross-con-

struct elements, we obtain the following equality:
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For the model to be true (i.e., I = S) it follows that:



(rx1y1) (rxzyz) = (rx1y2) (rxzyl) (4)
which is a vanishing tetrad whose test was originally discussed by Spearman and

Holzinger (1924) and what we refer to as structural consistency.

As wiil be discussed shortly, there are two estimates for every para-
meter in this model. If equation (4).1s satisfied, the two estimates are iden-
tical. Any departure from structural consistency, and thus from the equality
imposed by equation (4), implies that the pairs of correlation coefficients are
in disagreement. Stated differently, the model cannot account for the ob-
served correlations. As a result, goodness of fif will suffer. Accordingly,
goodness of fit has little to do with the statistical significance of the raw
correlation coefficients (as long as they are nonzero) or with the sign of
these coefficients. Further, uniformity of cross-correlations is not neces-
sary. It is the product of the pairs of cross-correlations that must be

uniform.
AY

If the model is true, the equalities of equation (4) must hold in the
population. 1In a sample, we are likely to find divergence and two different
estimates are obtained for each parameter. If these estimates are not signi-
ficantly different, it is concluded that structural consistency ‘is met. The
two estimates are combined in the maximum likelihood estimation to a single
estimate such that the observed correlations are reproduced as closely as pos-

sible.

To summarize, it follows from equation (4) that even if the pattern of
correlations violate all three criteria suggested by Bagozzi, a perfect fit can

be obtained. This is illustrated in Table 1 where cross—correlations show

different signs, the correlation coefficients are low, and the magnitudes of



the correlations vary. Similarly, if a correlation matrix satisfies all of

4 e s .
Bagozzi's criteria, a poor fit can result. This is illustrated in Table 2.

Convergence and Differentiation

Bagozzi suggests that there are two requirements that must be met "as a

matter of logical necessity" before one can proceed with structural equation
modeling. Following this reésoning, he argues that our first simulation is

a poor example for demonstrating the properties of the chi-square test because
several of the cells in Table 1 (Fornell and Larcker, 1981, p. 42) do not meet
the requirements of convergence in measurement and differentiation in constructs.
Convergence implies that all within-construct correlations are (1) high and (2)
of approximately the same magnitude. Differentiation is satisfied if the cross-
correlations are (1) high, (2) uniform, and (3) lower than the within-construct
correlations. Should .these criteria not be met, Bagozzi argues, logical grounds

exist for rejecting the model.

We do not find this argument compelling, for three reasons. First, as

we already have shown (equations 1-4), convergence and differentiation are not
relevant to the properties of the chi-square. Thus, the criticism that parts

of our empirical analysis of the chi-square do not satisfy convergence and dif-
ferentiation criteria is irrelevant. This was also illustrated by our second
simulation for which results equivalent to the first simulation were obtained
after correlation matrices that failed to meet discriminant and convergent valid-
ity were deleted. Second, it seems "counterproductiveh to evaluate structural
equation models with unobservables by inspecting the raw correlation coefficients.

Third, to the extent that measurement error can be removed from the structural



parameters, convergence and differentiation at the observed level have little

meaning. Let us now develop the rationale behind these contentions.

Comparing the magnitude of correlations between observed variables for
the assessment of convergence and discrimination is subject to several limita-
tions. . There is no need to revert back to the ambiguous rules of thumb
originally proposed by Campbell and Fiske when more objective and powerful
methods are available. As also pointed out by Bagozzi, the raw correlation
coefficients are affected by both random and systematic (e.g., measurement)
error. Any attempt to assess convergence and differentiation by inspecting
the relative size of these coefficients does not take this into account and
the risk of drawing false inferences would be substantial. More powerful
validity assessments can be accomplished within the context of the structural

equations model, where both types of errors can explicitly be taken into account.

Let us first illustrate how the structural equation model handles system-—
atic measurement error. The algebra for the two-indicator/two-construct model

can be used to explain this theory. From equation (1) we know that:

)

A A = r
X1 X2 X1 X2
A A r (6)
yi y2 = yYiy2
Substituting (5) and (6) into equation (3) and equation (4) gives:
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solving for 7y gives
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If equation (9) holds, the indicators provide consistent information, system-
atic error is not present, and measurement error does not affect the estimate
of the abstract correction, Y. As in equation (4), perfect consistency cannot
be expected for the sample Because of random error. If the two estimates from
equation (9) are not significantly different, convergence and differentiation
aré qot meaningful criteria for validity assessment. This is easy to under-
stand when one realizes that the purpose of validity testing in this context is
to determine the extent of measurement error. If the parameter of interest, Y,
is free‘from measurement error, the application of convergence and differentia-

tion as validity criteria serves no purpose.

The ability to reﬁove measurement error from theory testing procedures is
perhaps the most important methodological contribution of structural equation
models. If one chooses to ignore this advantage. and apply validity considera-
tions to the raw correlations between observed variables, there is little
reason to use structural equation modeling with unobservables. It is reversed
logic to use the'observed correlations as evidence for rejecting an untested
underlying model, for it is the purpose of the model to explain the correlations;

fallible as they may be. If the model fails to do this, it is rejected.

Not only can fallible observations be handled, but also observations of
different quality. The requirem;nt of uniformity for correlation coefficients
is not necessary, for it would imply that all indicators reflect the unobserv-
ables equally well. Thus contrary to Bagozzi's conclusion, a valid structural
equations model can be obtained even though two (observed) measures of the same

thing correlate at a lower level between themselves than with some other measure.



Several things should be noted at this point. While the handling of sys-
tematic measurement error in (factor analytic) structural equation models makes
the convergence aﬁd discrimination criteria at the level of observed correlations
unnecessary, there is a "price" one has to pay for this advantage. This is what

we attempted to show in our original article. Note from equation (9) that high

and uniform measurements (in terms of high and uniform within-construct corre-
lations) operate to decrease the estimated correlation (Yy) between unobserv-
ables. Conversely, the lower the quality of observations, the higher the
estimated Y. This leads to the intuitive unappealing result that measure-
ments of high and even quality "deflate" the correlation between abstract

variables, while measures of poor and uneven quality "inflate" this parameter.

To guard against exaggerated interpretations, we developed.a system of
tests that includes analysis of average variance egtracted by unobservables,
the reliability of individual observations and composite unobservables, as
well as examinations of the empirical associations between observed variables
within the context of the model. 1In cases where one is not certain about the
extent of measurement error removal, as when the xz is large relative to the

degrees of freedom in the measurement model or when relevant "third" variables

are excluded, it maybe useful to examine the estimated model parameters in terms

of convergent and discriminant validity. Given equation (9), the risk of ob-
taining an inflated Yy as a result of poor measures is offset by the fact that
it becomes more difficult to satisfy validity criteria from model parameters
(compared to the raw correlation coefficients). This can be shown by deriving

the estimation for the loadings.

From equations (1), (9), (5), and (6) we have:
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The solutions for all parameters can be verified by applying equations (9)
and (16)-(19) to the correlation matrix in Table 1. As can be seen from these

equationsf

the loadings become small and Y increases as within-construct cor-
relations are reduced. As loadings decrease, their standard errors increase.

Thus, our proposed tests for convergence and discrimination become more

stringent.5

Research Objective and Choice of Interpretative Statistics

Another issue discussed by Bagozzi concerns the scope of analysis.
Specifically, he suggests that the assessment of structural equation models
should involve theoretical, methodological and statistical considerations.

A more limited focus, Bagozzi warns, might lead to false and misleading con-
clusions. We support this argument, but it is also essentialito understand

the critical role of research objective in determining the nature and scope of

analysis. The specification of theory and method, as well as the choice of
interpretative statistics must flow from a research purpose or objective

(e.g., description, prediction, explanation). Different objectives require
different approaches. Our article focused on different objectives as they

relate to different inferential and descriptive statistics.

We proposed three different tests associated with different research objec-
tives. If the objective is theory testing at the abstract level, an F-test for
the y estimate was suggested. If the objective is of a more pragmatic nature,
such as predicting (via the model) the variance of the observed criterion vari-
ables from the unobserved explanatory conmstructs, focus should center on Redun-

dancy. Finally, if one is interested in accounting for the variance of the
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y-variables from the x-variables, the Redundancy measure was adjusted by removing

factor indeterminacy. We termed the resulting statistic "Operational Variance."

Bagozzi suggests that there is a contradiction involved in these three
tests because the F-test can indicate a significant structural model parameter
while the tests for Redundancy and Operational Variance may imply that the over-
all relationships are insignificant. This reflects a misunderstanding of the

relationship between the tests. No contradiction exists because we are dealing

with progressivély stronger standards. It is likely that one may find a
significant relationship between unobservables even though the shared vari-
ance with their respective indicators is small (see equations 9-19). The
Redundancy measure takes the lack of shared variance between the construct

and its indicators into account. This is analogous to the situation in can-
onical analysis where a high canonical correlation éoefficient can be obtained
even though redundancy is low (Fornell, 1979). Operational Variance adjusts:
for both lack of shared variance between constructs and indicators and for
factor indeterminacy. Consequently, we do not find it disconcerting that the
test of Clu (100% measurement, 157 theory) in Tagle 9 (Fornell and Larcker,
1981, p. 48) rejects the model based on Operational Variance. The reason ié
that the shared variance between constructs (Yz) is only about 7%. After
adjusting for factor indeterminacy and for loadings that are less than unity
(note that 1007 measurement refers to the starting point of a reduction in
measurement; it does not imply perfect measurements), the resulting shared
variance (i.e., Operational Variance) is too low to be significant. We see

no reason for suggesting that the chi-square statistic provides a "more reason-

able" interpretation here.
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Is "Causal" Analysis Necessary?

In addition to a comprehensive evaluation of structural equation results,
our proposed testing system also offers information about the extent to which
the abstract analysis is removed from the level of observations. Bagozzi
criticizes this aspect of our system because it "shifts the conceptual focus
of research away from causal hypotheses and toward empirical associations'.
However, there are no strong arguments for limiting structural equations to
causal modeling. There are many situations in which it is useful to examine
relationships at the empirical level relative to those at the corresponding
abstract level. As we have shown, there can be a substantial difference be-
tween‘the two. While the marketing theorist is interested in the testing of
hypotheses which relate abstract variables, the applied marketer is perhaps

more confined to that which can be observed.

Moreover, it is not possible to infer causal ordering from the estimated
parameter values per se. Causal models and structural equations are sometimes
used synonymously. We have deliberately avoided the former label in our discus-
sion. The model used in our example (two-indicator/two-construct) can be
shown to be formally identical to a factor analysis with oblique rotation and
has little to do with causality between constructs. In order to infer causa-
lity in the structural equation, one typically needs not only larger models
(with more restrictions) but also a priori knowledge about the values of
structural parameters. In addition, several external criteria must be met (see
for example, Duncan, 1975; Blalock, 1961; Bagozzi, 1980). Forcing the researcher

to make causal inferences when the justification for causal order is questionable
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would only serve go artificially limit the usefulness and applicability of

structural equation models.

Rules of Correspondence

A related issue concerns the rules for relating observed data to abstract
variables. The treatment of an unobservable as a function of its indicators
violates the theoretical model we discuss. As pointed out by Bagozzi, the
model under consideration here is consistent with classical test theory in the
sense that the indicators are assumed to be "reflective" (effects) of their
respective unobservables. We have no .quarrel here. However, we take issue
with the ideé that (1) "formative'" indicators (i.e., producers of or contri-
butors to abstract variables) are contradictory to the '"rules of correspondence
as formulated by philosophers of science" (Bagozzi, 1981; p. ) and (2) that
it is necessary to infer unidirectionality in the analysis of shared variance.
There are many examples in the literature where indicators are formative (see,
Blalock, 1969; Heise, 1972; Land, 1970; Schonemann and Steigler, 1976) and
where both reflective and formative indicators have been used within the same
model (Wold, 1980; Hauser and Goldberger, 1971;- Fornell, 1979; Fornéll and
Bookstein, 1981; Joreskog and Goldberger, 1975). One can also find support for
the notion of formative indicators from general systems theory (Bertalanffy,

7
1968), as well as from philosophy of science (Kaplan, 1964) .

Regardless of whether the model is estimated with reflective or formative
indicators, we do not find that there is a conceptual problem in determining
the amount of shared variance between the abstract variables and their indica-

tors. Nor is there a mathematical problem. Formally, the shared variance
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between standardized indicators and unobservables is equal to one minus mea-
surement error variance (Joreskog, 1979; Wold, 1980).  In essence, the measure
of shared variance is the squared correlation coefficient; it presumes neither

unidirectionality nor causality between the variables involved.

Generalizations

Bagozzi argues that our proposed system is not generalizable to larger
and more complex models. Although there are no fundamental problems involved

in generalizing our methods for measurement evaluation, there are several

difficultiesrassociated Qith«ﬁréviding a single méasure of overall explanatory
power in complex multivariate relationships. If the inferential properties of
Redundancy and Operational Variance are to remain intact through generaliza-
tions, several orthogonality restrictions would have to be imposed. We agree
with Bagozzi tﬁat these restrictions severely limit the possibility of sta-
tistical inference in larger models. In fact, we questioned the feasibility

of deVeloping a single measure that is useful in representing a1l the relation-
ships in a more complicated model. Nevertheless, separate assessments of the
measurement model and the structural model are still possible. For example,

. 8
the redundancy between constructs (Fornell and Larcker, 1981, p. 20) provides

the average variance in n that is explained by §. As such, it has a straight-
forward intgrpretation. It is also similar to what was recommended by Cramer
and Nicewander (1979) in their analysis of six different measures of multi-
variate association. This stétistic does not require the structural equation

model to be specified as a canonical model.

Measures of explanatory power are of vital importance in full information
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maximum likelihood estimation of structural equations. For example, if redun;
dancy between constructs is low, the endogenous unobservables are poorly
accounted for, which suggests the possibility of misspecification as a result
of omitted variables. In full information estimation, all parameters of the
model are affected by omitted variables. Regardless of structural consistency,
the parameter estimates are likely to deviate substantially from their true
value if relevant exogenous variables that are correlated with included vari-
ables are omitted. Under these circumstances, substantive inference, let alone

causal interpretation, becomes little more than an exercise in speculation.

Another useful measure which presents no probleﬁs in terms of generaliza-
tion is the Upper Bound of explanatory power (Fornell and Larcker, 1981, p. 48).
Both Redundancy between constructs and the Upper Bound are inferential beyond
simple models and can be tested by the method provided by Miller (1975). As
for Redundancy (for observed variables) and Operational Variance, statistical
inference is not possible unless the assumptions mentioned previously are made.
At best, these measures should be regarded as descriptive indices of explanatory

power that can be averaged over two-construct systems within larger models.

Summary

Several aspects of the goodness of fit test in structural equation models
were examined. Algebraic analysis demonstrated that the criteria presented by
Bagozzi are not related to goodness of fit. It was also shown that convergence
and differentiation at the level of observed correlations suffer from several

limitations and that these criteria are not applicable to structural equation
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modeling. Further, the purported violations and logical inconsistencies of

our proposed testing system were shown to be unfounded.

Given the many advantages of structural equation models for theory test-
ing and theory building, it is possible that they may fundamentally alter thev
way in which empirical research in marketing will be conducted. Professor
Bagozzi has illustrated this in many pioneering applications. To be sure,
there are several statistical, philosophical, and methodological issues that
are unresolved and in need of further analysis and discussion. The difficulties
posed by these issues should not be overlooked. However, recent research has
been directed to several of these problems. Regarding the problem of sample
size as pointed out by Bagozzi, important insights have been gained into the
sensitivity of the chi-square statistic (Geweke and Singleton, 1980) and
maximum likelihood estimation (Boomsa, 1981; Sprott, 1980). These problems, as
well as several others, (e;é., indeterminacy of factors, improper solutions,
distributional requirements, variable scale requirements, R? analogue) are more
or less specific to factor amalytic structural modgling (e.g., LISREL). It has
been shown (Fornell and Bookstein, 1981; Fornell and Denison, 1981) that many

of them can be overcome by other models of structural equations.



Table 1

A MODEL BASED ON A CORRELATION MATRIX
WHERE CORRELATION COEFFICIENTS ARE INSIGNIFICANT
AND OF VARYING SIGN AND MAGNITUDE

Y Y X X
1 2 1 2
Y 1
1
Y -.260 1
2
X1 -.126 .190 1
X 114 -.171 -.109 1

Standardized Maximum Likelihood Estimates

A 416
1

A ' -.625
y2

A .348
X1

A " -.313
X2

Y -.873

y .238

.827

(;)e [ .60;'
.879

~6 . 902

Chi-Square Statistic = 0
d.f. =1
P=~1(n = 100)



Table 2

A MODEL BASED ON A CORRELATION MATRIX WHERE
CORRELATION COEFFICIENTS ARE SIGNIFICANT, OF THE
SAME SIGN, AND FAIRLY UNIFORM IN MAGNITUDE

Y Y X X
1 2 1 2
Y 1
1
Y .625 1
2
X1 .327 .367 1
X 422 .327 .640 1

Standardized Maximum Likelihood Estimates

A .843
yi
A 741
y2
A .751
X1
A : ' .853
X2
Y ‘ . .564
¥ .682
[.289 ]
% | .45] |
[ 437 o
0
8 - .273 |

Chi-Square Statistic = 6.4745
d.f. =1
P=.01l (n=100)



FOOTNOTES

our analyses are accurate in a purely mathematical

ding to Bagozzi frs
According 9 ' To us, it is a log-

sense but violate certain logical desiderata (P.l!.
ical impossibility for mathematics to violate logl?. It may be that we
are talking about different modes of logic (Bagozzi, 1?81, footnote ?).
Nevertheless, since Bagozzi draws upon the logic of phllosophy of sc%ence
in support of his arguments and because we will ?se-algebrélc an§1y81s

to repudiate them, it is essential that the meaning of logic be in

agreement with mathematics.

Except that when correlations are low and insignificant, it is easier to
satisfy structural consistency. This was shown in our numerical analysis
and will be evident from the subsequent algebraic analysis.

For the reader familiar with path analysis, the expected correlation matrix

L can also be derived from the tracing rule (Jacobson and Lalu, 1974; Blalock,
1964; Werts, Linn and Joreskog, 1974; Costner, 1969; Duncan, 1975, Joreskog,
1970; Goldberger, 1971).

While the cross-correlations are not identical, they are not grossly dif-
ferent from each other.

It is also evident from equations (9) and (16) - (19) that one can obtain
A's > 1 and Y > 1 which would result in negative measurement error and
negative structural equation error, respectively. Such results are termed
"improper solutions" and constitute a common problem in factor analytic max-
jmum likelihood structural equations (Fornell and Bookstein, 1981),

In the testing of these two criteria, sampling error can thenbe taken into
account by using Fisher's z transformation of r, which evaluates the signi-
ficance of the difference in the estimated parameter values.

See Fornell and Bookstein (1981) for a discussion of how to choose between
reflective and formative indicator modes.

Note that redundancy between constructs is different from the overall redun-
dancy index. Redundancy between constructs is applicable to larger models
with multiple n's and &'s and, in contrast to overall redundancy, does not
account for construct-indicator relationships.
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