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Abstract

In challenging 'thc pervasive model of individual actors as cost-benefit analysts who adapt their
behavior by learning from the environments, this paper analyzes the temporal dynamics of both
environmental (individual) learning and biased cultural transmission processes by comparing these
dynamics with the robust “S-shaped” curves emerged from the diffusion of innovations research. The
analysis shows three things: 1) that environmental learning alone never produces the S-shaped adoption
dynamics typically observed in the spread of novel practices, ideas and technologies; 2) that biased .
cultural transmission always produces the S-shaped temporal dynamics; and 3) that a combination of
environmental learning and biased cultural transmission can generate S-dynamics, but only when biased
cultural transmission is the predominate force in the spread of new behaviors. These findings suggest that
biased cultural transmission processes are much more important to understanding the diffusion of
innovations and sociocultural evolution than is often assumed by most theorists. [diffusion of innovations,

cultural transmission, learning, cultural evolution]
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Efforts to understand human behavioral change have produced a multiplicity of different
approaches. Most of these, whether they come from anthropologists, economists, sociologists or political
scientists, share one common core element: individuals select among alternative behaviors by performing
benefit/cost analyses using payc;ff-relevant information (i.e. data about the costs and benefits). Laying
aside the hyper-rational, omniscient beings of classical economics formations,' more plausible approaches
model individuals as goal seekers with limited computational abilities and incomplete information, who
rely on trial & error learning, experimentation, and long experience in similar environments to achieve
locally-effective solutions (Earle 1997; Netting 1993; Harris 1979; Camerer & Tek 1997; Young 1998;
Erev & Roth in press). Using data from the vast diffusion of innovations literature, I argue that human
behavioral change does not result primarily from individual-level, trial & error learning or cost/benefit
analysis. Instead, I show that the dynamics of diffusion demand a prirhary reliance on some form of
biased cultural transmission.

The intuitively persuasive model} of human behavior that pervades the social sciences proposes
that individuals acquire and evaluate payoff-relevant information about alternative behavioral options by
action and interaction in their local social, economic and ecological environments. The adjective “payoff-
relevant” empfxasizes that the information analyzed by individuals is directly applicable to evaluating
behavioral altematives, according to some set of prescribed goals. Such goals may involve concepts like
self-interest, reproductive fitness, social prestige, income or group-benefits, etc. Here, I argue against this
standard model by showing three things: (1) environmental learning models alone, without substantial
contributions from biased cultural transmission, do not generally produce the empirical “S-shaped”

- cumulative adoption curves that dominate the diffusion of innovations literature; (2) biased transmission
models alone, and especially those with a conformist transmission component, consistently produce the
particular S-dynamics founq throughout the literature; and (3) a combined model, with both
environmental learning and biased cultural transmission, allows us to predict the conditions -that pr@uce

the different kinds of empirically-observed diffusion dynamics, and only generates S-dynamics when
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biased transmission predominates.

S-shaped adoption curves

One of the most robust findings from over 3,000 studies in the diffusion of innovation literature is
the S-shaped cumulative adoption curve (Rogers 1995: 23). This vast literature contains data for the
spread of an enormous variety of practices, technologies and ideas in communities and countries
throughout the world. These cases include the adoption of innovations sugh as hybrid corn among Iowa
farmers, bottle-feeding practices among impoverished third-worlders, new governance practices among
Fortune 500 companies, chemical fertilizers in peasant communities, novel approaches to teaching
mathematics (the “new math”) in secondary schools, and the practice of not smoking among Americans.
Typically, the cumulative adoption curve for the spread of these practices has an S-shape. For example,
Figure 1 shows the S-curve that emerged from Ryan & Gross’ classic study (1943) of the spread of hybrid
corn in two lowa farming communities—this general shape captures the temporal dynamics encountered
in a wide range of difﬁsion studies.

However, not all adoption curves are S-shaped. Of the small fraction of curves that are not S-
shaped, most display a single alternzitive shape, which I will call an R-curve. R-curves lack the slow
growth during the initial portion of the spread, which characterizes S-curves (the bottom-left part of the
curve in Figure 1). Instead, R-curves begin at their maximum rate of growth (at # = 0), and then slowly
taper off towards equilibrium (see Figure 3). Coleman et. al. (1966), for example, found that R-curves
describe the cumulative adoption dynamics for thé spread of the practice of prescribing Tetracycline,
among both “interconnected” and “isolated” doctors. R-curves are also characteristic of a variety of non-
social learning processes in which indivfduals acquire increasing proficiency in some skill or ability
through practice (see Jovanovic & Nyarko 1995).% As I will discuss, the ‘combined mode!’ of
environmental learning and biased transmission produces both S- and R-curves, depending on the
parameter values.

To explore the relative importance of environmental (individual) learning vs. biased cultural
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transmission, I have analyzed the dynamics of three models: a generalized individual-learning model, a
biased cultural transmission model, and a combined model. This combined model integrates the first two

models and allows us to compute the relative contribution of each to the S- and R-adoption dynamics.

The environmental learning model

'Figure 2 graphically depicts a simple, though quite general, model of environmental learning for
two behavioral traits.” In the typical diffusion of innovation’s situation, tracking only two traits is
sufficient to capture the essential process. In this model, Trait I represents the presence of the novel trait
(the ‘innovation’), while rait 2 indicates the absence of the trait. If we are, for example, studying the
spread of a new nitrogen fertilizer, an individual possesses trait 1 if he uses the fertilizer, and possesses
trait 2 if he does not use‘jthe fertilizer. The symbol ¢ gives the frequency of individuals with zrait 1 in the
population, while (1-g) gives the.frequency of individuals with trait 2. The‘ normal curve in Figure 2, with
mean |1 and variance o, shows the distribution of relative payoff informatioﬁ provided by the\
environment. Individuals may acﬁuirc this information through observation, experience, interaction
and/or experimentation in the environment, During each time cycle (a fixed time period), individuals
receive one draw from this normal distribution, This single draw provides a measure of the difference in
payoffs (X) between the two alternative behéviors. However, people just don’t switch to a novel behavior
" based on one piece of information, unless the suggested difference (i.e. X) is sufficiently large. How large
this value of X needs to be depends on the quality of environmental information available, which is
captured by [ and 0-2; and on the individual’s ‘threshold of evidence’—which is parameterized by d. If,
for exampl;e, the X drawn during a given cycle falls between —d and +d, the individual stays with their
previous behavior (from the previous time cycle). However, if thé X drawn exceeds d, then the individual
switches to trait 1. If they already possess frait 1, they stick with it. If X falls below —d, th;an the
individual switches, mistakenly, to behavioral trait 2, or retains it if they already have it. This is a
‘mistake’ because the situation depicted in Figure 2, by the fact that p > 0, indicates that behavioral trait 1

is superior in the current environment. Superior means that trait I brings higher payoffs, on average,
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relative to whatever individuals want, strive for, or hope to maximize.

To illustrate this phenomena, suppose a farmer, who currently plants wheat vgriety A, decides to
plant a small patch of his land with a novel wheat seed, variety B, as an experiment.’ This experimental
patch provides our farmer with a single measure of average yield (in kilograms of wheat harvested per
hectare, for example), which he can compare against his average yield for variety A. The difference
between the yield per hectare for the experimental patch and the average yield per hectare for variety A
provides a value of X—an observed difference in payoffs between the two varieties. If the yield from
variety B is about the same as, or less than that from variety A (implying X < d), then our farmer does not
change from variety A. However, if the yield from variety B is sufficiently greater than the yield from A
(X > d), then our fanmer switches and sows only variety B in the following year.

Now, let’s derive the poi)ulation dynamics for the spread of trait I into a group in which
everyone currently possesses behavioral #rait 2. As mentioned earlier, g represents the frequency of
individuals in the popuiation who have adopted.the novel trait (frait 1). Initially, g = 0, but with each time
cyéle we update the value of g. The new value of g, in the next time cycle, is represented as g’ (which
reads “q prime”). Applyiﬁg the individual learning model described above and depicted in Figure 2, we
arrive at the following recursion:

g =P +Lq (1)

The new frequency of individuals with trait 1, ¢', depends on P}, L and q. P; is the probability of
learning the new trait from environmental information obtained during this time cycle. Restafed, itis the
probability that the payoff differences observed between the two behaviors exceeds the threshold of
evidence (d)—it’s also the gray area under the Eurve on the right side of Figure 2. L, is the probability that
the environmental information is inconclusive, represents the area between —d and +d under the curve (in
Figure 2). Individuals who receive inconclusive information will stick with their current behavior. Both
P,, and L are derived from d via the normal distribution shown in Figure 2—Appendix A outlines this

derivation. By iterating equation (1) recursively through successive time cycles, we can plot its temporal
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dynamics and the cumulative adoption curves that it generates (see Figure 3).

For those readers who, like me, are interested in longer-term cultural evolutionary processes—in
which the frequency of different ideas, beliefs, values and practices may change over many generations—
we can interpret equation (1) in a slightly different way. During each time cycle, or perhaps.each
generation, naive individuals (those who do not currently possess a particular behavior) acquire
environmental information about the relative payoffs of alternative behaviors. If the difference in payoffs
is clear (that is, if X is greater than +d or less than —d), then individuals adopt the behavior indicated by
their environmental information. However, if X falls between +d and -4, individuals rely on unbiased
cultural transmission or simple imitation. This means that individuals either copy their parents (also
termed “vertical transmission”), or someone at random from the population. At the popplation_—level,
unbiased transmission simply replicates the distribution of behaviors found in the preceding generation.
Boyd and Richerson (1985, 1988) call this cultural evolutionary model, which combines unbiased
transmission and individual leaming, guided variation.

Just as the above environmental learning model formalizes the cost/benefit model held by many -
social scientists, guided variation captures the fundamental processes thatA many economically-oriented
anthropologists believe underlies much of sociocultural evolution, For example,- while Harris maintains -
that, "As a species we have been selected for our ability to acquire elaborate repertories of socially
learned responses...”(1979: 62), he believes that socioqultural evolption is driven by individuals
opportunistically selecting among cultural/behavioral variants according to their benefit/cost ratios.
Obviously, the second assertion about benefit/cost ratios can dnly be true if the apparent social learning
abilities of humans do not substantially bias the intergeneration transmission of cultural/behavioral
variants. Consequently, Harris’ position, and that of many anthropologists, that sociocultural evolution
results from unbiased social learning plus opportunistic benefit/cost analysis (environmental learning) is
exactly what guided variation attempts to formalize. Having formalized this idea, we can now better
analyze its evolutionary dynamics. If the empirical data shows that cultural transmission biases do

substantially affect the frequency of alternative cultural/behavioral variants from one generation to the
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next,” then Harris® approach fails to capture an important component of sociocultural evolution.

Using data from the diffusion of innovation literature, we can address the applicability of the
environmental learning and guided variation models. If the evaluation of costs and benefits, based on
environmental information, is the dominant force in the spfead of novel practices, then empirically-
observed cumulative adoption curves should reveal the basic R-shape generated by equation (1) and
shown in Figure 3. Interestingly however, most adoption curves constructed from empirical data have the
S-shaf;e shown in Figure 1, not the R-shape seen in Figure 3. An examination empirical S-curves tell us
that the change in g over each time cycle must first increase to a maximum point somewhere in the
middle of the S, and then begin decreasing toward zero. Computing Ag, the change in g over each time
cycle, we get:

Ag =¢'-q=F -4q(1-L) @ |
Note that both P; and (1-L) are positive constants, so Ag must decrease as q increases. Consequently,
equation (1) will never produce an S-shape. Although R-curves do occasionally pop up in the diffusion
literature, S-curves are, by far, the dominant shape of the temporal dynamics. Therefore, either this
general environmental learning model somehow fails to capture the logic of humans as cost-benefit
analysts (maintained by n;any social scientists), or that humans are not primarily individual learners doing -
cost-benefit analysis. Later, after I have completed presenting the basic biased cultural transmission
model and the combined model, I will modify this environmental learning model and add the assumption
that individuals var); in their degree of ‘innovativeness.” As you will see, this modification does not

change the basic results just derived.

The Biased Cultural Transmission Model
Instead of assuming that individuals acquire novel traits by figuring things out on the basis of
pay-off relevant information, a substantial amount of empirical work from throughout the social sciences
suggests that humans rely on social leaming or cultural transmission to acquire the majority of their

behaviors (Tarde 1903; Miller & Dollard 1941; Bandura 1977; Boyd & Richerson 1985; Cavalli-Sforza &
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Feldman 1981; see Henrich 1999 for su@m). However, people don’t simply imitate random things
from random people. Hgm, T’ll describe three categories of biased transmission: direct bias, prestige-bias,
and conformist bias. Under direct bias, people copy ideas or practices with specific qualities, regardless '
of who possesses them. The practice of purchasing and using cooking oil, for example, spreads rapidly
even through remote villages—far from the reach of advertising—because there is something about the
behavior or idea that appeals to people (Boyd & Richerson 1985). Other times; people copy ideas or
practices from individuals with specific qualities or attributes, regardless of the characteristics of the
behaviors or ideas that are copied. Gil-White and I (1999) have demonstrated that people will copy a wide
range of traits from prestigious or successful people, even when the behaviors, ideas or opinions have
nothing to do with the person’s prestige or success. We call this process prestige-biased transmission.
Americans, for example, will use a certain type of cologne, or even shave their heads, if Michael Jordan
does (or they believe he does), despite that fact that Jordan’s scent and hairstyle are probably not
connected to his basketball prowess, prestige and overall success. Finally, under conformist transmission,
humans preferentially imitate ideas and behaviors that are expressed by a majority of the group, over
traits expressed by the minority, even when their personal opinions or behavior will not be known by the
other group members (Baron et. al. 1996; Insko et. al. 1985; see Henrich & Boyd 1998 for theoretical
treatment).

Equation (3) formalizes biased cultural transmission and was deﬁved using basic replicator
" dynamics (Weibull 1995; Boyd & Richerson 1985). As in equation (1), ¢ represents the frequency of
individuals with the novel behavioral trait (trait 1), and g”is the ﬁ'equency of individuals with trait 1 in
the next time cycle.

¢ =qt(1-q)q(r -n)=q+q(1-9)B  (3)
The term (r/- r2), or simply B, ranges from -1 to 1 and represents the overall difference in the

replicatory propensities of traits I and 2. These r’s can each include the influence of prestige-bias,

conformist-bias and direct-bias. For now, we will leave conformist transmission out, and assume that B
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aggregates only the effcct’s of prestige and direct bias. We will also assume that these biases are not a
function of either g or time.® Later, I'll incorporate terms for conformist transmission (which is frequency
dependent) and examine its influence on diffusion. The readér should be aware that equation (3) are not
some special case of cultural transmission, but a general form for any replicator process. It has been
independently re-derived for a variety of purposes in a number of different fields—including economics
(Gintis 2000, Weibull 1995), genetics (Hartl & Clark 1989), epidemiology (Waltman 1974), and cultural
transmission (Boyd & Richerson 1985; Cavalli-Sforza & Feldman 1981; Bowles 1998).

Figure 4 presents four cumulative adoption curves generated using equation (3) for different
values of B. Note the similarity between the empirical curve in Figure 1 and the curves in Figure 4. In
‘fact, the different S-shapes captured in Figure 4 resemble a wide range of the empirical adoption curves
found in the diffusion of innovations literature. This similarity suggests that culﬁral tmnsmission models

may capture an important component of human behavioral change.

Combined Model: learning + biased transmission

So far, I have contrasted two quite different models of human cognition and information
processing. However, it seems both intuitively and empirically true that hu.mans do both cultural
transmission and envirompental learning. That is, we do some imitating and some figuring things out on
our own. Theoretically, I have developed this idea using computer simulations that modeled the bio]dgical
evolution of the parameter d—which, as I discussed earlier, determines an individual’s degree of reliance
on environmental learning vs. cultural transmission (Henrich & Boyd 1998). Under a wide range of
conditions, in both spatially- and temporally-varying environments, this theoretical work suggests that our
reliance on environmental learning is a small, but important, component of human adaptive behavioral
plasticity. Consequently, the question becomes: how much biased cultural transmission must be added tb
the environmental learning (or guided vzm'ation model) to generate the empirically-observed S-curves?
Or, what is the predominate force in human behavioral chénge?

To address this, we combine equations (1) and (3). However, because simply substituting
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equation (1) into (3) gives a slightly different answer than substituting (3) into (1), an additional step is
required. We assume that, during each time cycle, not everyone attempts individual learning and/or biased
transmission. Instead, only a fraction of the population updates their behavior based on one of these two
sources of information. For environmental learning, the symbol & represents the fraction of individuals in
the population that consider updating their behavior via environmental learning per unit time. This can be
thought of as the update rate for epvironmental learning, or as the probability of using environmental
learning in each time cycle. Similarly, the symbol y represents the fraction of individuals in the population
that update with biased cultural transmission per unit time. In both cases, At represents one unit of time,
or one time cycle. Therefore, £At provides the fraction of individuals who consider updating with
environmental leaming in each time cycle, while YAt gives the fraction who deploy biased transmission in
a given time cycle. Applying this additional step to equation (1) yields equation (5):
g, =q(1-EAD+ (B + Lg)EAt = g+ EAH(R +(L~1)g)  (5)
Applying the same process to equation (3) yields equation (6):
@ =q(l-1A) +AHg+q(1-9)B) = g+ At(g +q(l~g)B)  (6)

Since we want to arrive at the derivative of ¢ with respect to time, so we substitute equation (5) . .

into (6) [or (6) into (5)], solve for Ag/At, and then take the limit of Ag/At as At approaches zero. This

gives us:
‘dq_ ~=£(P, - (1-L)q) +vBq(1-q) (M
’ 1 . q q

An examination of the typical S-curve suggests the general form of dg/dt. The rate of change of
the frequency of the novel trait must first ascend to a peak, somewhere in the middle of the S, and then
decline to zero. Figure 5 plots dg/d for both the combined model (CM) and for the environmental
learning model (ENLR). For the environmental learning model, the maximum value of dg/dt occurs at g
= 0, so no S-curve is generated. For the biased cultural transmiséion model (BCT ), the maximum value of

dq/dt (the middle of the S)-occurs at g = 0.50 (curve not shown). For the combined model (without

10
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conformist transmission), the maximum value of dq/dt occurs below q = 0.50. When this maximum value
occurs between ¢ =0 and 0.50, some form of § is produced. When this maximum value occurs below g=
0, the part of the dg/dt curve between g = 0 and 1 looks just like the environmental learning curves.
Consequently, an R-curve, not an S-curve, is ﬁroduced. To visualize this, imagine sliding the CM curve,
shown in Figure 5, to the left until the maximum value of dg/dt drops below zero.

If we take the derivative of (7) with respect to g, set it equal to zero, and solve for q, we get an

expression for the value of ¢ when dg/dt is maximized,

1 (-Ly}
=——1—2 (3

In order to produce the S-shape, mathematically speaking, gy, must be greater than zero, So,

solving equation (8) for gy, > 0 yields:

A\

55 80-D)
4

=¢(~L) ()

Because { and y are both update rates, we can simplify (9) by defining ¢ = {/y, where ¢ represents a ratio
of the fraction'of the population that updates via environmental learning to the fraction that updates via
biased cultural transmission. If the update rates are equal, then ¢ = 1; if people update their behavior more
frequently using environmental information, then ¢ > 1; if people use cultural transmission more
frequently, then ¢ < 1. Figure 6 graphs the S and non—S‘ regions (R-regions ) of B and L. This plot shows
that in ordér to consistently produce S-curves either B, the replicatory bias created by the trait (or the
individual(s) possessing the trait) must be big, or L, the degree to which humans rely on cultural
transmission over individual learning, must be big.® I discuss this in greater detail at the end of the paper.
Figure 7 shows the effect of moving the value of ¢ away from one. Increasing the update rate of
environmental leaming relative to cultural updating (i.e. changing ¢ to 1.2) moves the B-intercept (at L =
0) up to 1.2, which shrinks the S-region—which is the plot area to the right of the curve. Conversely,
increasing the cultural update rate relétive to environmental learning (decreases ¢ to 0.8) moves the B-

intercept down to 0.8 and expands the S-region. Depending on the details of a particular diffusion

1
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situation, one might argue that is greater than or less than one, but its actual value will be difficult to
measure empirically, because it depends partly on human psychology and partly on environmental
constraints, For much of the coming discussion I will assume that ¢ = 1. For empirical purposes, it’s best
to incorporate y and 4 inﬁ B and (1-L), respectively.

When biased transmission opposes environmental learning

So far, we’ve considered only the situation in which both biased transmission and individual
learning favor the spread of the novel trait. In this section, we expiore the temporal dynamics of the
diffusion of a novel trait when individual learning successfully spreads the novel trait against the force of
biased transmission. That is, the bias favors the other, initially common, trait when B is negative. In the
next section, we analyze the opposing case, in .which biased transmission spreads a novel trait in the face -
of individual learning. This occurs when environmental information indicates that a trait is not beneficial,
but transmission biases spread it anyway. Exploring these two situations, we can ask which set of
dynamics more closely matches the empirically-observed temporal dynamics of trait diffusion.

Figure 8 shows the adoption curves for five different sets of parameters (B, L, and P,). As either L
or B increases (B is negative), the equilibrium value of ¢ rises, and the curves ascend more quickly.
However, nothing remotely resembling an S-curve emerges. Equation (9) tells the same story. The right-
side of equation (9) is always positive (or zero) and B is always negative in this case, so condition (9) is
never satisfied and S-curves do not emerge. Given that S-curves are empirically rampant in diffusion
contexts, the situations in which individual learning overpowers biased cultural transmission to spread a
beneficial trait seem relatively rare. Two possible explanations present themselves. One suggests that our
database is somehow biased against these kinds of diffusions, so they only seem farc. The second is that L
is large—meaning that biased transmission is the predominate component of human cognition. In the
future, researchers should look for diffusion cases in which trial and error learning clearly favors one trait,

but transmission bias favors another (e.g., only low status people initially adopt).

12
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When environmental-learning opposes biased transmission

What do the curves look like when biased transmission swirns upstream against environmental
learning? Examining equation (9) alone suggests that S-curves may or may not be generated, depending
on the \;alues of L and B. This condition I;olds even when environmental information does not favor the
novel trait. Because the bias (B) must overcome environmental learning, we canAuse equation (9) to set B
to its maximum value that still produces R-curves, B = ¢ (1-L). If we substitute this into equation (7), set

it equal to zero, and solve for ¢, we get equation (10):

Gy = | (10)

This is the equilibrium frequency of the novel trait when an R-curve is produced by biased transmission
flowing uéstream against individual learning. Remember, in this case P, is less than P, because
environmental information opposes the spread of the trait. Consequently, the frequency produced by
equation (10) is small; it’s the probability of selecting the “wrong” behavior (i.e. the one not favored by
environmental information). Typically, this equilibrium value is so small that it would never ‘count’ as a
diffusion. Figure 9 shows eight curves for differing values of B, L, and P, that illustrate the basic point. As
a consequence, all substantial diffusions driven by biased transmission diffusions generate S-curves, not
R-curves. Curve 8, the only R-curve on Figure 9, shows the case when B = ¢ (1-L). The equilibrium

frequency of Curve 8 is 0.32.

- Conformist transmission and long tails
Thus far, we have ignored conformist &ansmission. However, Figure 1 displays an interesting
feature that suggests another form of biased cultural transmission—conformist transmission—may also be
at work. Note the slow growth of ¢ during the initial stages of the diffusion process—I call this slow
growth a ‘long tail’ (see notation on Figure 1). It took nine years for the frequency of hybrid planters to
reach 0.20, but only six more years for it to reach fixation at 0.99. In an effort to account for this recurrent

phenomenon of long tails, we can incorporate a simple conformist component into the existing model,

13



Heunrich: Cultural Transmission and the Diffusion of Innovations

and then examine its effects on the temporal dynamics of adoption.

So far, we have dealt with B, the replicatory or transmissive bias on the novel trait, as a constant
in any particular situation, not as a function of time or frequency. Now B has two components, & constant
part and a frequency-dependent part, which are shown in equation (12):

B=b(l-a)+a2g-1) (12)

The second tenﬁ in (12), a(24¢-1), is the component of the overall bias contributed by conformist
traﬁsmission. The symbol a, which varies between zero and one, gives the (elative strength of conformist
transmission in human cognition—it scales the cognitive weight given to the frequency of a behavior
relative fo other biases. Generally, it’s best to consider @ small because when « is large few, if any, traits
can spread—for example when @ > 0.5 nothing rare ever spreads. The term (2g-1) varies between ~1 and
1. When the frequency of the ndvel trait is low (less than 50%) this conformist component is negative,
which reduces the value of the total bias (B), and may actually make it negative (depending on the relative
sizes of the other components). When g > 0.50, this conformist term increases the overall size of the bias.
The other term, b(1-), is the contribution to the overall bias made by direct bias and non-frequency-
dependent prestige biases. The symboi b is the constant bias, while its complement (1-@) gives the weight

accorded to the non-conformist component of the transmission bias. Substituting (12) into (7) yields:

v%:5(;;+(L—l)q)+W(l—q){b(1-0‘)+a(2‘1.‘l)} (13)

Using this expression we can follow the same procedure as before to derive the conditions when

(13) generates S-curves. Note the similarity between equations (14) and (9).

b>C(1—L)+7a=¢(1—L)+a
1(l-a) (1-a)

(14)

Figure 10 illustrates the curves for equation (14) when ¢ = 1. As the strength of conformist
transmission increases, the region of b and L values that generates S-curves shrinks—remember, S-curves
begin appearing as one moves to the right of, or above, the curve. Consequently, if conformist

transmission is even a small component of human psychology, we should expect either: 1) that all the

14
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various values of b represented throughout the diffusion of innovations literature are quite high; or 2) that
the value of L in human psychology is substantial—otherwise R-curves would be more common,

Back to the question I asked at the beginning of this section: can conformist transmission account
for the long tail observed in Figure 1? Figure 11 shows the temporal dynamics for a series of & values,
ranging from zero to 0.27. By comparing Figure 1 and Figure 11, we observe that conformist transmission
does génerate the long tails observed in some empirical data. Assuming « is fairly small, such tails occur
when the biases generated by the non-conformist componeﬁts of our cultural capacities are relatively
weak (b= @). When these biases are large (b>>@), the effect of o almost disappears.

More generally, this slow growth period is a common feature of many adoption curves. Rogers
(1995: 259-260) explains that potential adopters initially seem resistant to new ideas until a “critiqal
mass” is achieved and the diffusion process “takes-off.” This intuitive explanation supports the idea,
formalized in conformist transmission (Boyd & Richerson 1985), that individuals use the frequency of a
trait as an indirect indicator of its worth. Hence, the frequenéy of a trait inhibits its spread when rare, but
encourages the trait’s diffusion once it becomes common.

Conformist transmission can also help in predicting the take-off points described by applied
diffusion researchers. In attempti;lg to activély spread novel innovations, governments, states and
organizations will sometimes provide “pump-priming” incentives to adopters, often in the form of direct .
cash payments, until the innovation spreads past some critical frequenc;y, often thought to lie between
26% and 30%. Once this threshold is reached, the innovation is considered self-sustaining, which means
that it will continue to spread on its own. If we assume that the contribution of environmental learning to
diffusion is negligible (i.e. L is big), then we can derive a simple expression for the take-off frequency
using equation (12). If we don’t assume L is big, then environmental learning will always spread
beneficial traits, and take-off points should not exist.” Note, the empirical existence of take-off points
supports both the claim that L is big and that conformist transmission is real, but small, With this

assumption, the diffusion process becomes self-sustaining when:
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B=b(l-a)+a(2q-1)>0 (17)
A diffusion process is not self-sustaining when the magnitude of the conformist component of B, la(24-
1), exceeds b(1-a), thereby making the overall bias less than zero. Remember, the conformist component
is negative when g < 0.50. Solving equation (17) for the take-off frequency, g, requires setting B =0,
and sqlving for g. At this point B crosses over from negative to positive values. This yields:,

1 (-

Dy 2 20

(18)

Equation (18) tells us two things. First, if it exists, the take-off frequency lies between zero and
0.50. And second, if b(1-@)/2a > 0.5, then the process will never be self-sustaining. Empirical data
indicates that pump-priming incentives do often work (but not always), and critical points always seem to

lie between zero and 0.5 (Rogers 1995).

Modifying the environmental learning model still won’t produce S-shapes
A great deal of diffusion research has adopted the intuition that the diffusion dynamics, including
the S-shape, result from differences among individuals in their degree of “innovativeness” or their fear of

uncertainty. For example, Rogers (1995: 258) writes:
Many human traits are normally distributed, whether the trait is a physical characteristic, such as
weight or height, or a behavioral trait, such as intelligence or the learning of information. Hence, a

variable such as the degree of innovativeness is expected also to'. be normally distributed.

The idea is that a few individuals with a high degree of innovativeness adopt early, most peoplé adopt
somewhere in the middle, and a few stragglers, with low innovativeness, adopt late. Although it may be
true that individuals vary in their degree of innovativeness,'® building this into the environmental learning
model does not produce the anticipated S-dynamics, as I will demonstrate. Furthermore, I have already
shown that S-dynamics can be produced without assuming people are different (also see Cavalli-Sforza &
Feldman 1981). All the models so far have assumed people are psychologically and socially identical, yet

they still produce cumulative logistic curves—i.e. S-curves under a wide range of conditions.
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We can construct environmental learning models that incorporate individual variation in two
ways: 1) assume individuals do environmental learning first, and then, if they remain uncertain, they rely
on unbiased transmission (copy someone at random)—this provides a transgenerational model; or 2)
assume that individuals do repeated trials and that the dynamics of learing are fast relative to an
individual’s lifetime (or that individual’s live forever). In the afore-described environmental learning
model, the parameter d (see Figure 2) represents an individual’s threshold of evidence or their willingness
to proceed under uncertainty. Innovative individuals are those willing to adopt a new trait based on
limited evidence, under uncertainty. Thus, this pafameter captures what many researchers mean by
innovativeness. Following the standard diffusion approach—to classify people into adopter categories—I
will define five types of individuals: Innovators, Early Adopters, Early Majority, Later Majority and -
Laggards (Rogers 1995:262). The subscript i inde;(es these categories 1 to n (n =5 in this case). Each
category i is characterized by its own value, d;. Innovators have the smallest value of 4 and Léggards have
the largest value of d. Each value of d; generateé, via the cumulative normal distribution shown in Figure
2, corresponding values of P;; and L;. For the first version of the model (with unbiased transmission), the
frequency of the novel trait among members of category i (e.g. Early Adopters) in the next time cycle is
shown in (15). |

gi =P+l (15)

Further, assume the symbol F; represents the proportion of the total populatiAon that adopter

category i comprises. For example, if 10% of the population are Laggards, then Fs = 0.10. To find the

new frequency of the novel trait in the overall population, we compute the expected value of equation
(15).
§'=E(q)=3XF(P;)+XF(Lg)=B+qL (16)
i i
Equation (16) demonstrates that, when individuals vary in their innovativeness, the cumulative adoption

curves depend only on the average values of P; and L (regardless of their distribution). This means that

equation (16) behaves just like equation (1), and therefore, does not produce S-curves.
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In the second version of individual variation, instead of unbiased transmission, [ assume the

dynamics of learning are fast relative to the lifetime of individuals. Thus, we get equation (17):
g =Pi+ql; (17

Note, the only difference between equations (17) and (15) is the subscript i on g. This occurs because,
instead of copying someone at random from the population every time period, these long-lived
individuals simply stick with their current behavior—that is, the environment does not provide
sufficiently convincing data to justify a change. Taking the expectation of ¢; ; to get ¢*, we arrive at
equation (18):

q =E(q;)=E(P;)+E(Lg;)=R+qL+COV(qL;) (18)
NS

Does equation (18) produce S-curves? We have already seen that the terms labeled ‘NS’ in
equation (18) will never produce an S-curve. The final term, COV (giLy), is the covariation between g; and
L;, which varies for different values of ¢ (or over time). At =0 (and ¢ = 0), COV = 0. In Figure 12,
although the frequency of trait I rises for each of the subgroups in the population (g3), the subgroup with
the smallest value of d; learns the novel trait most quickly—note ﬁat the different values of g; can be
observed at the points where the vertical line crosses the different curves (which have different values of
d;). The initially rapid adoption of the trait by more innovative individuals (those with lower d values)
generates a negati\‘re co;lariation between L; and g;. This negétive association remains until the curves
cross one another in the middle of Figure 12, After this crossover, the COV (q;Ls) crosses through zero
and stabilizes at a positive equilibrium value. These aynamics for covariation remain robust because more
innovative individuals adopt novel behaviors more rapidly, but achieve lower equilibrium values of ¢;
than less innovative individuals. Lower equilibrium values occur because more innovative individuals are
subject to more erroneous switchbacks, as their standard of evidence for changing behaviors is lower—
it’s the price of innovativeness.!! The dynamics of COV (g;L;), when added to the standard R-shaped
curves produced by the NS terms in equation (18), will never produce an S-curve. |

Many diffusion researchers believe the S-shaped cumulative adoption curve to be the product of
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an underlying, normally-distributed “time-to-adoption” curve that captures the varying degrees of
innovativeness distributed throughout the population. In this view, “time-to-adoption” acts as the inverse
of innovativeness. When researchers test their empirically-derived Aq/Ar (dg/dt) curves for deviations
from normality, sometimes they pass (and cannot be distinguishéd from a normal distribution), and
sometimes they do not. When such curves do not pass the normality test, researchers claim that they
“approach normality.” For example, using the Jowa farmer data (Figure 1), researchers went to great
lengths to show the data were normally distributed—their efforts even included getting time on a
supercomputer. Yet, they still failed to show normality, because of the distribution’s long tail. However,
from the perspective I have presented here, there’s no reason to expect underlying normality. Often |
equation (13) does produce time-to-adoption distributions that look approximately normal,'? but knowing
if they are approximately.ﬁormal or not AOes not tell us anything more about the underlying social-
decision processes. For example, the time derivative of a logistic curve (its probability density function)
looks quite normal, and would certainly appear normal if one sampled from it. More in;rlportantly,
equation (13) can also produce underlying, non-normal, time-t_o-adoption distributions that are much more
similar to that produced by the diffusion of hybrid comn or of Tetracy;:linc, than any normal distribution.
Many efforts to fit the S-dynamics of the diffusion literature have been made, especially in the
marketing and new product literature. For a long time, researchers have recognized that logistic curves in
various forms can fit many of the S-curves fairly well. Unfortunately, the parameters in these functional
forms have little meaning because such curve-fits lack any @ priori theoretical foundation in human
psychology or decision-making (Bass 1969). However, some researchers have managed to construct
environmental learning models (similar to the one in this paper), in which individuals vary in their degree
of risk aversion, that undexi ;ome conditions will generate logistic S-curves (Jensen 1982; Kalish 1985;
Oren & Schwartz 1988). Although these models can produce S-curves, based on individual differences in
risk aversion and Bayesian leaming processes, the circumstances that produce the S-dynamics depend
critically on the initial distribution of beliefs in the populations, the specific shape of the utility curves,

and the details of the information-gathering processes. In Oren and Schwartz’s model (1988), for
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example, deriving the logistic form depends on assuming both constant proportional risk aversion
(xU"(x)/U'(x) = constant), and that risk aversion is exponentially distributed across the population. No
empirical justification for either of these rather narrow assumptions is provided. Without any empirical
support, it is difficult to believe that these assumptions are as robust across the world’s populations as are
the S-dynamics of diffusion. Similarly, under some conditions, the environmental learning model in this
paper will produce S-curves if innovative individuals are assumed to acquire or process information better
than less innovative people. However, getting an S depends on exactly hov»; innovativeness and
information processing abilities are distributed across the population.

Some readers may criticize this analysis because they realize that a wide variety of mathematical
formulations of environmental leaming or rational calculation could generate S-curves, and I ha\fe not
begun to exhaust the possible formulations. This is true, however, merely having equations with the
symbols arranged in a particular fashion is not a sufficient riposte. In my view, the trick is to formulate a
" learning model that’s evolutionarily plausible, empirically grounded, tied directly to individual
psychology and produces S-curves under a wide range of general conditions. I hope skeptics who favor

environmental learning will endeavor to generate and test such competing models.

Discussion and Summary
Many scholars have the intuition that cultural transmission is, at best, a minor force in human

behavior and behavioral change (Tooby & Cosmides 1992; Stigler & Becker 1978; Pinker 1997; Harris
1979, Buss 1999). However, if cultural transmission is merely a weak component of the psychological
processes that generate human behavior—meaning L |;s fairly small—then we would expect the real
world, and the diffusion of innovations literature, to contain a large proportion of R-curves relative to the
-proportion of S-curves. If people have small L values, S-curves should result only when the replicatory
bias (B) is quite high. Remember, B is generated by the qualities of the trait itself (e.g. eating high fat
foods or believing in a good god), or by the qualities of the trait’s possessors (i.e. their local prestige or

success). So, the rest of the time, when B is medium or low, environmental learning should generate only
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R-curves. However, in real world (or at least in the available empirical data), R-curves are relatively rare,
while S-curves are rampant. This suggests that biased cultural transmission dominates the diffusion
process, and that L must be pretty big—or somehow hundreds of researchers studying everything from
the spread of insecticides among Colombian peésants to the diffusion of “poison pills” among Fortune
500 companies must have systematically biased the database and selected only traits with very high biases -
values (B).

Further evidence for a substantial reliance on cultural transmission comes from the spread of
maladaptivé or costly behavioral traits. My analysis indicates that maladaptive traits may spread against
the force of individual learning—to produce an S-curve—as long as L and B are sufficiently large. For
example, the practice Qf bottle-feeding infants spread throughout the third world despite the fact that this
inappropriate practice produces higher rates of sickness, infection and death in infants under third-world
conditions than does breast-feeding (Rogers 1995). Such costly, maladaptive practices abound in the
anthropological literature (Edgerton 1992). In many societies, food taboos restrict the consumption of
nutritionally-valuable foods (Descola 1994; Wilbert 1993; Baksh 1984). Even in places where protein and
dietary fat are limited, people still refuse to eat valuable nutritional resources. The Machiguenga of the
Peruvian Amazon, for example, would not consider eating snake meat, even when the dead snake is
known to be non-venomous. Similarly, the Warao, who inhabit the extremely marginal environs of the
Orinoco river delia, refuse to hunt largg mammals (which include some of the most valuable animal
resources in South America) because they “have blood like people” (Wilbert 1993: 18). Furthermore,
nearly half of all cultures surveyed throw out the valuable colostrum that precedes mother’s milk, and
which helps infants develop their immune systems while providing essential minerals (Morse et. al.

1990). Without the predortiinanée of biased transmission, it would be difficult to explain the prevalence of
costly, maladaptive traits in populations throughout the world. Remember, environmental learning
models, like Oren & Schwartz’s model, predict that only beneficial, utility-maximizing and/or adaptive
traits will spread through popuIatioﬁs, but that is not all we observe.

On the flip side, if our reliance on biased transmission were weak (if L were small), then
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environmental learning would frequently spread beneficial traits against the tide éf negatively biased
cultural transmission. However, my analysis indicates that we should record an R-curve every time our
cost-benefit analysis overcomes our social learning tendencies. Yet, R-curves are rare, so biased
transmission is most likely a substantial component of human behavioral plasticity.

Finally, how can environmental, cost-benefit learning account for the empirical phenomena of
long-tails and take-off points? Why do diffusion processes sometimes begin so slowly and finish up so
rapidly? Why doesn’t this occur other times? Why do some behaviors have threshold adoption
frequencies at which they begin spreading on their own (without paying people for adoption), even when
the behavior later turns out to be a bad idea? As I've described, the simple models of biased transmission
presented in this paper can account for all these phenomena, but it remains quite unclear whether cost-
benefit learning approach can be modified to account for them as well.

What kind of information flows through social networks?

Many social scientists believe that by diffusing ‘infbnnation,’ social networks generate the
classical diffusion dynamics. Rogers writes, “they [diffusion networks] convey information to decrease
uncertainty about a new idea” (1995:281). By using the term “innovation-evaluation information” Rogers
captures what I described earlier as ‘pay-off relevant’ information, which is the essential ingredient in the

cost-benefit model. Although the biased cultural transmission pro'<.:esscs I've modeled here do involve the
transfer of information among individuals, this imitation process does not directly involve the
transmission of innovation-evaluation information --that.1's, information used by individuals to evaluate
the costs and benefits of alternative practices. Biased imitation involves col;ying an idea or practice for
reasons not directly related to its costs and benefits. Despite the intuitions of many people, the available
empirical data supports the kinds of imitation processes I have described, and not innovation-evaluation
hypothesis.

For example, in prestige-biased transmission, individuals copy traits possessed by prestigious
individuals, regardless of how these traits affect the success of the prestigious model or the copier (Gil-

white & Henrich 1999). Generally, the enormous importance of what diffusion researchers call “opinion
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leadership” confirms the theoretical predictions of prestige-biased transmission. For example, the same
farming practice will Sp;ead rapidly in places where the locally high prestige individuals favor the novel
idea, but entirely fail to spread in other places where the prestigious individuals dislike the novel practice.
Similarly, Van den Ban (1963, from Rogers 1995) effectively demonstrates the importance of prestige-
biased transmission over the evaluative information processing in his study of farmers in the Netherlands.
He shows that small-scale farmers copied the farming prac_ticcs of prestigious, large-scale farmers even
when such practices were clearly inappropriate for their particular situation.

Like prestige-biased transmission, conformist transmission does not depend directly on the costs
and benefits of alternative behaviors, but still seems to be an important component of adoption dynamics.
Besides the long tails and take-off points observed in many diffusion curves, conformist transmission can
also account for the spatial or'socio-spatial clustering of traits frequently observed in the diffusion
literature. For example, in studying the spread of contraceptive methods in rural Korean villages, Rogers
& Kincaid (1981) found that choices clustered by village. There were “pill villages,” IUD villages,” and
even “vasectomy villages.” All these contraceptive methods were being promoted equally by the
government campaign, and each village contained individuéls with differing degrees of wealth and social
standing, Cost-benefit analyses, environmental leéming, and most kinds of direct biases can neither
generate nor maintain such patterns. Eventually, given any social connection between villages (which
Rogers & Kincaid did clearly observe), the contraceptive method with the highest bias or greatest
benefits/ratio should spread to all villages. Or, if all methods were somehow exactly eqpal in benefits and
costs or direct biases, then we would expect these methods to scatter across the social landscape, and not
cluster in village networks. In contrast, conformist transmission predicts socio-spatial clusters of similar
traits any time the differences between the costs and benefits or the biases of altemative practices are
relatively small. Similar patterns of innovation clusters were observed by Whyte (1954) in his study of the -
spread of air-conditioning units in Philadelphia.

Before concluding, I'd like to point out that a great deal of empirical work has been done on the

characteristics of “innovators” and “early adopters”—those who adopt early in the diffusion processes. At
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first glance, these patterns are convincjng. According to this work, early adopters tend to have larger
social networks, higher status, more money, more cosmopolitan contacts, and more exposure to mass
media outlets. The assumption seems to be that these characteristics (causally) increase an individual’s
likelthood of adopting an innovation early on in the diffusion process. Unfortunately, the literature’s focus
 on successful diffusions produces an extremely biased database. The only situations included in the
database involve those in which the trait actually did spread; in contrast, all those times when the trait did
not spread are ot included. So, the more accurate empirical claim would be: early adopters tend to have
larger networks, higher status, etc. given that the trait eventually spreads to high frequency. It’s quite
possible that all individuals, regardless of their economic position, media exposure, etc., are equally Iikeiy
to adopt an innovation early, but that the subsequent diffusion of an innovation depends on the
characteristics of the initial adopters. Things like large social networks and high status may have nothing
to do with an individual’s chances of innovating, but they may be critical to the subsequent transmission
of these traits. When poor, low-status individuals innovate nobody copies them, so the trait never diffuses,
and they never get into the database as ‘innovators.’

Future work could turn the diffusion problem on its head and explain why certain societies,
particularly peasant groups, seem slow or resistant to the spread of novel behavioral traits, ideas and
‘innovations.” As well, this work could address how cultural transmission mechanisms, under certain
circumstances, can produce upper-middle-class conservatism or the ‘Cancian-dip’ (Cancian 1979).
Finally, such work could-use diffusion data from a wide variety of sources and numeﬁcal computer

simulations to estimate parameter distributions for L, P;, b, and .
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Endnotes
! Recently, a vast amount of work in cognitive psychology and experimental economics has severely criticized the
extreme, hyper-rational models of classical economics (e.g. Gigerenzer & Goldstein 1996; Rabin 1998; Kag;tl &
Roth 1995; Henrich 1999; Kahneman et. al. 1982); consequently, many economists and other students of human
behavior are increasingly turning to cognitively more-realistic models of human learﬁing and decision-making.
% These curves also describe the spread of milk-bottle opening behaviors among pigéons (Lefebvre & Giraldeau
1994).
? Throughout this paper, I use ‘behavioral trait’ or simply “trait’ to stand for a whole range of things that could be
termed ‘innovations,” ‘cultural traits,” ‘practices,’ ‘beliefs,” ‘ideas’ and/or ‘values’.
% This kind of experimentation isv common in both traditional and modern agricultural systems—see Johnson 1972
and Rogers 1995, respectively.
5 By ‘substantially,’ I mean an effect of the same order of magnitude or ]arger.than the cost/benefit effect.
SPrestige-biases may be either constant or frequency-dependent (dependent on g), depending on whether the
frequency of the transmitted trait in the population significantly affects the success, payoffs or brcstige of the trait’s
possessoré. In this paper, I do not incorporate frequency-dependent payoffs, but many transmission models have
built this in using evolutionary game theory (Henrich & Boyd 1999; Bowles 1998; Gintis 1999).
7 This occurs because whichever equation is second in the life cycle (meaning whichever one gets substituted into)
exerts a small bias on the final result. It’s a sampling bias that favors the most recent recursion,
¥ Figure 6 and equation (9) provide the minimum mathematical conditions to produce an S-curve. However, for
humans to discern an S-shape in the curve, gmex should be set at 0.1 or more. This shrinks the region of B and L that
generates S-curves, thus making the argument stronger;
® Furthermore, if we don’t assume L is big, then equation (12) yields a cubic equation in g, which can be solved, but
doe..s not yield any useful insights. We also assume a small, because otherwise nothing spreads when L is big.
' Dewees and Hawkes (1988) found that particular commercial fishermen could not be generally characterized as
‘Innovators’ or ‘Laggards’ in their study of six different fishing-related innovations. Their work shows that same

individuals were not consistently early adopters, or consistently adopters at all.
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' The mean (or variance) of the normal distribution shown in Figure 2 represents the quality of environmental
information that is available to every individual—this variable tells us how difficult the problem is. In this model, I
assume that everyone receives the same quality of information and has the same abilities to process this information. -
"2 The time derivative of a Iogistié curve (its probability &ensity function) looks quite normal, and would certainly
appear normal if one sampled from it.

'3 Admittedly, there are other explanations for this kind of clustering besides conformist transmission, including
combinations of other types of cultural transmission mechanisms (see Boyd & Richerson 1985). Another possibility
is that if the costs or benefits of an innovation were frequency-dependent, then once one method attains high
frequency by whatever stochastic processes, it is; stays at high frequency. In some situations this hypothesis seems
mildly plausible, but in other situations, like the spread of contraceptive methods, it’s difficult to see the frequency

dependence,
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Appendix A
Derivation of P4, L and P, from Figure 2
P,, L and P, (from Figure 2) can all be related through the cumulative normal distribution using

1, o7 and d. If F(y, o, x) represents the cumulative normal distribution evaluated at x, then
P, =F(u,0°~d-p)
P =1-F(u,0.d~p)

L=1-B-P, =F(ul,oz,d—-u)-F(p,02,—-d—u)

Derivation of equation (3)

Equation (3) is a robust result of a variety of approaches to formalizing biased cultural
transmission and replicator dynamics. Here I only outline the simplest derivation. More extensive
treatments can be found in Gintis (2000), Boyd and Richerson (1985) and Weibull (1995).

This is a two-trait model. The symbol g tracts the frequency of individuals with trait 1, while (1-
q) tracts the frequency of individuals with trait 2. Naive individuals enter the world and acquire the trait
of their parents. Latér in life, as adolescents, they pick an individual at random from the population and
compare the r-value of this individual’s trait with the r-va]uc_a of the trait they possess (which they
acquired from their parents). The probabilities of switching traits or keeping the current trait are shown in
Table 1 below.

Table 1. Probabilities of switching traits

Naive’s Model’s trait Probability of Probability of
current trait trait 1 trait 2
1 1 1 0
1 2 Ya{1+(r-12) } Yo{l-(i-12)}
2 1 Va{1+(ri-1p) } Ya{1-(r-rp) }
2 2 0 1

Remember, r-values—the replicatory propensities for each of the traits—contain two parts. The
first part depends on the qualities of the trait itself, while the second part depends on the frequency of the

trait in the current population. When a naive individual encounters someone with a trait different from his
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own, he quickly samples the population and uses this frequency assessment in his imitation decision. The

r-values are described as follows:
n=b(-a)+alg-%)
r,=b,(1-0)+a(l—q-%)
n—ry =bp(1-0)+of2q-1)

Table 2. Frequency of Possible Pairings

Possible Pairings Frequency of
Pairings

trait 1- trait 1 q

trait 1- trait 2 - g(l-9)

trait 2- trait 1 (1-g9)q

trait 2- trait 2 (1-9) (1-g)

Using the frequency of each possible pairing (shown above), we can calculate the frequency of
trait 1 after this imitation process by multiplying the frequency (or probability) of each pairing by the
_ probability of ending up with trait 1. We get the following recursion:
¢ =¥ (Vg(1=a) 1+ (r=r )} +(1=a)a J(1+(n=r )] +(1=q )1~ g (0)
If we simplify this, we get equation (3).

7 =q-(1-q)g(r—ry)=q+q(1-q)B=q+q(1-g){ byo(1-0t )+ 29 1))
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Figure 1. Diffusion of hybrid corn among two Iowa
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Figure 2. The Individual Learning Model.
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Figure 3. Environmental Learning R-curves for different values of d.
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Figure 4. Biased Cultural Transmission Dynamics using four values of B
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Figure 5. The rate of change of the frequency of the novel trait under the environmental learning

model (ENLR) and under the combined model (CM).
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Figure 8. Temporal dynamics when individual learning spreads a novel trait against biased

transmission for five sets of parameters
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S-curve Regions with Conformist Transmission for =1

Figure 10. S-curve regions for different strengths of conformist transmission.
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Figure 11. Examples of adoption curves for different values of o
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Figure 12. Environmental learning dynamics for four subgroups with differing degrees of

innovativeness (d).
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