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Introduction 
A key element of modern linear control theory is that a con- 

troller must generate an approximate inverse of the process 
transfer function (Garcia and Morari, 1982). Alternatively 
stated, a controller must be synthesized in such a way that 
closed-loop poles are located at  the process zeros (provided they 
are all in the left half-plane). The wide acceptance of this philos- 
ophy is due to the resulting optimality properties in terms of the 
integral square error (ISE) criterion. The purpose of this work is 
to extend the concept of placing poles a t  the process zeros to non- 
linear systems and demonstrate its optimality characteristics. 

A question that immediately arises is, “What do we mean by 
zeros of a nonlinear system?” Recent work by Byrnes and Isi- 
dori (1985) has developed a very meaningful concept of nonlin- 
ear zeros using methods and results from differential geometry. 
In our work we will use this concept to develop for the first time 
a concept of placing poles a t  the process zeros to nonlinear sys- 
tems. We will show that the class of input/output linearizing 
state feedback laws (Kravaris and Chung, 1987) places poles a t  
the process zeros in a nonlinear process. This will lead to natural 
internal stability conditions for input/output linearizing state 
feedback. 

The significance of the concept of nonlinear zeros is not lim- 
ited to process control; it has potential applicability in the area 
of process design. One major specification when designing a pro- 
cess and its operating conditions is to avoid right-half-plane 
zeros, which give rise to inverse response characteristics and 
limit the quality of control. We now have the appropriate tools 
for achieving this goal in nonlinear processes. 

The next two sections provide a precise statement of well- 
known linear results which will be subsequently extended to 
nonlinear systems. Subsequent sections provide the necessary 
background from differential geometry, a review of the Byrnes- 

Isidori concept of nonlinear zeros, and illustrations with two 
chemical engineering examples. The final two sections interpret 
input/output linearizing state feedback as a nonlinear analog of 
placing poles a t  the process zeros, and provide internal stability 
conditions for input/output linearizing state feedback and dis- 
cuss its ISE optimality characteristics. 

ISE-Optimal Pole Placement for Linear Systems: 
Letov’s Rule 

Consider a linear system 

i = A x + b u  

y = cx 

where u E R, x E R”, y E R, and A, b, c a r e  matrices of appro- 
priate dimensions. The transfer function of the above system is 
given by 

When such a system is subject to static state feedback 

its transfer function becomes 

(4) 
Y ( S )  cAdj(sZ - A)b -- 
v(s) det(sZ - A + bk) 

State feedback alters only the poles of the transfer function. 
The well-known pole placement theorem (Kailath, 1980; Chen, 
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1971) states that given an arbitrary set of pole locations, there is 
always a unique k that places the poles a t  the given locations 

Useful Concepts and Results from 
Differential Geometry 

(assuming of course that the system is controllable). 
A natural question to ask is what is the optimal k that mini- 

mizes a given performance criterion? Equivalently, what are the 
closed-loop pole locations that minimize the given performance 
criterion? The well-known theorem of Letov (1 960) states that 
for ISE optimality in a controllable and observable system, poles 
must be placed: 

At the left-half-plane zeros of the process 
.At the mirror images of the right-half-plane zeros with 

The remaining poles far left in the complex plane 
The ISE criterion will become minimal in the limit as the far 

respect to the imaginary axis 

left poles tend to negative infinity. 

ISE-Optimal State Feedback Law for 
Minimum-Phase Systems 

Consider again the linear system of Eqs. 1 ,  whose transfer 
function is given by Eq. 2. A formal Taylor series expansion of 
(sl - A ) - '  shows that the system's transfer function is com- 
pletely determined by the quantities c6, cA6, cA26, . . . , cA k-lb,  
. . . These are called Markov parameters of the system. It turns 
out (Kailath, 1980; Chen, 1971) that the relative order r of the 
system-that is, the difference between the degrees of 
det(sJ - A )  and cAdj(s1 - A)b-is equal to the smallest in- 
teger r for which 

A basic property of static state feedback is that it preserves rela- 
tive order. In other words, if the open-loop system has relative 
order r, then the closed-loop system has relative order r as well. 

Proposition 1. Consider the linear system of Eqs. 1 and 
assume that its relative order is r. Then the state feedback 

places the poles a t  the roots of the (n - r)th degree polynomial 
cAdj(s1 - A ) 6  and at  the roots of the rth degree polynomial 
Z;_&pk. The resulting closed-loop transfer function is of the 
form 

The state feedback, Eq. 5 ,  cancels all the zeros of the process 
by placing poles a t  them. It is clear that the closed-loop system 
will be internally stable if and only if all the zeros of Eqs. 1 are in 
the left half-plane, that is, if and only if the process is minimum 
phase. 

Moreover, for a minimum-phase process, Letov's rule estab- 
lishes that the closed-loop system will be ISE-optimal in the 
limit as the roots of 2;_,ppsk tend to negative infinity. 

Finally, it is interesting to note that the closed-loop system, 
Eq. 6, is of order r. This is the minimum possible order under a 
state feedback of the form of Eq. 3. 

Integral curves of a vector field 
Given a vector field g and a point x, = (xlo, x2,, . . . , xd) on an 

(n - 1)-dimensional surface S,  let 4i(B; x,), i = 1, . . . , n be the 
solution of 

For each 6 E R, (41,.  . . , 6") defines a point in R". Thus 
[41 (0; x,), . . . , 4"(0; x,)] defines a curve in Rn starting from the 
point x,; this curve is called the integral curve of g passing from 
the point xo. 

Integral curves have the following basic property: At each 
point in R", g is always tangent to its integral curve passing from 
that point. 

An (n - ])-dimensional sur faces  is called characteristic to a 
vector field g if g is tangent to the surface a t  each of its points. 
Equivalently, if for every xo E S,  the corresponding integral 
curve 4(0; xo) of g lies in S .  An (n - 1)-dimensional surface S is 
called noncharacteristic to a vector field g if g is nontangent to 
the surface a t  each of its points. Equivalently, if for every xo E 
S ,  the intersection of the integral curve 4(& x,) of g with S is 
exactly the point x,. (The terminology "characteristic" and 
"noncharacteristic" originates from the theory of partial differ- 
ential equations; see Courant and Hilbert, 1962, p. 73.) 

Invertible coordinate transformations 
The scalar fields Zl (x), Z2(x), . . . , Z,,,(x) are called linearly 

independent if their gradients dEl ,  dE2, . . . , dZm are linearly 
independent vectors of R". 

Consequently, a transformation 

s', = Z(n(~1, ~ 2 ,  . . ' 7  xn) (8) 

is invertible if and only if the scalar fields Zl(x), Zz(x), . . . , 
S,(x) are linearly independent. 

An invertible transformation x E R" - { = Z(x) E R" 
defines a curvilinear coordinate system. The new coordinates 
are tl, 12, . . . , {"; the basis vectors of the new coordinate system 
are 

e ,  = first column of - Ki' 
(:)I 

- 

e,  = second column of - - 

en = nth column of - 
( 9 )  
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It is important to mention here that when a vector field is 
transformed in curvilinear coordinates, its new components will 
be along 6, g, . . . , e, rather than 

- -  
1 

. 

-0, 

- -  - 
0 0' 

0 1  0 
, . . . . . . .  . .  

0 1 

"Straightening out" a vectorJieZd 
A classical problem of differential geometry is that of 

straightening out a vector field. More precisely, given a vector 
field g, find a curvilinear coordinate system 

such that g = <, the nth basis vector of the curvilinear coordi- 
nate system. This means that all components of g along tI, 
{2 , .  . . , will be zero and the component of g along {" will 
equal 1. Consequently, the integral curves of g in the {-coordi- 
nate system will be straight lines; it is in this sense that g is 
"straightened out." 

Clearly, the requirement g = e, is equivalent to 

ax 

Thus, one can equivalently pose the problem as follows: Given 
a vector field g, find n linearly independent scalar fields X I  (x ) ,  
z 2 ( x ) ,  . . . , En(x )  such that 

In the following we outline a simple algorithm for generating 
a curvilinear coordinate system that straightens out a given vec- 
tor field g. (For more details, see Hicks, 1965, p. 124, or other 
differential geometry texts that contain a constructive proof of 
the theorem of Frobenius.) 

Let S be a surface described by an equation of the form x. = 

T ( x l , .  . . , xn-,)  which: 
1. Passes through the origin, that is, 

T(0,. . . ,O) = 0 (12) 

2. Is noncharacteristic around the origin, that is, 

Further, let 

be the integral curves of g originating from the point of S.  

In other words, Eqs. 14 are the solution of 
[l,, <2, . . . 7 L - 1 9  T({l, c 2 9  . . . 9 L A 1  

Then the inverse function 

defined from Eqs. 14 is the necessary coordinate transforma- 
tion. 

Remark 1 .  By construction, the coordinate transformation of 
Eqs. 16 maps the origin to the origin. If it is desired to obtain a 
coordinate transformation that maps the point x* to the origin, 
then one must compute the integral curve of g originating from 

and invert. 
Remark 2. Since the noncharacteristic surface S as well as 

the choice of the nth coordinate x, is completely arbitrary, the 
coordinate transformation of Eqs. 16 is inherently nonunique. 

Remark 3. If g,(x,, . . . , x,) # 0, then the surface x, = 0 is 
noncharacteristic and passes through the origin. This is often the 
most convenient choice for S. (If g, = 0 we can always rotate the 
indices of XI,  . . . , x, to make gn # 0). 

Zero Dynamics: A Generalization of the Concept 
of Zeros to Nonlinear Systems 
Zero dynamics of a linear system 

Consider for the moment a linear system of the form of Eqs. 1 
whose relative order is r and 6 # 0. It is easy to see that the row 
vectors c, cA, . . . , cA'-l are linearly independent. Thus, one can 
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always rotate the indices of the state variables xlr . . . , x, so 
that: 

1. ( r  - 1) linearly independent columns of the matrix 

function of Eqs. 18, y ( s ) / u ( s ) ,  is easily found to be: 

bdet(sf - 2) 

P1 

are in the (n  - r + l)th, ( n  - r + 2)th, . . . ( n  - 1)th places. 

Then, it is not difficult to verify that the transformation 
2.6,  # 0.  

L + l  = cx 

is invertible and transforms Eqs. 1 into a system of the form 

{"-I = 5, 

Y = r,-,+, 

where A ,  I?, ii,, 7, are (n - r )  x ( n  - r ) ,  ( n  - r )  x r, 1 x 
(n - r ) ,  1 x r matrices, respectively, and P is a nonzero scalar. 

The dynamic system of Eqs. 18 is just a different realization 
of the transfer function, Eq. 2. What is interesting about the 
realization is that the eigenvalues of the ( n  - r )  x ( n  - r )  
matrix 2 are exactly the zeros of Eq. 2. Indeed, the transfer 

1806 November 1988 

S 

s'det(sZ - 2) - [y,det(sI - 2) + G,Adj(sZ - k)r]  . Is.- 
Definition 1 .  Consider the dynamic system of Eqs. 1, which is 

transformed into Eqs. 18 with an appropriate similarity trans- 
formation. Then the dynamic system 

is called the zero dynamics of Eqs. 1. 
The dynamic system 

is called the unforced zero dynamics of Eqs. 1. 
Another interesting byproduct of the canonical form, Eqs. 18, 

is obtaininga minimal order realization of the process inverse. It 
is not difficult to verify that 

is a realization of 

u ( s )  det(sZ - A )  -- - 
Y ( S )  cAdj(sI - A ) b  

Zero dynamics of a nonlinear system 
All the results presented in the previous subsection generalize 

to nonlinear systems. This generalization was due to Byrnes and 
Isidori (1985) and its importance is far beyond the minimal 
order realization of the process inverse: it allows generalizing 
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the concept of zeros to nonlinear systems. The main results and 
definitions are outlined below. 

Consider a nonlinear system of the form 

where u E R, y E R, x E R", f (x ) ,  and g(x)  are vector fields 
on R" and h ( x )  is a scalar field on R". 

Definition 2. (Hirschorn, 1979) The relative order of the non- 
linear system of Eqs. 22 is the smallest integer r for which 

(dh, ad;-'(g)) # 0 

A comparison with the linear case shows that the above con- 
cept of relative order is a natural extension. Indeed, 

(- l)k-l (dh,  ud$-'(g))  

becomes cA'-'b whenf(x) - Ax, g ( x )  = 6, h ( x )  - cx. 
Proposition 2. Consider a nonlinear system of the form of 

Eqs. 22 whose relative order is r. Then the scalar fields h, 
L,(h), . . . , L;-'(h), Lj-'(h) are linearly independent. 

An immediate consequence of the proposition is that the 
( r  - 1) x nmatrix 

' has rank ( r  - 1). Therefore, we can always rotate the indices of 
the state variables xI, . . . , x, so that 

Also, with rotation of indices we can assure that 

Theorem I. (Byrnes-Isidori, 1985) Consider a system of the 
form of Eqs. 22 whose relative order is r. Assume that the 
indices of xi have been rotated so that Eqs. 23 and 24 are satis- 
fied and let [ t l ( x ) ,  . . . , t,,(x)] be a curvilinear coordinate system 
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that straightens out the vector field g. Then the transformation 

is invertible and transforms Eqs. 22 into 

f l  - Flu) 

lm-r - Fn-r(l) 

ln-r+I  - tn- r+2 

where 
(27) 

CP = Lj (h)  (28) 

(29) 

Ft - (dt , ,  f ), i = 1 ,  . . . , n - r 

G - (- l)'-' (dh, ad;-'( g) ) 

The transformation Eq. 25 is a direct generalization of the 
transformation Eqs. 17 obtained for a linear system. Also, the 
transformed system of Eqs. 26 is a direct generalization of Eqs. 
18, in which Fi, @, and G are linear functions. 

The result about the process inverse generalizes as well; it is a 
corollary of the previous theorem: 

Corollary. Consider a nonlinear system of the form of Eqs. 22 
whose relative order is r and assume that it has been trans- 
formed into Eqs. 26 through an invertible transformation of the 
form of Eq. 25. Then the dynamic system 

is a minimal order realization of the inverse of the nonlinear sys- 
tem of Eqs. 22. 
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Clearly, the stability properties of the inverse are completely 
determined by the stability properties of the dynamic system 

and any exponentially decaying U, , . . . , U,, 

Z, = F , ( z ~ ,  . . . , z ~ - ~ ,  UI, . . . , U,) 

In particular, the unforced inverse { y ( t )  = [dy/dt ( t ) ]  = . . . = 

d'-'y/dt'-' = O} will be asymptotically stable if and only if 

Zl = F,(z , ,  . . . , z#-,, 0, .  . . , 0 )  

is asymptotically stable. 
In linear systems, the zeros of a system are the poles of the 

inverse. Therefore the zeros can be thought of as a set of num- 
bers that determine the dynamics of the inverse. With this in 
mind, it is natural to try to extend the concept of zeros to nonlin- 
ear systems by considering the dynamics of a minimal order 
realization of the process inverse. This leads to the following def- 
inition. 

Definition 3. Consider a nonlinear system of the form of Eqs. 
22 whose relative order is r a n d  an invertible transformation { = 

T ( x )  of the form of Eq. 25 that transforms Eqs. 22 into Eqs. 26. 
Assume that with appropriate translation of axes the origin is an 
equilibrium point of Eqs. 26. The (forced) zero dynamics of Eqs. 
22 is the ( n  - r)-order dynamic system 

In particular, the unforced zero dynamics is the ( n  - r)-order 
unforced dynamic system 

The next step is to try to define a nonlinear analog of a mini- 
mum phase system, that is, of all zeros in the left half-plane. 
This cannot be done in a unique way; it will depend on the con- 
cept of stability used for the zero dynamics, Eqs. 3 1. Byrnes and 
Isidori (1985) define minimum-phase nonlinear systems as 
those that have asymptotically stable unforced zero dynamics, 
Eqs. 32. Depending on the context, more or less stringent stabil- 
ity requirements will be necessary. In the final section we will 
use the following stability concept for zero dynamics: 

Definition 4. Under the assumptions of definition 3, we will 
say that the nonlinear system of Eqs. 22 has stable zero 
dynamics if for any set of initial conditions z,(O), . . . , z,-,(O) 

lim z,(t) = 0 i = 1,. . . , n - r 
1-00 

Examples of Zero Dynamics 
Example I :  CSTR 

Consider a continuously stirred tank reactor (CSTR) in 
which an isothermal, liquid-phase, multicomponent chemical 
reaction is being carried out. The chemical reaction system is 
A == B - C, with the rates of reaction given by: 

rl - k,C, - k2C: 
r2 = k,Ci 

It is desired to control the concentration of species C by manipu- 
lating the molar feed rate of B, NBF, as shown in Figure 1. 

The modeling equations for this system are 

where 

Y = c c  

NBF u = -  
V 

This system has relative order r = 2. Indeed 

h = Cc, ( d h , g )  = o  
F 

L,(h) = - - Cc + k&, V (dL,(h), g) # 0 

Notice that 

g =  '1, 0 

(33) 

F - I  

V 

'A 'B 'C 

Figure 1. System for example 1. 
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so it is already straight. To make it 

i! 
as required by our convention, all we need to do is rotate the 
states 

With this rotation 

-=-- - I  # O  
ah - ah 

ax"-r+l 3x2 

g,=1 f O  

Thus Eqs. 23 and 24 are satisfied. Consequently, theorem 1 tells 
us that the transformation 

will transform Eqs. 33 to the Byrnes-Isidori canonica. .mn, 
Eqs. 26. Since we usually want the canonical form to have the 
origin as an equilibrium point, we must do an appropriate axis 
translation, that is, define 

where (us, CA,, CB,, Cc,) denotes the operating steady state. 
In the coordinate system of Eqs. 34, Eqs. 33 become: 

f ,  = -(; + k,)G + 2 (;12 + 4 
f 2  = f, 

(34) 

Y = (2 (35) 

According to definition 3, the (forced) zero dynamics of Eqs. 
33 is simply the first equation of Eqs. 35 with inputs U, = fz and 
U2 = l,, that is, 

2 = -($+ k l ) r  + z ( : U ,  + U2)  (36) 

Clearly, Eqs. 36 is stable (in any sense) and therefore the system 
of Eqs. 33 has stable zero dynamics. 

Example 2: Continuous antibiotic fermentor 
An important class of bioengineering processes comprises 

antibiotic fermentations. The control objective is to maintain the 
cell mass at a given level (which will maximize antibiotic pro- 
duction) by manipulating the dilution rate of the substrate. 

Mass balances for the cells and the substrate give 

dX 
dt 
- = p(S, X ) X  - DX 

-a(S, X ) X  + D(SF - S )  (37) 
dS 
dt 
- =  

where p(S, X )  and a(S, X )  are known functions of S and X that 
depend on the particular fermentation system. 

Defining 

u = D = manipulated input 

y = X = controlled output 

we can put the model, Eqs. 37, into standard form as follows: 

Let us compute the zero dynamics of the nonlinear system of 
Eqs. 38. Denoting by (Ds, X,, S,) the operating steady state of 
the fermentor, we first need to compute the integral curve of the 
vector field 

g = [  s, - " I  - s 

that originates from the point S = S, + l o f  the noncharacteris- 
tic surface X = X , .  This is computed by solving 

dS - = S F -  
dB 

(39) s, S(0) =s, + f 

We easily find 

X = XSe-' 

s = (S ,  - S F  + 0e-O + SF 

The inverse function defined as the solution of the above equa- 
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tion for [ and 0 will provide a coordinate transformation that 
straightens out the vector field 

and maps the point (X,, S,) to the origin. We find 

Remark 4. It is easy to verify that the basis vectors of the 
above coordinate transformation are 

6 = [ ; ] , 6 = [  s, -x - s 1, 
so it indeed straightens out 

g- -x 1. 
SF - s 

The next step is to compute the relative order of our system. 
We easily find r = 1. Thus, Theorem 1 tells us that the transfor- 
mation 

will transform Eqs. 38 into the canonical form, Eqs. 26. Indeed, 
a straightforward calculation gives: 

where 

According to definition 3, the (forced) zero dynamics of Eqs. 38 
is simply the first equation of the transformed system, Eqs. 43, 
with input U = f', that is, 

dz 
dt = -6(z ,  U )  x, - P(z, U)(S,  - SF + z )  (44) - 

In particular, the unforced zero dynamics (U = 0) is 

Clearly, the stability characteristics of the zero dynamics will 

The functions p(S, X) and a(S, X) 
The operating steady state X, 

depend upon 

For a specific fermentation system ( p  and u given), we will in 
general obtain conditional stability results depending on the 
operating steady state X,. 

Interpretation of Input/Output Linearizing State 
Feedback as Canceling the Zero Dynamics 
of a Process 

Consider again a nonlinear system of the form of Eqs. 22: 

The problem of input/output linearization was posed by 
Kravaris and Chung (1987) as that of finding a static state feed- 
back u = \k(x, v)  so that the resulting closed-loop system has 
linear input/output behavior of minimal order. In particular, it 
is requested that the closed-loop system obey a linear differen- 
tial equation of the form 

where the &'s are adjustable parameters, selected a priori by 
the designer. The solution is summarized in the following theo- 
rem: 

Theorem 2. (Kravaris and Chung, 1987) Consider a nonlin- 
ear system of the form of Eqs. 22 whose relative order is r. 
Then 

a. The minimal order of the closed-loop system is equal to r. 
b. The necessary state feedback that makes the closed-loop 

input/output system linear and of minimal order is given by 

where @k are arbitrarily selected numbers. 
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The input/output behavior of the closed-loop system is then 
governed by 

dky 
x P k z = v  k-0 

Consider now an invertible transformation 

{ =  T(x)  = 

(47) 

that transforms Eqs. 22 into the Byrnes-Isidori canonical form: 

r ,  = F,(lI, . . . 9 L,, L+,, ' . . , {"-I, r") 

The first n - r equations, when viewed as a dynamic system 
with inputs Cn-,+,, . . . , rn-,, {,,represent the zero dynamics. The 
output y = is affected by the zero dynamics through the 
righthand side of the nth equation. Therefore, in order to cancel 
the zero dynamics, we need a state feedback that makes 

a function of .(-,+,, . . . , J;, and v only, independent of rl, . . . , 
C n - r  

In particular, we may request it to be a linear function 

Lj(h) + (-  I)'-, (dh, adj- l (g))  u 
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This leads to the closed-loop system 

whose output is completely unaffected by the first n - r equa- 
tions. 

Notice that Eq. 49 can be equivalently written as 

or in terms of the original variables 

But this is identical to Eq. 46! 
It is interesting to point out here the remarkable analogies 

between input/output linearizing state feedback and the linear 
state feedback considered earlier. Whenf(x) = Ax, g(x)  = 6, 
and h(x)  = cx, Eq. 46 becomes 

which is identical to Eq. 5 under appropriate rescaling of u and 
v. This state feedback places poles a t  the zeros of Eq. 2 or equiv- 
alently cancels the zero dynamics of Eqs. 1. 

Internal Stability and ISE Optimality Properties of 
Input/Output Linearizing State Feedback 

In this section we present internal stability and ISE optimal- 
ity results for the input/output linearizing state feedback, which 
are in complete analogy to the earlier linear results for mini- 
mum-phase systems. 

Theorem 3. Consider the nonlinear system of Eqs. 22 with the 
state feedback of Eq. 46 and assume that Po, . . . , 8, have been 
chosen so that the roots of the polynomial P$ + . . . + ,B,s + B0 
are in the open left half-plane. The closed-loop system will be 
internally stable if the zero dynamics of the open-loop system 
(Eqs. 22) are stable in the sense of definition 4. 

Proof. From Eqs. 50 we have that the unforced closed-loop 
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system is governed by 

. .  

. .  

PI-l L 

Since the roots of the polynomial 8,s' + - , - + 0,s + Po are  
in the open left half-plane, any deviations of {n-r+l(0), . . . , 
ln- ' (0) ,  {,(O) from the equilibrium will generate exponentially 
decaying {n-,+l(t) ,  . . . , {n - l ( t ) ,  {"( t ) ;  these will be the inputs of 
the zero dynamics of definition 3. The result follows immedi- 
ately from definition 4. 

The most important conclusion from this theorem is that for 
0,s' + - - - + Pls + Po having all roots in the open left half- 
plane, internal stability depends on the intrinsic characteristics 
of the open-loop system; these have been associated with stable 
zero dynamics in the sense of definition 4. If an open-loop sys- 
tem has stable zero dynamics, then the closed-loop system will 
be internally stable no matter what the values of pl, are (as long 
as they are in the left half-plane). 

Theorem 4.  Consider the nonlinear system of Eqs. 22, whose 
relative order is r and assume that it has stable zero dynamics in 
the sense of definition 4. Then the state feedback 

v - h - plLf(h) - - * * - P,L;(h) 
U =  

(- (dh,  ad;-' (g)) 

provides ISE-optimal response to  step changes in u in the limit 
as the roots of the polynomial P,s' + - . + Pis + 1 tend to 
negative infinity. 

The proof is straightforward given the expression for the 
closed-loop response, Eq. 47, and standard linear results. 

Notation 
C, = concentration of species A in reactor 
C, = concentration of species B in reactor 
C, = concentration of species C in reactor 
D = dilution rate of substrate 
e, = basis of curvilinear cordinate system 
F = volumetric feed rate 

- 

k, ,  kl, k ,  = rate constants 

R = real line 
R" = n-dimensional Euclidian space 
S = substrate concentration 

S, = feed substrate concentration 
s = Laplace transform variable 
u = manipulated input 
U = input to zero dynamics 
v = external input to closed-loop system 
V = volume of reactor 
x = state variables or usual (rectilinear) coordinates in R" 
X = cell mass concentration 
y = output 
z = state variables of zero dynamics or of process inverse 

NBF = molar feed rate of species B 

Greek letters 
{ = transformed state variables or curvilinear coordinates 

p(S, X) = specific growth, a function of S and X 
u(S, X) - specific substrate utilization rate, a function of S and X 

Mathematical notation 
E = belongs to 

(. , .) = usual inner product in R"  
Adj M = adjugate of matrix M 
det M = determinant of matrix M 
ad,(g) = Lie bracket of vector field g with vector fieldf 
adj(g) = k-fold Lie bracket of vector field g with vector fieldf 

dh = gradient of scalar field h 
L (h) = Lie derivative of scalar field h with respect to vector fieldf 
L$(h) = kth-order Lie derivative of scalar field h with respect to 

vector field f 
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