
Here, I is the Jacobian matrix, presented by Equation ( 2 2 )  
and evaluated at the steady state. It is clear from Equation 
(A2)  that the derivatives of the outlet conditions are given by 

dre/deF 0 [ de,/deF j = ( J - - I ) - ~ J  [l-l/R] (A3)  
The inverse of the matrix (1 - I ) ,  which exists whenever its 
determinant does not vanish, may be expressed as 

Equation (A6)  exceeds unity. Consequently, the corresponding 
steady state is unstable. It follows that a necessary, but not 
sufficient, condition for steady state stability is that the sign of 
dre/deF be the same as the sign of ar./ae.. 

This condition can now be applied to show that the interme- 
diate conversion state is always unstable for irreversible reac- 
tions such as those considered in the preceding examples. An 
examination of the curves in Figure 4 shows that &,/& 
never vanishes; thus it follows from Equation (A5) that the 

The following expression for dr./deF can be readily obtained 
from Equations (A3) and ( A 4 ) .  

sign of ar./ae. can never change. Furthermore, the sign of 
ar./ae. must be negative, since one can argue that, at least at 
sufficiently low inlet temperatures, the outlet reactant concen- 

dr./deF = ar./2ee (A51 tration would be expected to decrease with an increase in inlet 
temperature for an irreversible reaction. An intermediate con- 
version steady state violates the above condition for stability, 
therefore, since dr./dea, being positive, does not agree in 

1 - R, 

d - t f f l  
Since the characteristic equation, as given in Equation (4219 
of the Jacobian matrix J can be written in the form 

ha- t r h  + d = 0 (A61 sign with ar./aeo. 
it can that whenever the quantity ( d  - tr 
+ 1) in Equation ( A s )  is negative, one of the solutions of 
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The Finite-Difference Computation of 

Natural Convection in a 

Rectangular Enclosure 
J. 0. WILKES and S. W. CHURCHILL 

University of Michigan, Ann Arbor, Michigan 

A study is  made of the natural convection of a fluid contained in a long horizontal enclosure 
of rectangular cross section with one vertical wall heated and the other cooled. Two-dimensional 
motion is assumed. The governing vorticity and energy transport equations are solved by an 
implicit alternating direction finite-difference method. Transient and steady state isothermals 
and streamlines are obtained for Grashof numbers up to 100,000 and for height-to-width ratios 
of 1,2, and 3. 

This work is part of a research program whose object 
is to develop numerical methods for solving the partial 
differential equations governing the conservation of mass, 
momentum, and energy in problems of natural and free 
convection. In the initial investigation (7), Martini and 
Churchill measured the temperature and velocity fields for 
air contained in a long hollow horizontal cylinder with 
one vertical half heated and the other cooled. They did 
not complete a numerical solution, mainly because of the 
limitations of the then available computer (an IBM 650). 

Aided by an IBM 704 computer, Hellums and Churchill 
(4;) developed an explicit finite-difference method for 
generating the transient solution to the above problem and 
also for free convection at  a vertical plate. In  both cases 
they were able to employ boundary-layer types of equa- 
tions in which only one momentum balance actually 
proved to be necessary. The computed transient velocity 
and temperature fields ultimately converged to steady 
state values. For the plate, these values agreed excellently 
with the theoretical solutions of Ostrach (9) apd Schmidt 
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and Beckmann (12) and also with the experimental re- 
sults of the latter. The values computed for the cylinder 
agreed tolerably well with Martini and Churchill's experi- 
mental results. 

The object of the present investigation is to extend the 
bite-difference method to the computation of natural con- 
vection in situations in which momentum transfer is sig- 
nificant in two dimensions. The motion of a fluid in a long 
horizontal enclosure of rectangular cross section with one 
vertical side heated and the other cooled is chosen for 
study. For purposes of simplifying the problem, two-di- 
mensional motion is assumed; the possibility of computing 
a completely turbulent solution is thereby precluded. For 
moderately low Rayleigh numbers, Poots' analytical steady 
state solution is available (11 ) for checking the computed 
values. Poots expressed temperature and stream function 
as two doubly infinite series of orthogonal functions, and 
presented numerical values for a square cross section with 
a linear variation of temperature along the top and bottom 
horizontal walls for 500 < NR. < 10,000. 

Batchelor ( I  ) also investigated the following special 
cases for natural convection in a rectangular cavity: small 
Na. (< 10') with L approximately unity, large L for gen- 
eral NRa, and large NRa for general L; he was forced to 
make drastic idealizations to obtain solutions for the last 
two cases. He predicted transition to turbulent flow at N o ,  
= 13,700 for the second case and at NE,La = lo" for the 
third case. Eckert and Carlson (2) observed the temper- 
ature distribution interferometrically and derived the heat 
transfer rate for several conditions. Mull and Reiher (8) 
also measured the heat transfer rate across enclosed hori- 
zontal, oblique, and vertical air layers. Batchelor's predic- 
tions were between 50 and 100% higher than these meas- 
urements. 
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PROBLEM STATEMENT 

The physical situation is illustrated in Figure 1. The 
fluid is initially motionless and at a uniform temperature 
equal to the average of the vertical wall temperatures. 
Two alternative boundary conditions are considered for 

X I 
C O L D  

WALL 

81 

I H O T  

WALL 

82 e 

I N S U L A T E D  

cr L I N E A R  

Fig. 1 .  Rectangular enclosure. 

- + u - + v - = - -  av a~ a0 1 - ap' + .( 5 +") 
( 2 )  

(3) 

at ax ay P aY ag 

au av - + - = o  
ax ay 

In deriving these equations, one treats the fluid properties 
as constants, except for one step in which a temperature 
variation of density is essential to the phenomenon of 
natural convection. The additional assumption is made 
that the applied temperature difference (0, - 8,) is small 
compared with l/b. 

If viscous dissipation and compressibility effects are 
neglected, the corresponding energy balance is 

ae a8 ae k aze aze 
- + u - + v - = -  at ax ay p ~ ,  (T+T) (4)  

The initial and boundary conditions are 

temperature on the horizontal walls, namely perfect in- 
sulation, and a linear variation 0 = el + (8, - 0,) y/d. 
The problem is to find the subsequent velocities and tem- 
peratures as functions of time and position and the rate 
of heat transfer across the enclosure as a function of time. 87 ax ay 2 
A final steady state solution, if such exists, would be of 

The above equations may be restated in the following 
dimensionless forms: 

au N~~ T ap azu azu +-+- +u-+v-=---- - ax ax2 ay2 
au au 

(6) 
particular intgrest. aV av dV ap av av 
are ( 1 3 )  aT ax aY aY axz dYZ 

The appropriate equations of motion and continuity -+u-+v-=--  +-+- (7)  

au au au 
- + u - + v - = - gp ( e - o0) - 
at ax ay 

au av -+-= 0 ax ay (9) 

r = O ,  O - - ' X L L ,  O--'Y'l: U = V = O ,  T = O  1 r > o  (10) 
X = O a n d X = L :  U = V = O ,  T = 2 Y - l  

or aT/aX = 0, 
Y = O :  U = V = O ,  T = - 1 ,  
Y = l :  U = V = O ,  T = l  
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Fig. 2. Transient streamlines (t = 0.004). Fig. 3. Transient isothermals (t = 0.01). Fig. 4. Transient streamlines (t = 0.01). 

Differentiating Equations (6) and (7) with respect to 
Y and X ,  respectively, subtracting, and applying Equation 
(9) produces the following equation in which pressure 
no longer appears: 

The introduction of a dimensionless vorticity 5 = - 
0'4, where the dimensionless stream function + is such 
that U = a+/aY and V = - a$/dX, enables the problem 
statement to be written as 

T = O ,  O--LXLL,  O L Y g l :  i = O ,  T = 0 ,  

1 T > o l  X = 0 and X = L: $ = a4/aX = 0, 
T = 2Y - I or aT/ax = o 

Y = 0 :  4 = a+/ay = 0, T = - 1, 
Y = l :  $=a$/aY=O, T = l .  

(16) 

TABLE 1. OPTIMUM VALUES OF RELAXATION PARAhlETER 

FOR USE IN EQUATXON ( 19) 

No. of grid spacings: 

10 10 0.2 1.58 
20 20 0.05 1.83 
20 10 0.1 1.70 
30 10 0.1 1.73 

X direction Y direction AX ( =  4 Y )  Wopt 

The velocities U and V are retained explicitly in the 
problem formulation, since their computed values will 
give an immediate picture of the flow pattern. The local 
Nusselt number is Nxu = (aT/aY)P=0/2, and its mean 
value N G  over the height of the enclosure will depend on 
No, ,  Np,,  L, and T. For conduction alone, N ,  and NK 
would equal unity. 

FINITE-DIFFERENCE APPROXIMATION 

Equations (12) through (15) here are called the vor- 
ticity, temperature, stream function, and velocity equa- 
tions, respectively. An approximation to their solution will 
be obtained at a finite number of grid points having co- 
ordinates X = ihx, Y = jhY, and at  discrete times T = 
n&, where i, i, and n are integers. The vorticity and 
temperature equations are parabolic, while the stream 
function equation is elliptic. 

Suppose that all quantities are known at a time  AT 
(the initial condition corresponds to the special case n 
= 0). An implicit alternating direction technique based 
on suitable finite-difference approximations of the vortic- 
ity and temperature equations is employed to advance the 
fields of vorticity and temperature at the interior grid 
points across a time step AT to the new level (n +  A AT. 
At any grid point the term aT/aY in the vorticity equa- 
tion and the coefficient velocities U and 17 are treated as 
constants over a time step. All space derivatives are given 
centered difference representations. 

Thus, the relevant finite-difference approximations to 
the vorticity equation, to be used consecutively over two 
half time steps, each of duration AT& are 

followed by 
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Fig. 6. Steady state streamlines. 

ax2 b"'., + 8P2 ",j.n+1 

Equations (17) and (18) are implicit in the X and Y 
directions, respectively, and when applied to every point 
in a column or row, as the case may be, yield tridiagonal 
systems in the unknown vorticities [*4,j or bt,j,n+l. Similar 
approximations also hold for the temperature equation 
which, in the present calculations, precedes the vorticity 
equation across a time step. 

The method of successive over-relaxation is then em- 
ployed in conjunction with the newly computed vorticities 
[4,,,n+l to solve the stream function equation for the new 
stream function field. Thus, if $::,' denotes the approxi- 
mation at the rnth iteration to the stream function at a 
point, a further approximation $:m?' is obtained from 

(18) 

Once the optimum value of the relaxation parameter 
o has been found by trial and error for a given system 
of grid points, this value is then employed in all further 
computations with that grid. Representative values of 
wept for use in Equation (19) are given in Table 1 for 
various grid systems, each having AX = AY. About 
twenty-five iterations, with the use of Equation (19) at 
each grid point, give good convergence. 

The new wall vorticities are then computed by con- 
sidering Taylor's series expansions for stream function in 
the vicinity of the walls. For example, for points ( i ,  1) 
and (i, 2 ) ,  removed by one and two grid spacings, re- 
spectively, in the Y direction from a grid point (i, 0 )  on 
the left-hand wall Y = 0 

a$ (AY)' a'$ ( A Y ) ~  as+ 
$<,o + AY - + - - + - - 

I3Y 2! aY' 3! ay" $<,I 

(20) 

a$ (2AY)" 3'4 (ZAY)' 13'4 -+-- 
3! aY3 $',2 = $LO + 2Ay - + - ay 2! ay2 

(21) 

In Equations (20) and (21) all derivatives are considered 
at the wall point ( i ,  0).  But, from the boundary condi- 

0 0.05 0.1 0.15 
DIMENSIONLESS TIME, -C 

Fig. 7. Mean Nusselt number vs. time. 

tions of Equation (16), both $4.0 and */dY are zero. 
After eliminating as$/aY3 between Equations (20) and 
(21) and noting from the defining equation for vorticity 
that 5 = - a2$/aY2, the following approximation is ob- 
tained for vorticity at the wall: 

That is, the new wall vorticities are computed from stream 
functions which themselves have been calculated from 
the new vorticities at the interior grid points. Note that 
a simpler but less accurate approximation, namely (l.o = 
- 2+'J(AY)', could have been obtained from Equation 
(20)  alone. 

Finally, the new fields of U and V are obtained from 
space centered finite-difference approximations of the 
velocity equations. The whole process described above is 
then repeated for as many successive time steps as desired. 
Further details of the method are given in reference 13; 
the successive over-relaxation and implicit alternating 
direction procedures are also discussed in references 3 
and 10. 

RESULTS 

Table 2 summarizes the range of the investigations. 
With the use of a 10 x 10 grid, a typical computation 
takes less than 3 sec. of IBM 7090 time per time incre- 
ment. For all runs, the computed values essentially con- 
verge to a steady state by a time T = 0.2. Although not 
shown here, the steady state temperatures and stream 
functions of run 4 (20 x 20 grid) are remarkably close 
to those of run 3 (10 x 10 grid). The 15% difference in 
NZ between the two i s  rather an expression of the in- 
herent difficulty in estimating (dT/aY) p=o from values of 
temperature at grid points extending on one side of the 
wall only. 

To expedite plotting the results, an auxiliary program is 
written to locate points lying on specified isothermals and 
streamlines by linear interpolation of the computed val- 
ues at the grid points. Typical sets of the resulting stream- 
lines and isothermals are shown in Figures 2 through 6 
for the conditions of run 3. The value of the stream func- 
tion at a point is proportional to the flow per unit time 
crossing any line joining the point to the wall. Thus, the 
general increase in stream function as time advances shows 
that the fluid is accelerating. Two anticlockwise eddies 
develop at first but eventually merge into a single circula- 
tion. For small times, the isothermals are roughly parallel 
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to one another, due to the predominance of conduction. 
Their later distortion clearly shows the effect of convec- 
tive energy transport. The stream function at the center 
of the enclosure actually passes through a maximum be- 
fore decelerating slightly to its final steady value. 

The corresponding variation of heat transfer across the 
enclosure is shown in Figure 7, again for the conditions 
of run 3. The finite-difference solution for conduction only 
is also shown for comparison. The contribution of convec- 
tion becomes apparent only after T = 0.015, even though 
the velocities are by this time well on their way to their 
final steady values. This is due to the lapse of time occur- 
ring while fluid travels from the hot wall to the cold wall, 
and vice versa. The later “overshoot” (at T = 0.06) and 
an even smaller “undershoot” (at T = 0.09) can be ex- 
plained similarly. 

The transient results for the remaining runs exhibit 
similar characteristics and are not reproduced here. The 
skeady state results for run 2 (linear type of boundary 
condition) are also similar, except that the velocities are 
about 25% higher than those of run 3 (insulated type of 
boundary condition). The steady state values for run 1 
agree almost perfectly with those computed from Poots’ 
solution. The steady state values for the tall rectangle of 
run 9 are reproduced in Figures 8 and 9. The last column 
of Table 2 also shows the values of NZ predicted by the 
following correlation of Jakob (5, 6), based on the ex- 
periments of Mull and Reiher (8) : 
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Fig. 8. Steady state isothermals. 

N, = 0.18 NQP” L - O . ~ ,  2 x 10‘ < NO, < 2 x lo6 
(23) 

For most cases, the computed NaL is from 0 to 70% in 
excess of that predicted by Equation (23). The discrep- 
ancy is due partly to the fact that Jakob‘s correlation is 
based on values of L between 3.12 and 42.2, considerably 
beyond the range investigated here. Indeed, Equation 
(23) predicts that N& decreases as L increases, which is 
unlikely to be true for small values of L. 

As shown by runs 3, 5, and 6, NLfor the insulated case 
depends more strongly on NGr than predicted by Equation 
(23), although no simple power law is obeyed. The vari- 
ation with L is indefinite, since the spread between the 
N ,  of runs 3, 8, and 9 is within the uncertainty of esti- 
mating the temperature gradient at the wall. NN, falls 
appreciably between runs 3 and 7 as the Prandtl numbzr 
is lowered. 

The present technique produces unstable results for 
Grashof numbers greater than 200,000. This probably 
arises from the fact that the implicit computation of the 
new interior vorticities supposes that the old boundary 
vorticities still hold good at the end of the time increment. 
The boundary vorticities themselves are eventually ad- 
vanced on the basis of Taylor’s series expansions for stream 
function at one and two points removed from the bound- 
ary. The resulting slight inconsistency between the in- 

0 0.5 Y 1.0 

3.0 - 
Fig. 9. Steady state streamlines. 

Vol. 12, No. 1 A.1.Ch.E. Journal Page 165 



TABLE 2. A SUMMARY OF THE COMPUTER RUNS: STEADY STATE MEAN NUSSELT NUMBERS 

Run AT 

1 
2 

0.002 
0.001 and 0.002 
0.001 and 0.002 

0.001 
0.001 
0.001 
0.002 
0.002 
0.002 

N -  N-from Boundary N u  Nu 
L A x  AY N P C  N Q ~  condition Equation (23) 

1 .o 0.1 0.1 
1.0 0.1 0.1 
1 .o 0.1 0.1 
1.0 0.05 0.05 
1.0 0.1 0.1 
1.0 0.1 0.1 
1 .o 0.1 0.1 
2.0 0.1 0.1 
3.0 0.1 0.1 

0.733 
0.733 
0.733 
0.733 
0.733 
0.733 
0.1 
0.733 
0.733 

6,850 
20,000 
20,000 
20,000 
60,000 

100,000 
20,000 
20,000 
u),ooo 

Linear 
Linear 
Insulated 
Insulated 
Insulated 
Insulated 
Insulated 
Insulated 
Insulated 

1.419 
2.068 
2.874 
2.516 
4.793 
5.512 
1.286 
2.992 
2.825 

1.64 
2.14 
2.14 
2.14 
2.82 
3.20 
2.14 
1.98 
1.89 

For heat transfer by conduction only: 1.000 

terior and boundary vorticities could be overcome at the 
expense of iterating several times over each time step. 

temperature, and the temperatures at the cold 
and hot walls, respectively) 

u = kinematic viscosity 
CONCLUSION 

A finitedifference technique has been developed for 
predicting the transient and steady state natural convec- 
tion in a rectangular enclosure. The steady state results 
are in excellent agreement with an existing analytical 
solution and are not out of line with experiments made 
under rather different conditions. The paper thus demon- 
strates the power of numerical methods for the a priori 
solution of complex problems in convection. 

NOTATION 

= specific heat 2 = width of enclosure 
N, ,  = Grashof number, = @(8, - B,)G?/v’ 
g = acceleration due to gravity 
h = local heat transfer coefficient, = - q / ( &  - O1) 
k = thermal conductivity 
1 = height of enclosure 
L = ratio of cavity height to its width, = l /d  
N,,  = local Nusselt number, = hd./k 
N N i  = mean value of Niisselt number 
p’ = pressure deviation from initial (static) value 
P = dimensionless pressure deviation, = p’d‘/pv’ 
N p I  = Prandtl number, = pc,/k 
q = heat flux density at a vertical wall 
N,, = Rayleigh number, = N o ,  x Npr 
f = time 
T = dimensionless temperature, = ( 8  - 8,) / (8, - 8,) 
u = velocity in the x direction 
U = dimensionless velocity in the X direction, = u d / ~  
v = velocity in the y direction 
V = dimensionless velocity in the Y direction, = v d / v  
x = vertical coordinate, measured downward from the 

top left-hand corner of the enclosure 
X = dimensionless vertical coordinate, = x / d  
y = horizontal coordinate, measured across from the 

top left-hand comer of the enclosure 
Y = dimensionless horizontal coordinate, = y/d  

Greek Letten 
AX 
AY 
AT = time increment 
V2 
1; 
@ 

= grid spacing in the X direction 
= grid spacing in the Y direction 

= Laplacian operator, = a2//aX’ + a’/aYZ 
= dimensionless vorticity, = - Vz+ 
= temperature (B,, 8,, and 8, refer to the initial 

p = viscosity 
p = density 
T 

$ = dimensionless stream function, such that U = 

,8 
w = relaxation parameter 
8 ,  

= dimensionless time, = f v / 8  

@/aY and V = - 
= volume coefficient of thermal expansion 

= central diflerence operator, such that, for exam- 
ple, &’ 5i . j .n = ( t i - 1 . j . n  - . % J , ~  + C<+i.j.n)/(AX)’ 

= space subscripts of grid point in X and Y direc- 
Subscripts 

i, i 
tions 

n = time subscript 
opt = value of relaxation parameter giving fastest con- 

vergence 

Superscripts 

rn = iteration number 
= value at the end of a half time step 
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