
u = velocity 
uc 
u = average velocity 
x = distance along pipe 
y 
Greek Letters 

fl  = mass flow ratio 
6 = volume flow ratio 
y 
Y = kinematic viscosity 
p = density 
rW = wall shear stress 
p = dynamic viscosity 

Subscripts 

= velocity at center of pipe - 

= distance from pipe wall 

= ratio of specific heats 

f = = p.s iquid phase phase 

Superscript 
0 = critical conditions for which N M  = y-”2 
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Stability of a Fluid in a Rectangular 

Region Heated from Below 
MICHAEL R. SAMUELS and STUART W. CHURCHILL 

University of Michigan, Ann Arbor, Michigan 

Finite-difference methods were used to compute hydrodynamic instability due to natural 
convection in an enclosed horizontal rectangular region heated from below. Critical Rayleigh 
numbers were determined for a series of Prandtl numbers and length-to-height ratios. For 
Prandtl numbers greater than unity excellent agreement was obtained between these calcula- 
tions and the values predicted by Kurzweg on the basis of a linearized theory. However, for 
Prandtl numbers less than unity the critical Rayleigh numbers exhibited a dependence on N P ~ ,  
which was not predicted by the linearized theory. For Rayleigh numbers greater than the 
critical, complete temperature and velocity fields were determined. 

The calculations assum,ed that the fluid motion i s  two dimensional. Experiments have indi- 
cated that the flow may be two or three dimensional depending on minor perturbations in the 
boundary conditions. 

Although a number of metastable two-dimensional circulations are possible for symmetrical 
initial conditions, the calculation always converged to o single, unique solution for any asym- 
metric initial condition. 

Situations in which a small perturbation can cause com- ver idealized cases. However, the use of finite-difference 

Such situations are of special interest to engineers, since Problems (1, 2, 6, 19). 
an instability may pose difficulties in design and The objective of this work was to demonstrate the use- 

fulness of finite-difference techniques in the study and 
Natural convection can be described by the equations characterization of unstable systems. In  particular, in- 

of conservation of mass, energy, and momentum. Analyt- stability due to natural convection in an enclosed, hori- 
ical solutions for these coupled, partial differential equa- zontal region of rectangular cross section heated from be- 
tions are difficult, if not impossible, to obtain except for low was studied. 
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HISTORICAL BACKGROUND 

The first reference to the existence of natural convec- 
tion between horizontal plates heated from below appears 
to be by Thomson (18), who in 1882 noted the presence 
of cellular patterns in soapy water whose mean tempera- 
ture was greater than ambient. In 1900, Bhard  ( 3 )  pub- 
lished photographs taken with a beam of parallel light 
which had passed through a layer of paraffin oil whose 
thickness was small compared with its diameter and which 
was heated from below. These photographs clearly indi- 
cated the presence of a hexagonaI cellular convection pat- 
tern. [There is recent evidence ( 1 7 )  that the cells ob- 
served by Thompson and Bknard were caused by surface 
tension, rather than thermal gradients. However, the 
effects of surface tension can apply only in studies where 
the upper surface is free; they are not encountered in 
enclosed regions.] 

In 1916 Lord Rayleigh (13 )  set forth the basic ap- 
proach to the analytical treatment of convective instability 
in an enclosed infinite region heated from below. He 
linearized the equations of motion by assuming that all 
second-order perturbations of the pure conduction solu- 
tion could be discarded, and he accounted for the cellulai 
behavior observed by Bknard by assuming a solution for 
the velocity and temperature perturbations in terms of 
Fourier series. For the unrealistic case of no shear along 
the upper and lower boundaries he was able to calculate 
the critical temperature difference below which pure con- 
duction was stable. 

A complete solution for the linearized equations of 
motion with either free or fixed boundary conditions on 
the upper or Iower surface was presented by Pellew and 
Southwell (11) in 1940. Because of the linearization of 
the equations of motion, the hexagonal cell observed by 
BBnard could not be explained, nor could heat transfer 
rates be determined. 

Recently, much effort has been expended in an effort 
to explain the hexagonal cells of BBnard and to predict the 
rates of heat transfer in the presence of convective motion, 
but only partial success has been obtained. 

The first experimental study of instability in a region 
with length-to-height ratio near unity appears to be that 
of Sorokin (16 ) ,  who in 1961 studied natural convection 
in a long, horizontal cylinder of circular cross section 
heated from below. Observations of the paths of aluminum 
particles suspended in the working fluid indicated that 
two modes of convection were possible: a two-dimensional 
planar rotation with no component of velocity parallel to 
the axis of the cylinder, and a three-dimensional cellular 
pattern. For a Rayleigh number just above the critical value 
the two-dimensional mode was preferred, while for a 
Rayleigh number far above the critical value the three- 
dimensional mode was preferred. 

In 1964 Deardoff ( 5 )  used finite-difference techniques 
to integrate the Navier-Stokes equations for two-dimen- 
sional, natural convection in an enclosed rectangular region 
heated from below. Length-to-height ratios of 1 to 1 and 
2 to 1 were studied. Rayleigh numbers greater than 6.75 
x 105 were investigated in an effort to describe turbulent 
convection. However, the assumption of two-dimensional 
motion was found to suppress the appearance of random 
fluctuations, and in most cases a nearly steady state solu- 
tion was obtained. 

In 1965 Kurzweg (9) developed a stability criterion 
for two-dimensional, natural convection in a horizpntal 
enclosed rectangular region which is heated from below. 
The linearized equations of motion were assumed to have 
a solution for the temperature and stream function in the 
form of two infinite series of orthogonal functions. A modi- 
fied Fourier technique, as outlined by Poots ( 1 2 ) ,  was 
used to evaluate the values of the Rayleigh numbers for 

which nontrivial solutions exist. The lowest of these values 
is taken to be the critical Rayleigh number Naac. Values 
of NR, ,  are presented for values of L / H  from 0 to 4 to 1. 
The variation of NX with N Ra for NRa greater than N 

RQC 
could not be determined by this method, and a depend- 
ence of N R a c  on N p ,  was not predicted. 

In 1965 Aziz ( 1 )  presented the results of a numerical 
study of natural convection within a horizontal region of 
square cross section and within a cube. Results are pre- 
sented for N p , .  = 1.0 and 7.0 in the range of 1,000 

Fromm ( 7 )  recently presented the results of several 
numerical solutions for two-dimensional, natural convection 
in an enclosed rectan ular region heated from below and 

on the horizontal walls. Cyclic and no-slip conditions were 
postulated for the vertical walls. Results are presented for 
no-slip boundaries in a cell seven units long and three 
units high. Two-, three-, and four-celled patterns were 
forced to exist by usin appropriate, s mmetrical initial 
conditions. Apparently, t a e stability of t $ ese patterns to a 
general or unsymmetrical disturbance was not tested. Ap- 
proximately equal heat fluxes were found with the dif- 
ferent patterns at steady state. 

N R ~  4 1,750. 

subject to either no-s a ear or no-slip boundary conditions 

MATHEMATICAL STATEMENT OF THE PROBLEM 

In the calculations presented herein it will be assumed 
that the motion is two dimensional. This mode has been 
observed experimentally, and therefore the calculated re- 
sults should have physical signficance. Whether a two- 
or three-dimensional motion is the more stable is, how- 
ever, unknown. Fortunately, the lumped parameters, such 
as total heat flux, have almost equal values for two- and 
three-dimensional motions near the critical Rayleigh num- 
ber. Indeed, it is just this similarity between the various 
modes which makes their relative stability so difficult to 
determine., 

Three-dimensional calculations are theoretically feasible 
by an extension of the methods presented herein, but an 
increase of several orders of magnitude in computer time 
would be required. 

Under the assumption of two-dimensional flow the prob- 
lem may be described as follows. 

A fluid of mean temperature Oo is at rest within the 
rectangular region OLx'L, Ody4H (see Figure 1) .  The 
fluid initially has a linear vertical temperature gradient 
with e = O1 at the upper surface and 0 = Bh at the lower 
surface. A small disturbance in velocity is introduced in 
the central region and allowed to develop until a steady 

X 

Oh 

Fig. 1. The physical problem. 
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state convection pattern is established, or until all motion 
begins to die out. 

The two-dimensional equations of motion for this prob- 
lem may be written as follows: 

Momentum: 

eliminated by subtracting the partial derivative of Equa- 
tion (7)  with respect to X from the partial derivative of 
Equation (6) with respect to Y to form 

a5 85 at aT -+ U - + V - = - N N G r ~ - - +  vq (12) ax ay ax 

J 

Energy: 

ae as ae 
at ax aY 
- + u - +  2,-= K 

Continuity: 
au a0 

ax ay 
-+--.=o 

The initial and boundary conditions 

(4) 

u = u = o on all surfaces. J 
then complete a formal statement of the roblem. The 

stants, and that variations of p are negligible, except as 
they affect the gravitational term. It is also assumed that 

When one follows Hellums and Churchill ( 8 ) ,  the 

above representation assumes that p, k, an x c, are con- 

mh - el)  << 1. 

above representation may be de-dimensionalized to 

au av -+-=o ax a~ (9) 

aT  aT L - (O,Y,r) = - (-,Y,r) =o ax ax H 
U = v = o on all surfaces. J 

The mean Nusselt number N.P;;; may be expressed in 
terms bf dimensionless variables as 

&l- = - L H  r'"($) dX (11) 
N U  2 L  Y=O 

where the vorticity 5 has been defined as 

and $ is the stream function such that 

Equations (12) and (8), along with the definitions of 
5 and $, and the initial and boundary conditions 

$(X,Y,O) = F(X,Y) 
T(X,Y,O) = -1 + 2Y 
T(X,O,r) = - 1 
T(Xl1jrj = 1 

ax ax 
aT - (0,YJ) = - aT ($,Y,.) = 0 

a$ Jt = - = 0 on all surfaces where 
an n is the direction 

normal to the surface 

constitute a condensed formal statement of the problem. 

FINITE-DIFFERENCE APPROXIMATIONS 

In the numerical solution of a differential e uation the 

ber of regularly spaced values of the independent vari- 
ables known as grid points. The derivatives are then re- 
placed by finite differences involving the values of the 
dependent variables at the grid points and the differential 
equations reduced to a series of algebraic equations which 
can be solved by conventional means. For the problem 
herein the numerical grid of Figure 2 has been used 
throughout. 

Equations (12) and (8) are known as the vorticity and 
energy equations, respectively. These equations are 
parabolic equations because of the presence of the a/dr  
term. If a solution for the 5 and T fields is known at r = 
nAr (n = 0 corresponds to the initial condition), then the 
solution at T = (n  + 1)Ar may be evaluated in several 
ways. A two-dimensional version of the implicit, alternat- 
ing direction ( ADI) method introduced by Brian (4) was 

dependent variables are assumed to exist at a 1 nite num- 

I =  
j:o I 2 3 NX-2 NX-I FNX where 

O S Y 5 I  
L 05x5- H 

AX= NX 

Ay='.O NY 

X= iAX 
Y= jAY 

AX=space 

-f between vertlCOl NY- 2 

NY- I grid hnes 

AY = space i = N Y  
between horizonto\ 
grid lines 

The pressure terms in Equations (6) and (7)  may be Fig. 2. The numerical grid. 
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used herein. For two-dimensional problems Brian's AD1 
method can be reduced to the usual AD1 procedure. How- 
ever, Brian's formulation requires slightly less computation 
than the usual formulation, and therefore was used in this 
work. When one uses Brian's procedure, the vorticity and 
energy equations are expressed as 

Vorticity : 

-6Sy(t;n-[n+1) V (15) 
2 

Energy: 

( Sx2 T' + 8y2 T n )  - UGxT' - T' - T n  1 =- 
 AT/^ NPr - .  

VSyT" (16) 
2T* - T" - Tn+' 0.5 

AT Npr 
- _ -  6y2( T n  - Tn+')  - 

where central differences have been used to evaluate all 
first derivatives. Velocities and values of 4 at the wall are 
evaluated at T =  AT throughout the whole time step. Use 
of the wall vorticities and velocities in this fashion win 
introduce a minor error in the unsteady state results. How- 
ever, since only the steady state results are considered to 
have significance, this error, which vanishes at steady 
state, was of no concern. 

Once the values of 5 at T = ( n + l ) A ~  are known, +";"+' 

must be determined. When one follows the procedure of 
Peaceman and Rachford (10) the elliptic equation for the 
stream function is rewritten as 

That is, the problem is converted to an unsteady problem, 
and numerical integration in time is carried out until the 
change in the 9 field becomes negligible. When the AD1 
procedure is used for the time integration, it is possible 
to use large time step sizes and, therefore, to attain the 
steady state rather rapidly. In most calcuIations only one 
to three iterations were required for convergence of the 
stream function field. 

TABLE 1. SUMMARY OF  CASE^ STUDIED 

L/H N P ~  

1/2 1.0 

1/1 0.01 

1/1 0.03 

1/1 0.1 

1/1 1.0 

1/1 5.8 
1/1 25.0 
2/1 1.0 

3/1 1.0 
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N G r  

3,000,5,000, 6,000, 7,000, 8,000, 10,000, 
20,000 
150,000, 170,000, 200,000, 300,000, 500,000, 
1,000,000, 2,000,000, 4,000,000 
50,000, 56,670, 66,670, 100,000, 167,000, 
333,000,666,700 
13,000, 14,000, 15,000, 17,000, 20,000, 
30,000, 50,000, 100,000, 200,000 
1,300, 1,400, 1,500, 1,700, 2,000, 3,000, 
5,000, 10,000, 20,000, 40,000 
180, 230, 260, 360, 500, 860, 1,720 
60, 75, 100, 200, 400 
1,000, 1,100, 1,300, 1,500, 2,000, 3,000, 

3,000 
5,000, 10, 000 

3.0 I I ,7 
I 

%G 2.4 t 
k 

/ 
I I I I I 1.6 I 

0 0.05 0.10 0.15 0.20 0.25 0.3 
GRID SIZE 

Fig. 3. Effect of grid size on steady stote N- ond +cent for a 
rquore cavity with Npr = 1 ond Nc7 = 3,000. 

Nu 

Although Peaceman and Rachford suggested using a 
varying time step size for solving Equation (18), a con- 
stant step size of AT' = 0.04 proved most satisfactory for 
AX = AY = 0.1 and 0.05. 

The following test was used to determine the conver- 
gence of the stream function iteration: 

1. At the end of each iteration the vorticity &,I is cal- 
culated from the current values of p + l .  

2. If 1 (Z1,l - h . 1 )  /<1,11 is less than a predetermined 
constant E P S I ,  the iteration is assumed to have converged. 
If not, a new set of p + l  is calculated, and the test is ap- 
plied again. 

The 1,l point was chosen for the convergence test be- 
cause early experiments indicated it was the last point to 
reach its final value. 

Once the new field of the stream function has been 
calculated, the vo-rticities on the wall must be up dated 
to T = ( n + l ) ~ ~  (the wall vorticities have been held 
constant at their value for 7 = TLAT to this point). The wall 
vorticity may be calculated from the new stream functions 
as follows. 

For the wall at X = 0, U = V = 0 implies (&,A,,j,/aY) 
= (a~l~ , j /aX)  = O for all Y. (aqo,j/aY) implies qo,j = 
constant for all Y, and the constant is chosen equal to 0 
for convenience. Thus (a2$,,,i/aY2) = 0 for all Y, and 
V2qOj becomes V2+,,j = 82+o,j/aX2 = - 5o.j. (a2,,j/aXz) 
may be calculated from the Taylor's series expansion 

AX alCl0.i 
q1,j = q0,j + - - + - - AX' azJlo,j + . . , 

i! ax 21 ax2 
But 

Therefore 

Similar expressions can be derived for the other walls. 
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Fig. 4. Dependence of N- Nu on NRa and Npt for o cavity of square 

cross section. 

I I I I l l  I - 
- 

- Experirnentol Doto of Schmidt ond Stheston For Convection 
Between Infinite Plotns Heated From Below 

--- Numerrcol C o l c u l o i m t  of Azbz For o Squore Cavity 
P r = 7 0  ( A X = O l O )  
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Wilkes (19) suggests the use of a higher-order approxi- 
mation to Vz+, which includes 42.j. However, the vorticity 
equation exhibited a boundaiy-induced instability at rela- 
tively low AT when such higher-order approximations were 
tested. 

Four-point, central differences were used to determine 
U and V from + for points not adjacent to a boundary. 
Four-point, noncentral differences were used for velocities 
adjacent to a boundary. A four-point approximation was 

used to evaluate determination of NN,. 

RESULTS 

To check the assumption of two-dimensional motion, 
an experimental program was undertaken to obtain a 
qualitative description of natural convection within a long, 
horizontal, rectangular channel heated from below. Un- 
fortunately, the preferred mode of convection was ex- 
tremely sensitive to minor perturbations in the bounday 
conditions, such as type of illumination, heat leakage, etc., 
and the equipment did not have adequate control for the 
desired experiments. Although interesting observations 
were made, they did not provide a critical test of the as- 
sumption of two-dimensional motion. 

A computer program for the desired calculatioas was 
developed using the MAD (Michigan Algorithmic De- 
coder) language. Calculations were performed on the IBM- 
7090 computer at the University of Michigan Computing 
Center. 

Calculations were performed for approximately sixty 
combinations of L/H,  Ncr,  and Npr. A summary of the 
cases studied is presented in Table 1. In each case a set 
of arbitrary initial conditions (usually the results of a pre- 
vious calculation) was introduced and calculations per- 
formed until N z  no longer varied significantly with time. 
Plots of the streamlines and isotherms which existed after 
the last time step were prepared by an interpolating and 
plotting program [see Wilkes (19),  p. 93, for details of 
this program]. 

TABLE 2. VARIATION OF CENTRAL $ * NPT AND N% 
WITH NPr AT N R ~  = 10,000 AND L / H  = 1.0 

0.01 2.92 
0.03 2.87 
0.1 2.76 
1.0 3.025 
5.8 3.03 

25.0 3.03 

10.3 
10.25 
10.0 
10.8 
10.8 
10.8 

Grid Sires and Numerisol Stability 

The effect of grid size on the steady state values of NNU 
and the central stream function for N R ~  = 3,000 is illus- 
trated in Figure 3. The difference between the values of 
N- and JIcent at AX = 0.1 and those values extrapolated 
for AX = 0 is less than 6%. For AX = 0.05 this difference 
was less than 2%. Since the computing time was found 
to increase almost as the cube of the number of grid 
spaces, AX = 0.1 was chosen as a reasonable compromise 
between accuracy and cost. All figures and results pre- 
sented herein are for AX = 0.1. Slightly more accurate 
values can be estimated on the basis of Figure 3. 

For the high values of N p r  and low N G ~ ,  a value of 
AT 0.015 produced numerical instabilities in the vor- 
ticity equation. Therefore AT = 0.01 was used for most 
calculations. However, for high values of NG,. and low 
values of N P ,  AT had to be restricted further to as low as 
0.000 1. 

In most c a b e b  about 100 to 150 time steps, which re- 
quired 3 to 5 min. of computer time for a 10 x 10 grid, 
were needed to reach steady state. 

Nusselt Number Yariotion with LIH, Ncr, and N p r  

Both Kurzweg (9) and Pellew and Southwell (11) 
found that the linearized equations of motion and energy 
contained only NRa as a parameter and thus implied that 
N z  was a function of N R a  alone and not an independent 
function of NGr and NpT. 

A plot of N x  vs. N R a  for L/H = 1.0 and N Pr  = 0.01, 
0.03, 0.1, 1.0, 5.8, and 25.0 is presented in Figure 4, from 
which it is apparent that for N p r  1, N Z  = f ( N R a )  
only. The linearization therefore appears justified for fluids 
with Npr 1. 

The dimensionless quantity N Pr * 4, as well as N s  was 
found to be a function only of NRa for N p T  

NU 

1. Since 

N p r  *$I = s' 0 UdY = K Y  0 U d y  

N p r * + = J X V d X = ~ P V d ~  0 0 (21) 

(20) 

it follows that the dimensional velocities u and 0 are de- 
pendent only On the Rayleigh number and thermal dif- 
fusivity when Npr 1. 

For N~~ < 1, N~ is seen to exhibit a marked depend- 
ence on Npr as well as on N R ~ .  JI . NPT also varies with 

- -+- NumeTicoI Colculotions of Aziz For a 

..+. L/H=QS,Pr= l .O ,  This Work 

- 
Square Cavity P r = i  0 (AX=O 10) 

+ 
/' I --=--L/H=I.O,P~~I.O. This Work 

.+, L / H . ~ . O , P ~ -  1.0, This Work 0 

,.. - 
I I -  1 1 1 1  I 

8 9103 2 3 4 5 6 7 89104 2 
CPP gPH3A9 

N R O = k ' T  

Fig. 5. Comparison of the results of this investigation with the 
calculations of Aziz and the data of Schmidt and Sitveston. 
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Npr.for small N p r  as indicated in Table 2. This variation 
of NG and $I * N Pr  with N Pr indicates that the lineariza- 
tion is not valid for Npr < 1. 

The results of Aziz were found to be much more 
strongly dependent on the grid size than those of the in- 
vestigation reported herein, The reason for this greater 
truncation error is not apparent. When Aziz’ results for 
different grid size were extrapolated to zero grid size, good 
agreement was obtained with the results of this investiga- 
tion. However, Aziz presented values for different grid 
size for only two values of N R ~ ,  at Npr = 1.0. The values 
of N R a  that he presents for AX = 0.10 are significantly 
higher than values obtained by the extrapolation to zero 
grid size, and indicate a critical value of N R u  that is con- 
siderably lower than values determined herein and by 
Kurzweg. 

The results of Aziz for two-dimensional convection in a 
square region (with AX = 0.1) are compared in Figure 5 

with the results of this investi ation, and with the ex- 

between two essentially infinite, flat plates. The critical 
value of N R ~  produced by extrapolating Aziz’ results for 
N x  to unity is even lower than the experimental value 
for convection between infinite plates, which is clearly in- 
consistent. Extrapolation to zero grid size would have 
eliminated this inconsistency. 

perimental results of Schmidt an cf Silveston, for convection 

Determination of the Critical Royleigh Number 

The critical Rayleigh number was determined herein by 
extrapolating a plot of Nx vs. N R a  to N -  = 1.0 (pure 
conduction). Below N Ra,, N x  equaled 1 .O independent 
of N R ~ .  The critical N R ~  for the various cases studied are 
presented in Table 3 along with the results of Kurzweg 
( 9 ) ,  who used the linearized equations of motion to pre- 

Nu 

I .ooo 

1.0001 JI=O 
Fig. 6. Steady state streamlines and isotherms for L/H = 1.0, 

Npr = 1.0, and N G r  = 1,400. 

._ JI-0 
1.000 
Fig, 7. Steady state streamlines and isotherms for L/H = 1.0, 

Npr = 1.0, and Ncr = 10,OOO. 
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dict the critical N R a .  Comparison of Kurzweg’s results with 
those of this investigation indicates good agreement for 
Np,  * 1. However, for Npr  < 1, a significant variation of 
N R a c  with Npr was found and confirms the previous ob- 
servation that linearization is not justifiable for low N p r .  

Streomline and Isotherm Plots 
In Figures 6 to 9 streamlines and isotherms are plotted 

for several values of L/H,  N G ~ ,  and Npr. In Figures 6 and 
7 the build-up of convective strength is observed as the 
N R ~  increases in a square cavity with N p r  = 1. .4t low N R a  
the isotherms are almost straight, equally spaced, hori- 
zontal lines, while the streamlines are nearly circular. As 
NRa increases, the isotherms become increasingly distorted 

TABLE 3. CRITICAL NRa AS A FUNCTION OF L/H AND N P r  

L / H  

2/1 
1/1 
1/1 
1/1 
1/1 
1/1 
1/1 
1/1 
1/2 

N P ~  

1.0 
0.01 
0.03 
0.10 
1.0 
5.8 
7.0 

25.0 
1.0 

NRac 
This work Kurzweg Aziz 

920 1,008 
1,500 
1,380 
1,270 
1,240 1,290 850 
1,230 

750 
1,230 
5,800 6,060 
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as a nearly isothermal core with -0.2 4 T 4 +0.2 de- 
velops. In the core, conduction is almost negligible and 
convection is responsible for the major ortion of the heat 

increases. The streamlines, on the other hand, have dis- 
torted only slightly into an oblong shape. It was noted that 
a region of separated flow had developed in several cases. 
The coarseness of the numerical grid prevented a descrip- 
tion of the separated region. However, the occurrence of 
this separated region did not appear to have a significant 
effect on the heat transfer rates. 

In Figures 8 and 9 streamlines and isotherms are pre- 
sented for L / H  = 2/1 and 3/1. The existence of multi- 
celled patterns should be noted. For a cavity with L / H  = 
2/1 and NPr = 1, a series of cases with varying N R a  was 
studied. The heat transfer rates are presented in Figure 5, 
which indicates the similarity, in the region of the critical 
Rayleigh number, between the two-dimensional calcula- 
tions for L / H  = 2/1 and the experimental values of 
Schmidt and Silveston for convection between infinite 
plates. (I t  is expected that L / H  = 3/1, 4/1 . , . will pro- 
duce better and better agreement with the experimental 
values in the region of N R ~ ~ . )  This close agreement may 
well indicate the presence of two-dimensional cells in the 
experimental work for values of N R ~  near N R ~ ~ .  

Preferred Mode of Notural Convection 

Fromm (7)  found that two-, three-, and four-celled pat- 
terns can exist in a region with L / H  = 7/3, if symmetri- 
cal initial conditions are used as a starting disturbance. 

transfer. As N R ~  increases the size of t K e core region also 

However, the use of symmetrical initial conditions appears 
artificial, since any real motion would undoubtedly be 
generated by some form of nonsymmetrical disturbance. 
Therefore, it was desirable to determine what configura- 
tion would result if two-, three-, or four-celled patterns 
with the same L / H  were subjected to an unsymmetrical 
disturbance. 

To test the effect of initial conditions, unsymmetrical 
one- and two-celled initial conditions were applied to 
regions with L / H  equal to 1.0 and 2.0. For the L / H  = 
1.0 cell both sets of initial conditions produced an identi- 
cal steady state with one cell. For the L / H  = 2 region 
both sets of initial conditions produced identical steady 
states with two cells. Thus when nonsymmetrical initial 
conditions are used, the steady state is independent of the 
initial conditions. However, when symmetrical one- and 
three-celled patterns were used in the L / H  = 2.0 region, 
one- and three-celled patterns, respectively, were found at 
steady state. 

Finally a one-cell disturbance was placed in the upper 
left-hand corner of a quiescent region with L / H  = 3.0. 
As time progressed, two, three, four, and then three cells 
were present. The final pattern consisted of three cells 
that were symmetrical about the centerline of the cavity as 
illustrated in Figure 9. 

Symmetrical initial conditions were then used to gen- 
erate one-, two-, and three-celled patterns in a region with 
L / H  = 2.0. When the three patterns were subjected to 
a nonsymmetrical disturbance, the final steady atterns 
were always two-celled. In all cases the stea B y state 
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streamlines and isotherms were identical to those found 
when a symmetrical, or nonsymmetrical, two-celled pat- 
tern was used as the initial condition. 

These tests are not absolutely conclusive, since the 
effects of different forms of disturbance and of the mag- 
nitude of the disturbance were not investigated. However, 
the results do suggest that although many cellular arrange- 
ments can be forced to occur in any given cavity, only 
that arrangement in which the number of cells is equal 
to L / H  (for integral values of L / H )  will be stable to a 
general nonsymmetrical disturbance, and hence is the pre- 
ferred mode. 

SUMMARY 

The applicability of finite-difference techniques in the 
determination of hydrodynamic stability has been demon- 
strated. In particular, natural convection in an enclosed 
horizontal region of rectangular cross section which is 
heated from below was studied. Critical Rayleigh numbers 
were determined and compared with those analytically 
determined by Kurzweg. Excellent agreement was found 
for those cases where Npr 1 1. 
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NOTATION 

cp = heat capacity at constant pressure, B.t.u./(lb.,) 
(OF.) 

f(x,y) = initial velocity conditions for integration of 
momentum equation, ft./hr. 

F (X,Y) = initial condition for integration of the dimen- 

g 
H 
k = thermal conductivity, B.t.u./(hr.) (ft.) ( O F . )  

L 

NGr  

sionless momentum or vorticity equation 
= acceleration of gravity, ft./sec.2 
= height of cell, ft. 

= length of cell, ft. 

= - , Grashof number based on 1/2 tempera- 
H'ggSA8 

8 2  

N- 
N u  

NRa 

NRac 

N P r  

N X  
N Y  
P 
P 
Q 
t 
T 

U 

V 

X 
Y 
Y 

U 

V 

X 

ture difference, dimensionless 
= Q H / L b O ,  mean Nusselt number, dimensionless 
= cpp /k ,  Prandtl number, dimensionless 
= N c r  . NPr,  Rayleigh number based on 1/2 tem- 

perature difference, dimensionless 
= critical Rayleigh number for onset of convection 
= number of vertical grid spaces 
= number of horizontal grid spaces 
= pressure, lb.,/sq.ft. 
= p H 2 / p ~ 2 ,  dimensionless pressure 
= total heat transferred per unit of cavity depth 

= time, hr. 
= 2 ( 0  - &)/(  Bh - e l ) ,  dimensionless temperature 
= velocity in x direction,. ft./hr. 
= uH/v ,  dimensionless velocity in X direction 
= velocity in y direction, ft./hr. 
= v H / Y ,  dimensionless velocity in Y direction 
= horizontal coordinate, ft. 
= x / H ,  dimensionless horizontal coordinate 
= vertical coordinate, ft. 
= y/H, dimensionless vertical coordinate 

B.t.u./(hr.) (ft.) 

Greek Letten 

L 
H 

AX = - / N X ,  grid spacing in X direction 

AY 
A8 

and lower surfaces of cavity 
AT = dimensionless time sten size 

= 1/NY, grid spacing in Y direction 
= 81, - 81, temperature difference between upper 

a2 a2 

ax2 aY2 ' 

I 

v2 = - -I-- Laplacian operator, dimensionless 

6x 
Sx2 
5 
8 = temperature, O F .  

K 

Y 

p = density, lb.,/cu.ft. 
T = vt/H', dimensionless time 
$ = dimensionless stream function, such that U = 

= central finite-difference approximation to a/ax 
= central finite-difference approximation to a2/ax2 

= - V2$, dimensionless vorticity 

= c,p/k, thermal diffusivity, sq.ft./hr. 
= p/p,  kinematic viscosity, sq.ft./hr. 

a$/ar, v = - a+/ax 

Subscripts 

cent = central 
h = high 
i = ith grid point 
i = jth grid point 
2 = low 
o = evaluated at the mean temperature, (4, + &)/2 

Superscripts 

n = nth time step 
- = mean value 
/ = stream function iteration 
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