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Abstract 

 

    Estuarine responses to nutrient loads can be remarkably different. Many driving 

variables including light, water residence time, physical stratification, and temperature 

are responsible for the diversity of the response. To classify estuaries based on their 

susceptibility to nutrient loads, a nutrient- phytoplankton- zooplankton (NPZ) model 

was developed and applied to river-dominated, well-mixed estuaries. Estuaries are 

classified as having low, medium, high and hyper eutrophic conditions by the model. 

    The result of the model suggests that water residence time is an important 

controlling variable in the process of achieving a steady-state response to nutrient 

loads. Although phytoplankton responses to residence time vary under different loads, 

they have the same positive trend. Phytoplankton responses are almost linear with 

water residence time initially, then decrease, and eventually plateau. 
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Part1. Introduction 

Eutrophication is defined as “an increase in the rate of supply of organic matter 

to an ecosystem” by Nixon (1995), which is also considered as a response of system 

productivity to nutrient enrichment (Carpenter et al. 1998). Economic development, 

population growth, and related human activities, such as various agricultural practices, 

wastewater treatment plants, urban runoff, and the burning of fossil fuels, have 

remarkably increased nutrient inputs by many times natural levels. These increases in 

nutrients often result in increased organic matter production and thus increased 

eutrophication. Increased nutrient inputs to coastal waters have led to substantial 

changes in coastal ecosystems in the United States and around the world, with an 

estimated degradation of two thirds of all U.S. coastal systems (Bricker et al.1999, 

NRC 2000).  

In recent years, eutrophication has become a national, even global, concern. 

Many symptoms are present during eutrophication, for example, high chlorophyll a 

concentration, epiphyte abundance, loss of submerged aquatic vegetation, toxic algal 

blooms, and low dissolved oxygen. Many of these symptoms have been found from 

the Baltic, Adriatic, and Black Seas, to the estuaries and coastal waters of India, Japan, 

China, and Australia, and also in the United States, including the Chesapeake Bay, 

Long Island Sound, and the northern Gulf of Mexico (Bricker et al.1999). In recent 

years, almost all US estuaries have exhibited some level of eutrophic symptoms, 

although the scale, intensity and impacts vary widely, as do the levels of nutrient 

inputs that produce these symptoms (Bricker et al.1999).  

Excess nutrients, the principal cause of eutrophication, can cause accelerated 

algal production. Nutrient inputs may also affect relative algae dominance as some 

species are favored at different nutrient concentration and ratios. Algal respiration and 
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algal debris decomposition can also deplete oxygen concentrations. When oxygen 

levels are significantly reduced, hypoxia can lead to significant reductions in the 

production of zooplankton and other aquatic animals. Increasing algal blooms can 

also block sunlight to submerged aquatic vegetation, which in turn inhibits their 

growth. Some toxic algal blooms may also increase because of the increasing nutrient 

inputs and changing nutrient ratios, and these toxins can affect the whole estuarine 

system. Tourism, boat manufacture, fisheries and other commercial activities that 

depend on the wealth of natural resources supplied by estuaries will also be affected. 

To protect, restore, and manage coastal ecosystems, it is important to be able to 

predict their sensitivity to nutrient loads. While increased nutrient (nitrogen, 

phosphorus and silica) loads stimulate production of organic matter, principally in the 

form of phytoplankton and macroalgae, the scale and intensity of these eutrophication 

impacts vary widely among estuaries, even among those with the same nutrient load 

(NSTC, 2003). Because it is impractical to examine each estuary individually, it is 

important to develop an estuarine classification scheme based on estuarine 

susceptibility that can allow us to understand, predict, and manage eutrophication. In 

the following sections, key factors affecting the susceptibility to eutrophication are 

discussed. 

Light availability 

Light plays a critical role in controlling primary production and the susceptibility 

of estuaries to different nutrient loadings. Photosynthesis is a light-driven process that 

supports the transformation of nutrient elements and carbon dioxide into algal 

biomass, and is controlled by solar radiation. The amount of light available for 

photosynthesis limits the capacity of phytoplankton to assimilate and transform 

dissolved nutrients into new algal biomass. Therefore, when light availability is low, 
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phytoplankton growth can become limited by light rather than by nutrients (Nedwell 

et al. 2002). 

A decrease in light intensity with increasing water depth is predominately due to 

the absorption of light by suspended particulate matter in an estuary. As 

concentrations of suspended particles increase, the aphotic depth increases at the 

expense of the photic depth. Therefore, as phytoplankton communities absorb light 

and grow, they can limit their own development through self-shading (Peterson and 

Festa, 1984).  

Water residence time 

The water residence time, an important physical control on ecological processes 

in an estuary, is defined as the mean time a parcel of water remains in the estuary. 

Phytoplankton blooms can occur only when the phytoplankton turnover time, 

which is defined as the ratio of the standing stock to the integral production (Peterson 

and Festa, 1984), is shorter than the water residence time (NRC, 2000). If the water 

residence time is less than or equal to the phytoplankton turnover time, the algae are 

flushed from the system before they bloom. Since algal production cannot increase in 

this environment, eutrophication is prevented. In contrast, if the residence time is 

longer than the algae turnover time, there is sufficient time to assimilate nutrients, and 

for phytoplankton to accumulate. Algal sedimentation plays an important role in the 

relationship between water residence time and turnover time, because, even though 

water residence time is shorter than turnover time, algal biomass can still increase if it 

settles below the mixing layer before being flushing out. (Hopkinson, 1995) 

Physical Stratification 

Vertical stratification is controlled by the combination of waters with different 
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origins and densities. Coastal stratification is created by the presence of salinity 

gradients which are produced by the layering of denser, saltier shelf water below 

fresher surface water from rivers. However, wind and tidal stresses can upset the 

stabilizing effects and can be an important mechanism for the mixing of the upper and 

lower waters in estuaries. Coastal ecosystems also have a tidal current, which is one 

of the largest sources of energy mixing in coastal waters.  

Vertical stratification can retain and increase phytoplankton blooms in the upper 

zone where light and nutrients are more favorable and thus encourage higher 

production as well as larger algal blooms. In addition, a vertically stratified system 

will also isolate deeper waters below the pycnocline from reaeration (NRC, 2000) and 

the diffusion of oxygen from the surface to the bottom. In a well-mixed system, 

however, oxygen and phytoplankton could mix to the lower layer, reducing the 

estuary’s susceptibility to hypoxia. 

Temperature  

The rates of many reactions including photosynthesis and respiration change with 

temperature primarily because enzyme activity varies greatly with temperature. Most 

phytoplankton species have an optimal temperature range in which they can grow. For 

example, Bintz et al. (2003) showed that phytoplankton blooms are completely absent 

from cool unenriched mesocosms, and that warmer temperatures alone appeared to be 

capable of simulating phytoplankton blooms in warm unenriched systems. In addition, 

temperature is a major factor, along with salinity, affecting the depth of the mixing 

layer.  
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Part 2. Modeling Approaches 

This section reviews examples of some estuarine models. Part 3 summarizes data 

sources and analysis of data characteristics. Part 4 describes the model used in this 

analysis. Model results and comparison with data are presented in Part 5. Conclusion 

and discussion are in Part 6. 

Recognizing the factors affecting estuarine susceptibility to eutrophication is a 

prerequisite to developing a classification system for estuaries (NRC 2000). Modeling 

is a useful method for simulating the eutrophication process and evaluating the 

relative importance of various controlling factors. In addition, models, if well tested, 

can allow for prediction.  

The purpose of this work was to develop a parsimonious model, capable of 

screening estuaries according to their susceptibility to nitrogen load variation, and to 

test this model against an expanded National Oceanic & Atmospheric Administration 

(NOAA) data set and observations from a wide range of estuaries.  

Human activities can greatly alter the global cycling of nutrients, especially the 

movement of nutrients to estuaries and other coastal waters (NRC, 2000). Although a 

variety of changes may increase the productivity of freshwater and coastal marine 

ecosystems, it is clear that the most common single factor causing eutrophication in 

these environments is an increase in the amount of nitrogen and phosphorus they 

receive (Nixon, 1995). Despite the awareness of large-scale, long-term changes in 

river-estuarine watersheds, the consequences for the estuarine ecosystem of these 

activities are not fully understood (Charles et al. 1995). Improved models of these 

processes and their interactions can improve prioritizing systems for protection and 

remediation.  

Scientific investigation of human disturbance of estuarine ecosystems has been 
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undertaken for only a few decades (Nixon, 1995), and the conceptual model of the 

problem is evolving rapidly. Based on various nutrient dynamic models, Cloern (2001) 

suggested three developmental phases of the conceptual models of the coastal 

eutrophication problem:  

Phase I conceptual models were strongly influenced by the classical limnology 

approach, which was intensely studied in the 1960s. These models emphasized 

changing nutrient input as a signal, and responses to that signal as increased 

phytoplankton biomass and primary production, decomposition of phytoplankton- 

derived organic matter, and enhanced depletion of oxygen from bottom waters. 

However, estuarine ecosystems differ from lake ecosystems in terms of responses to 

nutrient input because of salinity, tidal fluxes and organisms. Although limnological 

models work for some estuaries, some important estuarine processes are missing 

because of the oversimplification. However, it is a good start for estuarine simulation 

of nutrient dynamics.  

Phase II conceptual models reflect the differences between estuarine ecosystems 

and lake ecosystems and include explicit recognition of system-specific attributes to 

modulate the responses to enrichment. A complex suite of direct and indirect factors 

influence system responses, including linked changes in water transparency, the 

distribution of vascular plants and the biomass of macroalgae, sediment 

biogeochemistry and nutrient cycling, nutrient ratios and their regulation of 

phytoplankton community composition, the frequency of toxic or harmful algal 

blooms, habitat quality for metazoans, the reproduction and survival of pelagic and 

benthic invertebrates, and subtle changes such as shifts in the seasonality of 

ecosystem functions.  

Phase III conceptual models are proposed by Cloern (2001) as guidance for 
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future work, organized around five questions that will shape coastal science in the 

early twenty-first century: “(1) How do system-specific attributes constrain or amplify 

the responses of coastal ecosystems to nutrient enrichment? (2) How does nutrient 

enrichment interact with other stressors (toxic contaminants, fishing harvest, 

aquaculture, nonindigenous species, habitat loss, climate change, hydrologic 

manipulations) to change coastal ecosystems? (3) How are responses to multiple 

stressors linked? (4) How does human-induced change in the coastal zone impact the 

Earth system as habitat for humanity and other species? (5) How can a deeper 

scientific understanding of the coastal eutrophication problem be applied to develop 

tools for building strategies at ecosystem restoration or rehabilitation?” 

Below are outlined example of Phase I and Phase II models that have been 

developed in the last the decades.  

A simple plankton model (Steele and Henderson, 1981) 

This simple model was developed to provide insight into possible factors affecting 

plankton ecosystems. A qualitative understanding of nutrients (N), phytoplankton (P), 

and herbivores (H) are examined using the following three equations. 
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where a is the growth rate of phytoplankton, including effects of varying incident 

light and nutrient concentration; d is a variable coefficient, representing changes in 

predator population; c is the growth rate of herbivores; and b is the half maximum 

grazing coefficient. 
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Time lags were introduced into the predation term to simulate the consequences of 

the observed delay in the peak of predation rate compared with the herbivore peak. 

Despite its simplicity, the model explained the observations from the experiment. 

Ignoring the internal structure of each trophic level, it shows how changes in nutrient 

delivery can result in the alternations in growth rate. 

Coastal ecosystem sensitivity to light and nutrient enrichment (Cloern 1999) 

Developing general tools to estimate the susceptibility of coastal ecosystems to 

eutrophication, it is necessary to consider the physical processes that constrain the 

phytoplankton response to nutrient enrichment. For example, since the transformation 

of nutrients into algal biomass requires solar radiation as the energy source to drive 

photosynthesis, the expression of eutrophication can be constrained by the set of 

physical processes that govern the availability of sunlight energy to the phytoplankton. 

Therefore, besides nutrient limitation, light energy is another important factor 

controlling algae growth.  

Cloern (1999) developed a growth-rate model to assess the relative importance of 

light energy in limiting algae growth. The model is designed to compare the response 

of growth rate to the change in nutrient load with the response of growth rate to the 

change in light availability. Growth ratio is defined as R = (∂μ / ∂I’) / (∂μ / ∂N’), 

where μ is a certain growth rate, and I’ an N’ are light energy and nutrient 

concentration respectively. If R is greater than 1, phytoplankton growth rate is more 

sensitive to changes in light. If R is smaller than 1, it is more sensitive to changes in 

nutrient. This model was applied to North San Francisco Bay, South San Francisco 

Bay, Tomales Bay, and two Dutch estuaries: the Westerschelde Estuary and the eastern 

Oosterschelde Estuary. Strong light limitation was shown in the North San Francisco 

Bay and the Westerschelde Estuary, which corresponded to the high concentration of 
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nitrogen and phosphorous in the water. The South San Francisco Bay was a typical 

estuary where phytoplankton were limited by light availability from summer to winter 

but by nutrient availability in spring. The Tomales Bay and the Easeter Oosterschelde 

Estuary both indicated light limitation in winter but strong nutrient limitation from 

spring to autumn. This suggested that when algae started to bloom during spring and 

summer, nutrient supply was insufficient to sustain growth. However, given its 

emphasis on only light and nutrients, this model gives no information about estuarine 

susceptibility to other factors such as flushing time and mixing. 

A model for partially mixed estuary (Peterson and Festa, 1984) 

Peterson and Festa (1984) developed a two-dimensional steady-state model for 

light-driven phytoplankton productivity and biomass in partially mixed estuaries to 

examine effects of estuarine circulation and other environmental factors on 

phytoplankton development and distribution. 

 This model is set in x and z of Cartesian coordinate systems, where x represents 

the direction toward the river and z represents vertical position. The equation used to 

model phytoplankton is: 

]}[],,[{)()()()()()( 2
*

1 CfCCIfbbCKbCKbCWCUCbC zzvxxhzzxt −++=+++ ω
       where U=ub, W=wb, u and w are the horizontal and vertical components of 

velocity, respectively, b is the channel width, C is the concentration of particulate 

organic carbon, C* is the concentration of suspended sediment, Kh and Kv are the 

horizontal and vertical exchange coefficients of salt. ω is the sinking velocity of the 

phytoplankton, f1 and f2 are functions which represent gross productivity and 

consumption, respectively, I is the ambient PAR(Photosynthesis Active Radiation) 

light intensity in the water column. )/exp(1[1 sIIaCf −−= , Cf γ=2 , a is light-

saturated specific growth constant, Is is the light intensity of light saturation, and γ is 
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the specific loss constant proportional to a. 

Results from the numerical simulations generally agreed with the observed 

distribution of phytoplankton productivity and biomass observed in estuaries with 

high concentrations of suspended sediments. From the simulation and the experiment, 

it was shown that although light increased the growth of phytoplankton, growth was 

sharply attenuated in the estuarine environment by the high concentration of living 

phytoplankton. 

CSTT (Comprehensive Studies Task Team) model (Tett, 2003) 

The CSTT model was originally developed by the UK’s “Comprehensive Studies 

Task Team” to predict phytoplankton chlorophyll levels. This model is a steady-state 

simplification of a dynamic model that is applied to a horizontally and vertically 

uniform system or the upper water of a well-stratified system, that exchanges with the 

sea at a daily rate E determined by physical processes. A slight simplification of the 

model was used to simulate the steady-state response of chlorophyll, the limiting 

nutrient, and light availability to nutrient loading. In this model, both nitrogen and 

phosphorus are considered to be efficiently recycled within the microbial loop, and 

growth rate of plankton is controlled by the concentration of nutrient and light 

availability.  

The key equations are: 
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V
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  where the subscript 0 refers to the concentration of nutrient S or phytoplankton 

chlorophyll X in the sea and μ is phytoplankton growth rate (day-1). L is 
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phytoplankton loss rate (day-1) due to grazing by copepods or benthic animals, 

phytoplankton sinking, or disease, and e is the fraction of the nutrient element content 

of the lost material that is recycled. A key parameter q is the yield of chlorophyll from 

assimilated nutrient. si is the input of nutrient. 

 This model has been used to examine six sites including four fjords: 

Kongsfjorden (west coast of Spitzbergen); Gullmaren (Skagerrak coast of Sweden); 

Himmerfjarden (Baltic coast of Sweden); and the Firth of Clyde (west coast of 

Scotland), and two lagoons: Golfe de Fos (French Mediterranean); and Ria Formosa 

(Portuguese Algarve). The chlorophyll predictions for Kongsfjorden, Himmerfjarden 

and the inner Firth of Clyde are greater than the maximum chlorophyll observed 

during summer. In the case of the Ria Formosa, the observed maximum value is about 

twice the predicted maximum, but both predicted and observed maximum chlorophyll 

are low. Although CSTT is useful for distinguishing among eutrophic conditions, the 

simplicity of the current version of the CSTT model limits its use as a tool for 

diagnosing and predicting trophic status. 

ASSETS (Assessment of Estuarine Trophic Status) model (Bricker, 2003) 

Unlike the other models, ASSETS employs an integrated methodology. ASSETS 

was used to examine 138 estuaries in the continental United States in the United 

States National Estuarine Eutrophication Assessment (NEEA). ASSETS includes 

three diagnostic tools: a heuristic index of pressure (Overall Human Influence, OHI), 

a symptoms-based evaluation of state (Overall Eutrophic Conditions, OEC), and an 

indicator of management response (Definition of Future Outlook, DFO). 

º Pressure- OHI 

Human influences are classified into five grades: low, moderate low, moderate, 

moderate high, and high, according to the relative proportions (mh / (mh + mb )) of 
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dissolved inorganic nitrogen (DIN) derived from anthropogenic and ocean sources. 

where mh is human-derived concentration, and mb is background concentration. 

For a well-mixed system: 

Human-derived concentration (mh): h
e
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h m

s
Qs

QmQm
dt

dM
Δ

−−=  

Background concentration (mb): 
s
mQs

s
mQs

Qm
dt

dM seaebe
b

b

Δ
+

Δ
−−=  

where Q is the river flow (m3s-1), min is nitrogen concentration in the inflow (kg 

s-1), msea is nitrogen concentration in the ocean (kg m-3), and se is the mean estuarine 

salinity. 
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º State- OEC 

Six parameters including primary symptoms (chlorophyll a, macroalgae and 

epiphytes) and secondary symptoms (dissolved oxygen, losses of submerged aquatic 

vegetation, and toxic algal blooms) of eutrophication are selected to express the 

overall eutrophic condition. Each symptom is defined by one of three possible states:  

high, moderate and low, expressed with numerical values (3, 2, 1). The area-weighted 

values of the six parameters for each zone are compared in a matrix to determine an 

overall ranking of eutrophic conditions for the estuary. 

º Response- DFO 

The response is based on an assessment of the susceptibility component of the 

system. Based on demographic projections, future nutrient pressure of a system can be 

characterized as decreased, unchanged, or increased. 

Based on the assessments of OHI, OEC, and DFO for an estuary, an overall 
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classification grade is assigned: high, good, moderate, poor, or bad. 
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Part 3. Data Summary 

NOAA identified six symptoms of eutrophication that are most directly related to 

nutrient inputs for classifying the eutrophic status of estuaries. Three of the six 

symptoms are considered as primary symptoms: algal abundance (using chlorophyll a 

as an indicator), epiphyte abundance, and macro-algae. These represent the first stages 

of water quality degradation associated with nutrient over-enrichment. These primary 

symptoms can lead to secondary symptoms: submerged aquatic vegetation loss, 

nuisance and toxic algal blooms, and low dissolved oxygen (Bricker, 1999). The 

model discussed here estimates the susceptibility of estuaries to various nitrogen loads 

by using predictions of chlorophyll α and dissolved oxygen. 

Data on physical characteristics and nutrient loads are primary inputs for this 

modeling effort. Model output of chlorophyll and dissolved oxygen are compared to 

the category from the NOAA data set (Table 1). Data for volume, depth, water 

residence time, fresh water flow, and total nitrogen load (Table 1) were recompiled 

from the estuary database available on the National Estuarine Eutrophication 

Assessment (NEEA) website 

(http://ian.umces.edu/index.html?http&&&ian.umces.edu/neea/). This data set was 

supplemented by additional data from National Oceanic and Atmospheric 

Administration (NOAA). 
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Table 1. Data Set for Homogeneous Estuaries 

 Vertical Homogeneous Volume Depth Tau Total Nitrogen NOAA NOAA
No. Estuaries (m3) (m) (day) (kg N/day/km3) Chla* DO**

1 Kennebec/Androscoggin Rivers 4.8E+08 6.27 10 71235.64  2 1 
2 Casco Bay 5.1E+09 12.04 122 430.48  2 1 
3 Great Bay 1.8E+08 3.78 31 12608.35  2 1 
4 Hampton Harbor Estuary 2.6E+06 0.87 6 62604.31  2 1 
5 Boston Harbor 1.2E+09 6.25 76 20423.63  2 2 
6 Narragansett Bay 3.5E+09 8.31 109 5059.48  2 1 
7 Gardiners Bay 3.3E+09 6.39 389 668.25  2 1 
8 Connecticut River 9.3E+07 2.22 2 608828.01  2 1 
9 Great South Bay 4.2E+08 1.1 199 30499.21  3 1 

10 Hudson River/Raritan Bay 4.9E+09 6.13 45 43698.06  3 2 
11 Barnegat Bay 1.2E+08 0.65 29 27559.37  3 1 
12 Delaware Bay 1.3E+10 6.12 85 7478.43  2 1 
13 Maryland Inland Bays 1.0E+08 1.92 126 6363.10  3 1 
14 Chincoteague Bay 6.5E+08 1.94 158 339.95  2 1 
15 Potomac River 6.5E+09 5.13 121 16259.15  3 3 
16 Choptank River  1.3E+09 3.09 713 1244.32  2 1 
17 Tangier/Pocomoke Sounds 3.5E+09 3.29 1118 851.49  3 1 
18 Neuse River 1.3E+09 2.86 74 11646.61  3 1 
19 Pamlico Sound 1.4E+10 2.93 959 79.44  2 1 
20 Cape Fear River 2.5E+08 2.45 7 105988.26  3 1 
21 Winyah Bay 4.5E+08 5.05 7 99848.06  2 2 
22 St. Marys River/Cumberland Sd. 2.1E+08 3.34 29 13206.46  2 2 
23 Biscayne Bay 8.6E+08 1.23 20 21366.73  1 1 
24 Florida Bay 1.0E+09 0.62 272 751.45  2 3 
25 South Ten Thousand Islands 1.4E+08 0.63 18 13624.87  2 3 
26 North Ten Thousand Islands 2.8E+08 0.73 16 750.42  2 2 
27 Rookery Bay 1.8E+07 0.5 43 1952.88  1 1 
28 Charlotte Harbor 8.2E+08 1.63 59 6187.54  3 3 
29 Sarasota Bay 2.7E+08 2.19 87 6864.45  2 2 
30 Tampa Bay 2.7E+09 3 197 2267.92  3 1 
31 East Mississippi Sound 1.5E+09 2.34 25 31329.36  2 2 
32 Barataria Bay 3.6E+08 0.42 113 18650.72  3 2 
33 Terrebonne/Timbalier Bays 8.6E+08 0.68 213 1631.40  3 1 
34 Atchafalaya/Vermilion Bays 2.7E+09 1.2 3 503779.89  3 1 
35 Sabine Lake 6.6E+08 2.49 10 97074.78  2 1 
36 Brazos River 5.5E+07 4.62 3 1874913.52  2 2 
37 San Antonio Bay 3.5E+08 0.59 30 95245.29  2 1 
38 Corpus Christi Bay 1.5E+09 2.69 1320 3945.52  3 1 
39 Upper Laguna Madre 2.0E+08 0.34 5 1353.37  3 2 
40 Lower Laguna Madre 9.9E+08 0.76 233 25157.15  3 1 
41 Monterey Bay 4.6E+10 83.75 3249 1050.42  2 1 
42 Yaquina Bay 3.0E+07 2.13 13 95954.72  2 1 
43 Hood Canal 2.7E+10 67.96 470 122.00  3 2 

* 1: low eutrophication, <0.03 g N/m3; 2: medium eutrophication >0.03 & <0.12 g N/m3; 3: high 

eutrophication >0.12 & < 0.37 g N/m3; 4: hyper eutrophication >0.37 g N/m3 

** 1:low eutrophication >5 g O/m3; 2: medium eutrophication >2 & <5 g O/m3; 3: high 

eutrophication <2 g O/m3 
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Most volume data are based on the best volume estimate from a digital 

bathymetric chart in cases for which they are available. Otherwise these data come 

from NOAA planimetry. Almost all of the depth data are from a digital bathymetric 

chart if available; otherwise they are also from NOAA planimetry. Water residence 

time was calculated using two different techniques: tidal exchange and tidal 

freshwater flush. Tidal exchange time is a salinity-based estimate of exchange, 

defined as: (Estimated Volume /net freshwater Volume per day) * ((coastal salinity – 

average salinity)/ coastal salinity). Tidal freshwater flush time is based on NOAA 

calculations, using: (daily tide + freshwater volume)/system volume. We used the 

larger of the two as water residence time when they differed. Freshwater flow and 

total nitrogen load data are from NCPDI_1982-1991 (The National Coastal Pollutant 

Discharge Inventory).  

The extent of stratification and eutrophication status data were extracted from the 

NOAA database for three conditions of stratification: Vertical Homogeneous (VH), 

Moderate Stratified (MS), and Highly Stratified (HS). Of these, only VH estuaries 

were used to test the model developed in this study. For a given estuary, if the 

stratification condition for high flow differs from that of low flow, the high flow 

condition was used. 

Data for chlorophyll concentration have been difficult to acquire. Consistent data 

are not available from the STORET data management system of the Environmental 

Protection Agency (EPA), National Estuarine Research Reserve System (NERRS), or 

United States Geological Survey (USGS). Only a small amount of data could be 

obtained from published papers. Therefore, it was necessary to use the NOAA data set 

which is a compilation of survey data from aquatic science experts. In this data set 

only the category of eutrophic status was provided. 
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 For the concentration of chlorophyll in the water, NOAA defines the breakpoints 

of 5, 20, and 60μg Chl/l as boundaries for Low, Medium, High, and Hyper eutrophic 

status respectively. Since the model, in this study, uses nitrogen (N) for all 

components, we converted those values to 0.03, 0.12, 0.37 μgN/l. These 

phytoplankton nitrogen break points were used to test the model. Similarly, for 

dissolved oxygen, the NOAA classification of Low, Medium, and High corresponds to 

breakpoints of 2 and 5 g/m3 (Table 1). 
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Part 4. Model Structure 

Phytoplankton depend on an average nitrogen-to-phosphorus (N: P) nutrient ratio 

of 16:1. If the ratio is greater than 16, phosphorus is the limiting factor. If the ratio is 

lower than 16, nitrogen will be the limiting factor. Although either phosphorous or 

nitrogen can limit phytoplankton growth, nitrogen is generally considered the most 

frequent driver of estuarine eutrophic conditions and currently is primarily the result 

of non-point sources (NSTC, 2003). Therefore, only nitrogen load is considered in 

this work. 

As the model is a general one applied to all estuaries, values for physical 

characteristics, including light intensity and temperature, are uniform. Light was 

initially considered as a controlling factor for phytoplankton growth in the model. 

Under the average solar radiation, phytoplankton growth is limited by nitrogen 

concentration but light. Therefore, light limitation is not included here. The model is 

designed specially for the summer season, and because average temperature does not 

vary much, temperature is also not considered. 

Estuarine biological responses to nitrogen loads can be controlled by the 

magnitude, frequency, and other characteristics of external drivers, but also by 

intrinsic characteristics of the estuaries. These intrinsic characteristics include both 

physical and chemical factors (depth, volume, salinity, water residence time, etc.) as 

well as biological factors (nature of ecological communities, organism categories, 

trophic interations, etc.). However, to explore estuarine responses to key driving 

variables, a one-layer NPZ (nutrient-phytoplankton-zooplankton) model (Fig. 1) was 

developed for river-dominated, nutrient limited, well-mixed estuaries. 
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Fig. 1 Box-and-Arrow Flow Diagram for NPZ Model 

 

In the NPZ model, nitrogen is composed of two forms: IN (inorganic nitrogen) 

and ON (organic nitrogen). The other three variables are P (phytoplankton), Z 

(zooplankton), and O (dissolved oxygen). Phytoplankton and zooplankton are 

modeled in their nitrogen equivalents. These variables are connected through a 

grazing term, predation, respiration, and sedimentation. Michaelis-Menten dynamics 

are used to simulate the nitrogen uptake by phytoplankton. As for the phytoplankton 

consumption by zooplankton, two terms are used here to make a comparison: linear 

grazing method and Michaelis-Menten grazing method. To simplify the model, 

zooplankton predation is calculated as a linear relationship. 

Loading terms were modeled as an in-stream concentration times river flow, 

allowing the model to be written in terms of water residence time only. The load could 

then be varied by changing either the in-stream concentration or flow. Atmospheric 
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deposition on the water surface is not included because the area of the surface water is 

generally limited. However atmospheric deposition to the watersheds that reaches 

streams is included in the input of nitrogen to the estuary from terrestrial sources. 

Phytoplankton growth is limited by nitrogen concentration: 

D
sPGUP

V
QC

dt
dP P −−+−=

τ
                                      (1) 

where CP is the concentration of the input of phytoplankton to the estuary (kg N 

/m3); Q is freshwater flow (m3/day); V is the volume (m3); P
Nk

Nv
U

N

N

+
= ; 

Z
Pk

PvG
P

P

+
= ; N, P, Z (kg N/m3) are state variables which represent the concentration 

of inorganic nitrogen, phytoplankton, and zooplankton biomass, respectively; vN, kN 

and vP, kP are the Michaelis-Menten maximum growth rate (day-1) and half-saturation 

constant (kg/day) for N uptake by phytoplankton and P grazing by zooplankton, 

respectively; D (m) is the average depth of the estuary; s is the sinking rate of P; and τ 

is water residence time (day). 

Zooplankton dynamics are modeled as: 

ZRRGZ
V

QC
dt
dZ Z δ

τ
−−−+−= 21                                   (2) 

where CZ is the concentration of the input of zooplankton to the estuary (kg N 

/m3); Z
Pk
Pv

R
P

P

+
= 1

1
α ; Z

Pk
Pv

R
P

P

+
= 2

2
α ; and δ is fraction of zooplankton biomass loss 

through predation. 

Nitrogen recycling is proportional to zooplankton grazing because the 

phytoplankton are not completely grazed. A fraction of phytoplankton consumed by 

zooplankton are recycled back to the inorganic nitrogen pool (α1) and the organic 

nitrogen pool (α2). The remaining fraction (1-α1-α2) contributes to zooplankton 
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growth.  

Equation related to inorganic N flux is shown below:  

Denitr
D
sPONRUN

V
QC

dt
dN N −+++−−=

βα
τ

)(21                     (3) 

where CN is the concentration of the input of nitrogen to the estuary from 

terrestrial source (kg N / m3); Z
Pk

Pv
ON

P

PN

+
= 2

2 )(
αλ

α ; λN is the ON to N transfer rate; 

and β is the fraction of settled phytoplankton that is recycled. 

Denitr, representing denitrification, has been characterized by Nixon et al. (1996) 

in terms of the percent of terrestrial nitrogen load, ie: 

4.22)log(8.20100 += mo
NI

Denitr τ , where τ is residence time (years) defined as 

the ratio between estuarine volume and the freshwater flow through the estuary. 

Or, )085.0)log(208.0( −= τNIDenitr , where τ is measured in days. This suggests that 

the relationship between Denitr and τ is valid only for τ > 2.6 days. 

The equation for organic nitrogen (ON) flux is: 

D
ONsONRON

V
QC

dt
dON ON ')(22 −−+−= α

τ
                          (4) 

where CON is the concentration of the input of organic nitrogen to the estuary (kg 

N / m3), ON (kg N/m3) are state variables which represent the concentration of organic 

nitrogen in an estuary, and s’ is the sinking rate of ON. 

Oxygen fluxes are also modeled. These fluxes include biological production and 

consumption, as well as the exchange between the surface water and atmosphere. 

During photosynthesis, oxygen is produced when phytoplankton use the energy of the 

sun to convert carbon dioxide into carbohydrates. Oxygen is consumed during 

phytoplankton and zooplankton respiration. Oxygen is also consumed during the 
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decomposition of phytoplankton and zooplankton debris. In addition, benthic 

sediments also demand the dissolved oxygen (Garcia et al. 2002). 

The equation related to oxygen fluxes is shown below: 

D
O

ONRU
D
FoO

V
QCo

dt
dO 2

2111 )(
γ

αγγγ
τ

−−−++−=                   (5) 

where CO is the concentration of the input of oxygen from terrestrial sources (kg 

O/ m3); O (kg/m3) represent the concentration of dissolved oxygen; γ and γ1 are the 

oxygen to nitrogen ratio during photosynthesis and respiration; and γ2 is the oxygen 

demand rate by benthic sediment. 

FO is the air-sea oxygen flux, g O2/m2/day 

)(* 2 OOkFo S −= , where k is diffusivity (m/d), O is the actual oxygen 

concentration, and O2S is the oxygen saturation in the water. 
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Part 5. Model Results 

Parameter values used by the model are based on literature values (Table 2). For 

the classification output, these same parameters are applied to all the estuaries 

because our main purpose is to examine the general eutrophication response to Tau 

and load. The data below represents the average condition for most estuaries. 

Table 2. Parameter Values 

Name Units Value Description Source 
V m3 1.0E+09 Volume of estuary Estimated for NOAA data set 
τ day 200 Residence time Estimated for NOAA data set 
D m 5 Depth of estuary Estimated for NOAA data set 
CN  kg N/m3 0.002 input of N to the estuary  
CP kg N /m3 0.0007 input of P to the estuary  
CZ kg N/m3 0.0005 input of Z to the estuary  
CON kg N/m3 0.0005 input of ON to the estuary  
vn day-1 2 Michaelis-Menten rate constant Hopkinson and Vallino, 1995 
kn g N/m3 0.03 MM half saturation const N Hopkinson and Vallino, 1995 
vp day-1  1 MM rate constant Hopkinson and Vallino, 1995 
kp g C/m3 0.4 MM half saturation const Hopkinson and Vallino, 1995 
I0 daylight/da 29.200 Surface light intensity Ryther, 1956 
λ  0.115 Light extinction coefficient Ryther, 1956 
α1   0.45 Fraction of grazing N recycling  
α2  0.2 Fraction of grazing ON  
β  0.2 Fraction of benthic flux recycled  
s m/day 0.01 Phyto sinking rate  
s’ m/day 0.5 ON sinking rate  
δ  0.1 1st order zoo loss  
O2S g/m3 9.5 Oxygen saturation in the water  
γ  2 O2 to N ratio Scavia,1980 
γ1  9 O2 to ON ratio  
γ2  0.5 O2 exchange rate with sediment  
λN  0.9 ON to N transfer ratio  
k m/day 0.72 O2 exchange constant Estimated from Stigebrandt, 
icn g N/m3 0.20 initial condition N  
icp g N/m3 0.10 initial condition P  
icz g N/m3 0.10 initial condition Z  
icon g N/m3 0.05 initial condition ON  
ino g O/m3 9 O2 concentration in water  

 

A simulator in Visual Basic for Applications (VBA), the macro-language of 

Microsoft Excel, was written to solve the model. Equations use a modified 4th-order 
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Runge-Kutta integration routine (cf Press et al.1992). Simulations can be run in two 

modes: 

1. “non-steady state”- in which a single simulation proceeds for a specified time 

interval. 

2. “steady state”- in which multiple runs are made over a range of both water residence time and N 

load, holding all other parameters constant, until either a “steady state” has been reached, or the 

simulation reaches its end time. 

Effects of changing parameters 

Most modeled cases reached steady state (e.g. Fig. 2, Fig. 3). Steady state is an 

ideal state that is not always realized in a real environment because of complex 

dynamics and changing driving factors. However, use of steady state simulations is 

helpful for the analysis. In these simulations, phytoplankton biomass increases rapidly 

while nutrients are consumed initially. After the phytoplankton peak, they decrease 

due to nutrient limitation and zooplankton grazing, eventually reaching steady state. 

Zooplankton develop a profile similar to that of phytoplankton with a time lag in 

reaching a steady state. 
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Fig. 2 Changes of variables according to time 
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Fig. 3 Changes of oxygen concentration according to time 

 

Changing parameters alters the model dynamics, and may result in oscillatory or 

other time-varying behaviors. Fig. 4 illustrates the typical steady state response of 

phytoplankton. Fig. 5 shows the effect of increasing the nitrogen concentration in 

riverine load from 2 to 14 mg N/l, resulting in oscillations around the intermediate 

value. Fig. 6 reveals the effect of changing estuary volume from 109 to 5×108 m3, 

indicating susceptibility differs greatly, depending on specific estuarine physical 

characteristics comprared to Fig. 2. 
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Fig. 4 Response of phytoplankton to steady input of nitrogen 
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Fig. 5 Oscillation response of phytoplankton 
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Fig. 6 Effects of changing volume on response to nitrogen load 

 

Two methods of zooplankton grazing on phytoplankton were simulated here. The 

results by the linear grazing method (Fig. 7) and Michaelis-Menten method (Fig. 8) 

produced different results. While the phytoplankton and zooplankton concentrations 

are significantly different, inorganic nitrogen and organic nitrogen concentration are 

similar in both cases. The phytoplankton concentration in steady state under the 

Michaelis-Menten grazing term is comparatively lower than that under the linear 

grazing term. Alternatively, the zooplankton concentration under the Michaelis-

Menten mechanism is higher than that under the linear mechanism.  

The denitrification process does not affect the dynamics of the four variables, but 
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does affect their final concentrations (Fig. 9, Fig. 10). 
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Fig. 7 Liner method of zooplankton grazing on phytoplankton 
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Fig. 8 Mechaelis-Menten method of zooplankton grazing on phytoplankton 
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Fig. 9 Response without denitrification process 
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Fig. 10 Response with denitrification process 

 

Effects of residence time and nutrient loads 

At different volumes and freshwater flow rates, the model calculates steady-state 

values of nitrogen, phytoplankton, zooplankton, and dissolved oxygen as a function of 

nitrogen loads. From these results, we can determine the eutrophic conditions 

(phytoplankton and oxygen concentrations) at combinations of Tau and nitrogen load.  

Fig. 11 reveals phytoplankton response as a function of Tau under five random-

chosen nutrient loads: 200, 6598, 59912, 123890 and 190000 kg N/day/m3. For the 

same Tau, phytoplankton biomass increases as load increases. The phytoplankton 

response graph suggests that phytoplankton response is almost linear with logical 

values of residence time initially, and then either plateaus for lower loads or decreases 

and then plateaus for higher loads.  
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Phytoplankton vs Tau
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Fig. 11 Phytoplankton vs Tau under different loads 

 

Fig. 12 shows dissolved oxygen response as a function of Tau under the same 

five nutrient loads. Dissolved oxygen concentration increases as load increases when 

Tau is smaller than 10 days, while it decreases as load increases then Tau is bigger 

than 10 days. For lower loads, dissolved oxygen concentration increases almost 

linearly with residence time at first, and then plateaus. Estuaries with lower loads are 

usually oligotrophic water bodies. If Tau is larger, more algae could stay longer in the 

estuary, then produce more oxygen through photosynthesis. Therefore, dissolved 

oxygen concentration is high. For higher loads, the concentration increases linearly 

first, and then decreases, and plateaus. Estuaries with higher loads are usually 

somewhat eutrophic water bodies. Although more algae could stay longer and produce 

more oxygen through photosynthesis, depletion of dissolved oxygen by respiration 

and decomposition is more. Thus, the dissolved oxygen concentration is low. 
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Fig. 12 Dissolved Oxygen vs Tau under different loads 
 

Fig. 13 shows the same results, but as a function of loading for a range of Tau. 

Among the given six residence time scenarios with values of 1, 11, 31, 61, and 100 

days, the residence time of 11 produces the highest phytoplankton-biomass, with 

residence time equal 1 resulting in the lowest. Phytoplankton biomass increases with 

Tau more under lower loads than those under higher loads. For residence times of 31, 

61 and 100 days, the phytoplankton responses are quite similar. The results show that 

the phytoplankton response varies remarkably over residence time. In this model, the 

phytoplankton biomass is maximized at residence time of around 11 days. 
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Fig. 13 Phytoplankton vs load under different Tau’s 

    Fig. 14 indicates dissolved oxygen concentration response to loads. The responses 
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are almost the same under the residence time of 31, 61, and 100 days. Dissolved 

oxygen increases only under residence time of 1 day and decreases for other residence 

time.  
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Fig. 14 Dissolved Oxygen vs Load under different Tau’s 

General classification 

Model results can also be expressed as a response surface in load and Tau (Fig. 

15). For a given Tau, the phytoplankton response increases with increasing load. 

However, for a given load, the phytoplankton response increases and then decreases 

with increasing Tau. The model also suggests that when load is low enough, no matter 

how long the residence time, phytoplankton biomass is always very low. If residence 

time is short enough, the phytoplankton biomass is also very low even if the nitrogen 

load is very high. The highest value appears in the high load area where Tau is about 

ten days. 
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Fig. 15 Surface graph of phytoplankton response to loads and Tau’s 
 

When Tau is very low, DO is controlled by Tau; DO increases as Tau increases. 

When Tau’s is larger, DO concentration is controlled by load; DO decreases with 

increasing load. The lowest DO concentration occurs when load is extremely high. 
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Fig. 16 Surface graph of Dissolved Oxygen response to loads and Tau’s 
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These results can be compared to estuarine observations. If load and Tau are 

known for a specific estuary, the observed phytoplankton and dissolved oxygen 

concentration represent the system response. Fig. 17 and Fig. 18 represent 

phytoplankton response and dissolved oxygen comparisons between NOAA 

eutrophication categories and the NPZ model output. The colored areas represent the 

different categories of eutrophic status from the NPZ model. The points with different 

colors represent corresponding categories for estuaries from the NOAA data set. Data 

from approximate forty-five well-mixed estuaries were available for comparison; only 

sixteen of those estuaries fall within the model predictions.  

 

 

Fig. 17 Comparison of NOAA data with NPZ model output 
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Fig. 18 Comparison of NOAA data with NPZ model output 
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Part 6. Conclusion and discussion 

In an attempt to classify eutrophic condition of estuaries, five mass balance 

equations are developed for phytoplankton, zooplankton, inorganic nitrogen, organic 

nitrogen and oxygen. The model shows different responses to nutrient loads and water 

residence time. According to the different responses, estuaries were generally 

classified as low, medium, high, and hyper eutrophication. 

Some reasonable and interesting results were produced. For example, 

phytoplankton response to residence time has the same trend under different loads; 

higher load produces more phytoplankton biomass. Given the five Tau scenarios, 

phytoplankton biomass under Tau of 41.4 is the highest, and the one under 1.0 is the 

lowest. 

After comparing the model results with the NOAA data set, some estuaries did 

match the predictions, while others did not. This may be because some estuaries are 

light limited, phosphorus limited or even silica limited, however, this model only 

works for the nutrient-limited ones. First of all, in the general model, the values of the 

volume data, depth data and other estuarine characteristic data are the average values. 

Therefore, the output probably does not fit for the estuaries with extreme values. 

Second, eutrophic states from the NOAA data set represent the yearly condition, while 

the results from the model represent the states in summer. Third, the stratification 

situation in the data set needs further examination. 

Compared to site-specific estuarine models, the model developed here is much 

simpler, and with further development, could be a useful screening tool for the 

management of estuaries. Some physical factors such as light, temperature, and wind 

could be added to make it a more complex model. It may also be appropriate to 

expand the model into two layers. Other nutrients such as phosphorous and silica 
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could also be added. At present, the model is designed for summer steady state 

conditions. The effects of seasonality could be explored more fully in future 

investigations.  

The NPZ model still has a place in estuarine classification. A variety of behaviors 

including various steady state and regular oscillations may serve as a basis for caution 

in developing a classification of coastal ecosystems.  
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