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Abstract: Greenhouse gas policy decisions require comprehensive undertanding
of atmospheric, economic, and social impacts. Many studies have considered the
effects of atmospheric uncertainty in global warming, but economic uncertainties
have received much less analysis. We consider a key component of economic un-
certainty: the return on investments in new technologies. Using a mathematical
programming model, we show that ignoring uncertainty in technology invest-
ment policy may lead to decreases as great as 2% in overall expected economic
activity in the U.S. with even higher losses in possible future scenarios. These
results indicate that both federal and private technology investment policies
should be based on models explicitly incorporating uncertainty.

1 Introduction

Decisions regarding greenhouse gas emission policies necessarily involve a va-
riety of concerns about the net social impact of the policies in economic and
noneconomic costs for climate changes. A critical component in these decisions
is the value of uncertainty about the extent of global warming from increased
greenhouse gases and about the costs of that warming. Several studies (17,19)
indicate that resolving uncertainty about greenhouse impacts has substantial
value, but perhaps that early resolution is not critical (17).

One element of these models that may have direct current economic impact
is the effect of new technology. This effect has indeed been quite significant in
past environmental challenges (1). In specific greenhouse studies, Nordhaus’s
DICE model (14) implies that geoengineering solutions to climate change may
be the best alternative for long-term economic well-being. That and other pre-
vious studies do not, however, consider the effects of uncertainty in the develop-
ment of new technology and the relationship between investment and technology
availability.

In our study, we include technology investment uncertainty directly into an
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economic mode] developed earlier by Manne and Richels (12). As in their model,
we use fixed emission targets to achieve given levels of environmental benefits
without explicitly evaluating those benefits. We show that ignoring investment
uncertainty in policy decisions can have a significant economic impact and that
near term decisions can be affected.

2 The Stochastic Model

We constructed a stochastic dynamic optimization model based on the deter-
ministic model, Global 2100, developed by Manne and Richels (11). In this
model, the climatic costs of greenhouse, in particular, carbon, emissions are
represented through either an exogenous limit or a tax on carbon emissions.
Given these possible policy resolutions of climate uncertainty, the goal of the
model is then to determine the world-wide economic response, calculated in
terms of reduced GNP from the “business-as-usual” case.

Our stochastic model of the U.S. region builds on the Global 2100 model to
investigate how results change when uncertainty is explicitly modeled. We focus
on the uncertain relationship that exists between investment initiatives and their
payoffs. In particular, we model the uncertainties that exist between present
day investment and the future availability of noncarbon based energy technology,
the availability of nonrenewable resources through exploration, and the extent
to which macroeconomic energy efficiency improvements are made. These areas
become critical for dealing with greenhouse gases because the success of these
investment initiatives will have a great bearing on the world economy’s ability
to continue to grow without significantly increasing greenhouse gas emissions.

Figure 1 diagrams our Stochastic Global 2100 model. The dashed lines indi-
cate the additions to the Global 2100 model. Note that we include investment
effects in efficiency improvements and resource exploration as well as new tech-
nologies.

The overall model can be represented as determining a path of consumption
(including electric and non-electric energy production), investment, and capital
stock to maximize the expected present value of a discounted utility function
of future consumption. These decision variables are represented as a vector,
ry, in each period t. The choice of r, depends, however, on the outcomes of
events, such as efficiency improvements and new technology, that cannot yet be
observed. We use &; to denote these random quantities that are observable over
time. The set of all outcomes is = = {& = (£,...,&r)}.

Within the decision vector, ry. m each period, the key components are the
types of technologies for both electric and nonelectric energy production, the
production from these technologies. and investments in new capital stock, re-
sources, and efficiencies. Tables | and 2 give the names and descriptions of the
various technologies taken from the Gilobal 2100 Model.

Given the sets of decisions, we assume a probability function P on the out-



Energy Technology Development
: :
! 1
¥ :
Energy Conversion tech. Labor ___ Efficiency Improv. |
1 i i
' '
| '
' |
Elec.. nonelec. energy Consumption H

i T ———
5
Energy Investment !
Energy Sector Nonenergy Sector !
'
Energy costs Investment :
e ——————

H
1
]
'
i
]
)
]
. '
Imported Oil Capital ‘
& i
Domestic Nat. Res. Imponted !
A CO,Emussions < Quata + Carbon '
- ]
: Credits H
H Resource Exphoranon ‘:

Figure 1: The Stochastic Global 2100 Model. The solid lines show the interac-
tions in Global 2100. The dashed lines indicate the additions in the stochastic
model. This diagram shows a constraint (quota) on carbon emissions. An al-
ternative is to include carbon taxes.



come set, =. The goal of the model is then to choose = (2o, ..., 27) in a space
X to maximize the expectation of the discounted utility function:

T
[th(xt—l(€0y R v£t—-1)1 1'2(60, s vEt);EOy s vét)P(ds)’ (1)
=t=1

where T is the horizon length, f; represents both the utility objective and any
constraints, such as production capacities and resource limits, by imposing infi-
nite penalties whenever a constraint is violated. The formulation in (1) explicitly
forces the decision variables z; to depend only on outcomes, o, . . ., &, that have
occurred up until period ¢. This restriction, called nonanticipativity (21), may
also be placed as an explicit constraint on z.

In our example, each period corresponds to ten years of activity. We have
eleven (T in the utility function (1)) total periods ranging from the decade
ending in 2000 to the decade ending in 2100. At the end of each period, we
observe a new set of outcomes, £;, and determine the next set of decisions, z;.

Completely characterizing the set of possibile future outcomes, =, and de-
scribing a probability function, P, requires some form of simplification to obtain
a tractable model. These simplifications produce bounds on the range of po-
tential values for (1) (see Birge and Wets (7)) by picking certain outcomes that
reflect both pessimistic and optimistic views. Using this process, we limit the
set of outcomes to four distinct future scenarios. These scenarios reflect the po-
tential returns on investment with uncertainty resolution beginning in the year
2020. Further resolution occurs in 2030. The result is a tree of scenarios given
in Figure 2.

To determine the values on investment returns we took the effective Global
2100 values as mean values. We then constructed scenarios with the same
mean (each scenario weighted equally) but with returns reflecting degrees of
uncertainty. The returns on investment used for the model, along with the
ranges from our most pessimistic scenario (#1) to our most optimistic scenario
(#4), are shown in Table 3'.

In this case, proven technologies. with uncertainty only in resource discovery,
receive a much lower range than the new technologies. The term “efficiency”
refers to improvements in efficiency that are not modeled explicitly. We use the
Global 2100 model mean with a modest range based on Manne and Richels’ ob-
servations (12). Other ranges from those in Table 3 could of course be considered
but would not substantially alter the results below.

'Nonelectrical technologies: EXAJ/10'" & Electrical technologies: TKWH/IO12 $. Effi-

. . , 2
ciency: (Percentage reduction in energy imtensity)/ 1012 8.
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Figure 2: The Scenario Tree.

3 Solution and Results

The model in (1) is a stochastic nonlinear program with a total of almost 3000
variables and 7000 constraints, of which, over 175 constraints involve nonlinear
functions with 500 variables. To solve problems of this size (and a larger version
involving as many as 32 scenarios), we developed a method that decomposes
the optimization problem into subproblems that can be solved in parallel. The
implementation scheme is described in (6). The method is based on earlier work
by Dantzig and Madansky (9), Benders (2), Van Slyke and Wets (20), O’Neill
(16), Louveaux (10), Birge (4), and Noél and Smeers (13).

Our main interest in analyzing the results of solving (1) was to determine the
advantages of introducing random parameters into a deterministic model with
mean estimates. We measured the stochastic model advantages in terms of
the gain in expected objective value (discounted utility) over the deterministic
model policy value. This quantity, called the value of the stochastic solution
(VSS) (3), is related to the erpected rvalue of perfect information (EVPI) (see,
for example, (18)), which measures the value that could be obtained if perfect
information about the future were available. To contrast these two quantities,
EVPI measures the reward for resolving uncertainty, while VSS measures the
value of incorporating uncertainty into a model.

To determine the VSS for (1), we compared the stochastic model with Manne
and Richels’ Global 2100 model under a single carbon dioxide restriction in




which the developed countries are required to reduce their CO4 emissions by 20%
over a twenty year period. We consider only the US region (out of five regions)
in Global 2100. We consider two alternatives for trade in carbon rights. In the
first alternative, the US is allowed to purchase carbon rights from developing
countries, while, in the second alternative, no trade is allowed.

3.1 The Case with Trade

In this case, the United States faces a required reduction in carbon dioxide
production, but also has the option to purchase rights from other countries to
produce carbon emissions. To obtain the VSS and EVPI, we calculated three
values called :

o wait-and-see (WS), the value of (1) assuming perfect information, i.e.,
that all uncertainty is resolved before a decision is made;

e here-and-now (HN), the value of (1), assuming that we cannot resolve the
uncertainties before acting;

o ezpectation of mean value (EMV), the value of (1) using a policy from the
model that replaces random investment returns with their expectations.

The three quantities, WS, HN, and EMV, appear in Table 4 with the EVPI
and VSS. Note that the VSS is actually much larger than the EVPI. At 1.4%
of total discounted domestic product, it represents almost one trillion dollars of
lost consumption due to following a policy that does not consider randomness in
investment returns. The small value for EVPI on investment uncertainty states
that resolving uncertainty here i1s not as important as accounting for it in the
model.

Reasons for the results in Table 4 concentrate on the need for hedging in sit-
uations where outcomes are uncertain. When models are simplified by removing
uncertainty, the model tends to favor policies that involve a single investment
that appears best in an average case. This solution is often poor in practice.
In resource planning models, it is generally impossible for an optimal policy
in the deterministic model to include more than one different new technology
investment (5). In these cases, the VSS again may appear high while the EVPI
is generally low (8). In other words, it is not so important to know which new
technology will succeed eventually as long as policies favor a variety of invest-
ments that cover a broad range of possibilities. EVPI values may be higher,
as noted in (17), when additional random parameters (such as emission effects
in place of strict limits) are considered and when suboptimal policies (such as
from a deterministic model) are followed.

The consumption loss effect of following a policy from the deterministic
model can be quite severe in certain instances when the new technology with
highest expectation is not realized as predicted. Figure 3 shows the graph of
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Figure 3: Consumption over time for the hedging policy (stochastic model)
and the nonhedging policy (deterministic model). The lack of hedging leads to
large economic losses in the 2020s.



consumption over time in the case of the most pessimistic technology scenario
(Number 1) under the stochastic model policy (Hedging) and the deterministic
model policy (Nonhedging). In this case, the US economy suffers an annual $2
trillion loss in the third decade of the 21st century because insufficient capital
investment was made into existing technologies. -
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Figure 4: Synthetic fuel investment over time for the hedging policy from the
stochastic model and the nonhedging policy result from the deterministic model.
The hedging policy smooths out investments to protect against failures.

Instead of relying on building existing technologies, as shown in Figure 4,
the nonhedging, deterministic policy relies on synthetic fuel technology and low
cost oil (Figure 5 ). Figure 4 also shows that the hedging policy invests earlier
in synthetic fuels than the nonhedging policy and then again later when the
technology i1s more certain. The hedging policy also preserves the low cost oil
resource longer (see Figure 5)

Overall, these results show that policies formed without explicitly incorpo-
rating uncertainties, in terms of the distribution of outcomes, can have serious
consequences. Given that much of the analysis in economic effects of emission
policies have considered only deternumistic models, the observations here in-
dicate that caution should be taken in following policies that do not promote
a wide variety of technologies and that do not favor early investment in new
technologies.
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Figure 5: Remaining low cost oil over time for the hedging policy from the
stochastic model and the nonhedging policy result from the deterministic model.
The hedging policy depletes oil at a significantly reduced rate.



3.2 The Case without Trade

The case without trade presents even greater values for perfect information
and the stochastic solution. The results appear in Table 5. In this case, the
VSS is fully 2% of the discounted consumption utility and represents over a $1
trillion output loss. The same types of observations in terms of consumption and
investments apply in this case. The results are magnified because the margin
for error is larger when trade i1s not possible. The general result is that it is
important from an economic viewpoint to allow trade in the carbon emission
market.

4 Conclusions

Models of economic effects from greenhouse gas emissions and greenhouse gas
controls can play an important part in preparing national policy to respond
to potential long-term challenges. Some form of government intervention may
be needed to achieve optimal investments in new technologies due to the long
lead-times in new technology developments and the difficulties in returning cli-
matic gains to an individual firm. While the resolution of uncertainty may not
affect the form of these optimal policies in the near term, this study indicates
that it may be costly to form policy based on a simplified model that ignores
uncertainty in investment returns

Our conclusions are similar to those of Peck and Teisberg (17) who consider
the value of information in resolving atmospheric warming and damage function
uncertainty. Our results give low order of magnitude values for early information
resolution about investment returns as in Peck and Teisberg’s early information
values for atmospheric uncertamties (which we model exogenously through our
carbon limits). Our studies are also similar in showing that suboptimal policies
(such as those based on expected parameter values) lead to much greater losses
than the expected value of perfect information. Nordhaus’s DICE model (15)
vields greater values for early resolution of atmospheric and mitigation cost in-
formation than Peck and Teisberg’s CETA model but these values are still less
than our values of the stochastic solution over ignoring uncertainty in invest-
ment returns. Overall, our results indicate that modeling technology investment
uncertainty may be as valuable as considering atmospheric uncertainties.

References and Notes

1. Ausubel, J.H. (1991). "Does Chimate stll Matter?” Nature 350: 649-652.

2. Benders, J. F. (1962). “Partitomng Procedures for Solving Mixed-Variables Pro-
gramming Problems. ™ Numerische Mathematik 4: 238-252.



-1

10.

11.

13.

14.

. Birge, J.R. (1982). “The Value of the Stochastic Solution in Stochastic Linear

Programs with Fixed Recourse.” Mathematical Programming 24: 314-325.

. Birge, J.R. (1985). “Decomposition and Partitioning Methods for Multi-Stage

Stochastic Linear Programs.” Operations Research 33: 989-1007.

Birge, J.R. (1988). “Exhaustible Recourse Models with Uncertain Returns from
Exploration Investment.” In Numerical Techniques for Stochastic Optimiza-
tion, Y. Ermoliev, R. Wets, eds., Springer, Berlin, pp. 481-488.

. Birge, J.R. and C.H. Rosa (1996). “Parallel Decomposition of Large-Scale

Stochastic Nonlinear Programs.” Annals of Operations Research, to appear.

. Birge, J.R. and R. J-B. Wets (1986). “ Designing Approximation Schemes for

Stochastic Optimization Problems, in particular, for Stochastic Programs with
Recourse.” Mathematical Programming Study 27: 54-102.

. Chao, H.P. (1981). “Exhaustible Resource Models: the Value of Information.”

Operations Research 29: 903-923.

Dantzig, G. B. and A. Madansky (1961). “On the Solution of Two-Stage Linear
Programs under Uncertainty.” In Proceedings of the Fourth Berkeley Sympo-
stum on Mathematical Statistics and Probability, J. Neyman, ed., University
of California Press, Berkeley, pp. 165-176.

Louveaux, F.V. (1980). “A Solution Method for Multistage Stochastic Programs
with Recourse with Application to an Energy Investment Problem.” Operations
Research 28: 889-902.

Manne, A.S. and R.G. Richels (1991). “Global CO5 Emission Reductions - the
Impacts of Rising Energy Costs.” The Energy Journal 12: 87-107.

Manne, A.S. and R.G. Richels (1992). Buying Greenhouse Insurance: the Eco-
nomic Costs of COy Emission Limits. Cambridge: MIT Press.

Noel, M.C. and Y. Smeers (1987). “Nested Decomposition of Multistage Nonlin-
ear Programs with Recourse.” Mathcmatical Programming 37: 131-152.

Nordhaus, W.D. (1992). “An Opumal Transition Path for Controlling Green-
house Gases.” Science 258: 1315-131Y.

. Nordhaus, W.D. (1994). Managing the Global Commons: the Economics of

Climate Change. Cambridge: MIT Press.

. O'Neill, R.P. (1976). “Nested Decomposition of Multistage Convex Programs.”

SIAM J. on Control and Optimization 14: 409-418.

11



17.

18.

19.

20.

21.

Peck, S.C. and T.J. Teisberg (1993). “Global Warming Uncertainties and the
Value of Information: An Analysis using CETA.” Resource and Energy Eco-
nomics 15: 71-97.

Raiffa, H. and R. Schlaifer (1961). Applied Statistical Decision Theory. Boston:
Harvard Business School.

Schlesinger, M.E. (1993). “Greenhouse Policy.” Research and Ezploration 9:
159-172.

Van Slyke, R. and R. J-B. Wets (1969). “L-shaped Linear Programs with Ap-
plication to Optimal Control and Stochastic Programming.” SIAM Journal on
Applied Mathematics 17: 638-663.

Wets, R. J-B (1980). “Stochastic Multipliers, Induced Feasibility and Nonan-
ticipativity in Stochastic Programming.” In Stochastic Programming, M.A.H.
Dempster, ed., Academic Press, New York, chap. 8, pp. 137-146.

12



Table 1: Electrical technologies.

Technology | Description

Existing:

HYDRO Hydroelectric, geothermal, other renewables
GAS-R Remaining initial gas-fired

OIL-R Remaining initial oil-fired

COAL-R Remaining intial coal-fired

NUC-R Remaining initial nuclear

New:

GAS-N Advanced combined cycle, gas-fired
COAL-N New coal fired

ADV-HC High-cost carbon free

ADV-LC Low-cost carbon free

Table 2: Nonelectrical technologies.

Technology | Description

OIL-MX Oil imports minus exports

CLDU Direct uses of coal

OIL-LC Low-cost oil

GAS-LC Low-cost gas

OIL-HC High-cost oil

GAS-HC High-cost gas

RNEW Renewables

SYNF Synthetic fuels

NE-BAK Nonelectrical backstop
Technology Scen 1  Scen2 Scen3 Scen4  Relative range
ADV-HC 0.094 0.33 3.3 10.328 109.87
ADV-LC 0.115 0.4 4.0 12.6492 110.00
OIL-LC 7 10 25 48 6.86
GAS-LC 7 10 25 48 6.86
OIL-HC 7 10 25 48 6.86
GAS-HC 7 10 25 48 6.86
RNEW 0.89 3.1 30.9 97.98 110.09
SYNF 2.36 8.17 81.7 258.2 109.41
NE-BAK 0.632 2.2 21.9 69.3 109.65
EFFICIENCY | 0.06 0.12 0.15 0.17 2.83

Table 3: Returns on Investment
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Table 4: The values of perfect information and the stochastic solution with
trade.

WS HN EVPI | EVPI EMV | VSS | VSS
Total | (% of WS) Total | (% of HN)
58848 | 58746 | 102 0.17 57953 | 793 14

Table 5: The values of perfect information and the stochastic solution without

trade.
WS HN EVPI | EVPI EMV | VSS | VSS
Total | (% of WS) Total | (% of HN)
58589 | 58470 | 112 0.20 57290 | 1180 | 2.0




