
Determination of Flow Profiles in Porous 
Media Using Shifts in Gamma Spectra 

A new technique was developed to determine the tracer location and 
fluid velocity in porous media nonintrusively. This technique exploits the 
competitive effects between the photoelectric interaction and the 
Compton scattering phenomenon to determine the distance between a 
radioactive tracer in a porous medium and an externally positioned 
detector. The photon energy distribution shifts toward lower photon 
energies as the tracer moves away from the detector. The shift in the 
energy distribution can be quantified by the ratio of the scattered photon 
intensity to the full energy photon intensity. A convective-dispersion 
model was used to determine the spatial distribution of the radioactive 
tracer. An analog Monte Carlo method was developed to simulate 
photon transport in porous media. Comparison between experimental 
data and the model shows that in-situ tracer velocities can be accu- 
rately predicted. 
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Introduction 
Radioactive tracers are routinely used to determine in-situ 

velocity and mixing profiles in many industrial processes. 
Tracers have been used for a long time in medical research to 
detect tumors and to determine the size of internal organs 
(Koral and Johnston, 1974). Recently, gamma-ray-emitting 
tracers have been used to determine solid circulation patterns in 
fluidized beds (Lin et al., 1985). Gamma-ray-emitting tracers 
have been used for these applications because the photons 
possess large mean free paths in dense media and measurements 
can be made nonintrusively. This study focuses on the use of 
gamma radiation to determine in-situ velocity profiles in porous 
media. It finds direct application in tracer logging where 
measurement of velocity profiles in the porous matrix surround- 
ing the well bore is currently not possible. 

Radioactive tracers are used to determine fluid flow patterns 
inside the wells by measuring the tracer transit time between 
two gamma-ray detectors separated by a known distance. These 
procedures, however, cannot identify the horizontal continuity 
of fluid flow in the porous matrix surrounding the well bore. The 
porous region surrounding an injection well, which is also called 
the skin zone, experiences changes in its flow conductivity due to 
several factors. Some of the factors contributing to these 
changes are: hydraulic fracturing, acid stimulation (Hoefner 
and Fogler, 1988), polymer injection, paraffin deposition, sand 
production, fines migration (Khilar and Fogler, 1987), emulsion 
blocking, and clay swelling (McKinley, 1985). The skin zone 

contributes the most to the flow resistance in an oil reservoir 
owing to the radial geometry where all of the flow goes through a 
point source or a sink. The proposed method uses the attenuation 
properties of gamma radiation to determine in-situ velocity 
profiles in the skin zone by monitoring the gamma energy 
distribution as the tracer moves away from an array of detectors 
situated in the well bore. Hence, it can be used to detect flow 
channeling, location and direction of propagation of fractures in 
the porous matrix surrounding the well bore. 

This paper briefly describes interactions of gamma radiation 
with matter and an analog Monte Carlo method developed for 
simulating photon transport in porous media. A model used for 
predicting the spatial distribution of the radioactive tracer is 
discussed subsequently. Finally, a comparison of model predic- 
tions with experimental results is presented 

Interaction of Gamma Rays with Matter 
The transport of gamma rays in any given medium is 

governed by four principal interactions: photoelectric effect, 
Compton scattering, Rayleigh scattering, and pair production. 
Pair production interaction is important only when the energy of 
the photon exceeds 5.0 MeV. Since the isotopes used in this 
study emit photons with energy lower than 1.5 MeV, this 
interaction is not considered. Rayleigh scattering is negligible 
since it is dominated by the photoelectric effect. As a conse- 
quence, only two interactions are important for the photon 
energies used in this study. 
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Photoelectric eflect 
During this process, the photon transfers all of its energy to 

one of the atomic electrons of the medium, ejecting it from the 
atom. The vacancy created by the ejected electron will be 
quickly filled by the rearrangement of electrons from the 
surroundings. The attenuation coefficient ( 7 )  due to this process 
has the following dependence on the photon energy ( E )  and the 

Cross Sections of Photon Interactions 
The relative importance of various gamma interactions with 

media can be quantified in terms of their cross-section values. If 
the flux of radiation at  any point x is N ( x ) ,  and p is the 
cross-section value for an interaction, then the number of 
photons undergoing a given interaction in a path length dx is 

atomic number ( Z )  of the medium (Knoll, 1979). dN = - Npdx (4) 

The cross section, therefore, is equivalent to the probability of 
a photon undergoing an interaction within a unit distance. The 
negative sign is due to the fact that any interaction contributes 
in a net reduction in the photon flux. 

The total cross section for any medium is the sum of the 
individual cross sections representing various interactions such 
as: the photoelectric effect 7, Compton scattering u. 

C,pZ"' 
$-=- (1) E 3  

The important characteristics Of this interaction are the 
disappearance of the Photon and its dominance at  Photon 
energies below 0.2 MeV. 

Compton scattering p = 7 + u  ( 5 )  

In this process, the incident photon interacts with an electron 
of the medium. The collision energy is shared between the recoil 
electron and the scattered secondary photon. Energy and 

The cross sections for any compound can be evaluated as the 
weighted sum of its elemental cross sections. 

momentum balances for this interaction give the following 
relation between the scattered photon energy (E ' )  and the 
incident photon energy ( E )  (Knoll, 1979): 

Elemental cross sections have been given for all of the 
elements by Storm and Israel (1970). Berea sandstone was used 
as the porous medium in this study and its cross sections were 
calculated using Eq. 6 .  The results are shown in Figure 1 in 
terms of the cross section as a function of the photon energy. 

Numerical Simulation of Photon Transoort in 

(2) 
E 

E' = 
(1 - case) 

moc2 
1 + E  

where 

8 = angle of the direction of the scattered photon 

m, = rest mass of the electron 

c = speed of light 

Porous Media 
A Monte Carlo method was developed to simulate photon 

transport in porous media. The governing equation for predict- 
ing the photon distribution function n(r, Q, E )  is: 

The probability of a photon scattering in a direction 8, 8 + d8 
has been determined by Klein-Nishina (1 929) using relativistic 
mechanics. The total cross section for Compton scattering is 
determined by integrating the Klein/Nishina function over all 
the angles. It has the following dependence on the properties of 
the medium: 

' Vn(r,  Q ,  E ,  f dE )dr- ni 

= J* dQ2' 1 dE'o(Q'- Q,  El- E)n(r,  Q,  E )  

+ S(r,  a, E l  (7) 

(3) 
10 1 y h o t o e l e c t r i c  
l o 2  

compton scattering 
h 

The expressions S(E,) and g(E,) are well known and can be 
found in Knoll (1979). The first is the integral of the Klein- 
Nishina function over all the scatter angles and was derived 
assuming all the electrons are free. The function g(Eo) is a 
correction factor that incorporates the effect of the boundedness 
of the electrons. Compton scattering functions for various atoms 
a t  different scattering angles have been calculated by Cromer 
and Mann (1967) and Cromer (1969). For most of the elements 
in the periodic table, the value Z / A  is close to 0.5. Hence, the 
value of u is virtually the same for all the elements and it is a 
function only of density. The principal characteristics of this 
interaction are the change of travel direction of the photon and 
the reduction of the photon energy. 

, , '\j 
10" 
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Figure 1. Photon cross sections for Berea sandstone. 
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The distribution function [n(r, 9, E )  dr d 9  d E ]  represents 
the number of photons in a unit volume dr3 a t  position r, travel- 
ing in the direction d 9  about 9 and possessing the energy in the 
range E to E + dE. The terms in the governing equation repre- 
sent a balance between the rates of photon removal and addition 
in the control-phase space: dr d 9  dE. The first term in the 
integral equation is the surface term representing the removal 
rate of photons from the control volume, i.e., the net change in 
the number of photons. The second term represents the number 
of photons lost from the control volume due to various interac- 
tions with the medium. The third term represents the addition of 
photons to the control volume due to scattering. The final term is 
the source term, which represents the addition of photons due to 
the presence of a photon source in the control volume. 

Several techniques, such as analytical methods, moment 
methods, discrete ordinate methods, finite difference, finite 
element, and spectral and Monte Carlo methods, have been used 
to solve the transport equation (Duderstadt and Martin, 1979). 
Analytical methods require approximations to render the equa- 
tion solvable. All the other techniques require enormous comput- 
ing time since the solution is needed for six independent 
variables (e.g., three directions, two angles and energy). An 
analog Monte Carlo method was developed to simulate photon 
transport in porous media in this study and the details of the 
model are given below. 

Compton Scatter 

Monte Carlo Method 
The spatial distribution of the photon source, the geometry of 

the system, and gamma cross sections of the media are provided 
as inputs to the model. Several photon histories are then 
calculated in a manner similar to the random walk model, and 
the photon energy distribution crossing the surface of interest is 
tallied. The inherent assumption is that photon transport is a 
linear process. It is a valid assumption since nonlinear, multipar- 
ticle phenomena occur a t  photon energies far exceeding the 
values used here. A flow chart illustrating the procedure used is 
shown in Figure 2 and various steps in the chart are briefly 
described below. 

The location of photon release is determined first by sampling 
from a given spatial distribution function of the source. The 
source distribution function is determined by a tracer transport 
model. The direction of photon travel is sampled from a uniform 
distribution since the source emits photons isotropically. The 
distance the photon travels is sampled using the energy of the 
photon, the total cross section of the medium, and the exponen- 
tial relation resulting from the integration of Eq. 4. The photon 
is then moved that distance in the direction sampled. At this 
point, the type of interaction is determined knowing the photon 
energy and the cross sections of the medium. The probability for 
an interaction to occur is simply the normalized cross section for 
that interaction. If the photoelectric effect is chosen, then the 
photon history is terminated and a new history is initiated from 
the beginning. If a scattering event is chosen, the direction of 
photon scatter and its new energy are sampled from the modified 
Klein-Nishina distribution. The history of the scattered pho- 
ton is continued by sampling its distance of travel. The proce- 
dure is used several times and the photon energy distribution 
crossing a surface of interest is tallied. The sampling of the 
random numbers is made either by using the cumulative 
distribution method or by using one of the rejection techniques 
(Carter and Cashwell, 1975). 

Rayleigh scatter Pair Production 

I I i  

I I I  

Calculate the energy 
of the scatered photon 

Figure 2. Monte Carlo procedures used for simulating 
photon transport. 

The above procedures are used to generate photon histories 
Nmx until the variance in the result is less than 15%. Each 
history is terminated when one of the following events occur: 

1. The photon undergoes the photoelectric effect. 
2. The photon crosses the boundary of the system. The 

histories of the photons escaping the lead shield are not pursued 
since the probability of these photons reentering the system and 
reaching the region of interest is extremely low. This is a valid 
assumption for our system since a 5-cm thick layer of lead was 
used as a shield in all the experiments. 

3. The photon crosses the surface of the detector. The energy 
distribution of the photons crossing the surface is calculated by 
incrementing the numbe of photons within the energy band E,  
E + dE by the weight function of the photon. The weight 
function of the photon will have a unit value if no biasing 
schemes are used, whereas it may have other values if any 
biasing schemes are used. The biasing schemes used are ex- 
plained in the next section. 

The central limit theorem is used as a basis for estimating 
statistical errors in the expectation value. For every photon 
crossing the surface of interest, the score corresponding to the 
photon energy is increased by the weight function of the photon. 
In addition, the sum of the weight squares is also tallied. The 
mean and the intrinsic variance of the result are then calculated 
using the following relations: 

(8) 
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I "  I 

where wi is the weight function of the photon. 

Photon splitting and Russian roulette 
Photon splitting and Russian roulette improve the efficiency 

of the Monte Carlo method by artificially biasing the calcula- 
tions to emphasize the photons moving toward the surface of 
interest. This procedure is illustrated in Figure 3. The splitting 
procedure is implemented by doubling the number of photons 
when they cross an imaginary plane called the splitting plane. In 
order to avoid biasing the results, the weight of each photon is 
reduced by half when it crosses the splitting plane. The histories 
of the photons resulting from splitting are then pursued indepen- 
dently. In this example, the splitting plane is denoted as S,; and 
for the purposes of illustration, the photon attenuation between 
the planes Si is assumed to be 0.1. The photon source is located 
on the S,  plane, and S, represents the plane of interest. In other 
words, the fraction of the photons crossing the S, plane need to 
be calculated. This fraction is called the expectation value. 
When no biasing schemes are used, a minimum of 100 photon 
histories is required to get an expectation value of 0.01. A 
smaller number of photon histories, however, is needed to obtain 
the same expectation value when photon splitting is imple- 
mented. In this example, the same result can be obtained with 
only 50 histories. In this case, only five photons reach the S,  plane 
since attenuation between the planes is 0.1. The number is 
doubled and ten photon histories are performed between S,  and 
S, plane, and the weight function of each photon will be reduced 
to 0.5. Russian roulette is similar to the splitting procedure, 
except that it is used to reduce the number of photon histories 
moving toward the regions of lesser importance. The number of 
photons crossing a plane is reduced by half and their weights are 
doubled. In this example, this procedure would be implemented 

I I I I 

s4 s3 s2 s1 

s1 

Figure 3. Biasing schemes: Splitting 81 Russian roulette. 

a t  the S, plane. In other words, when a photon crosses the S, 
plane in the opposite direction, it is allowed to survive with a 
probability of 0.5. 

The factors 2 and 0.5 are chosen arbitrarily to explain the 
procedures. Any number of planes and any factor M can be used 
for biasing. For example, a photon crossing a splitting plane can 
be divided into M photons each with a weight of 1/M. The 
distance between the splitting planes, the number of planes, and 
the splitting value are generally set by an optimization proce- 
dure. A detailed discussion of these procedures can be found in 
Lux (1983), Booth (1985), and Dubi and Goldfeld (1985). In 
this study, the splitting planes were separated by the mean free 
path of the full energy photon and a splitting factor of 2 was 
used. 

Gamma Transport in Porous Media 
The Monte Carlo method was used to simulate photon 

transport in an infinite Berea sandstone medium. A point source 
emitting 0.365 MeV photons was used for the simulation and the 
photon energy distributions crossing spherical planes at  various 
distances from the source were calculated. The photon energy 
distribution crossing a spherical surface a distance 6 cm from 
the source is shown in Figure 4. The ordinate in Figure 4 
represents the number of photons crossing a spherical plane 
within the energy region E to E + dE for N,,, photon histories. 
The maximum standard deviation of the result is about 5%. The 
energy distribution shown in Figure 4 has two distinct features. 
The Dirac delta a t  0.365 MeV represent the number of photons 
crossing the spherical plane without undergoing any interaction 
in the medium; these are called the full energy photons. The 
second feature of the spectrum is the continuum of photons 
having energy less than 0,365 MeV. These photons have 
undergone one or more scattering interactions in the medium, 
and the area under the continuum represents the total number of 
scattered photons reaching the detector. 

The effect of travel distance on the scattered photon energy 
distribution is shown in Figures 5 and 6. At shorter distances, 
the scattered photon energy distribution would be the same as 
the Klein-Nishina distribution which represents the distribution 
of photons undergoing one Compton scatter event. As the 
distance is increased, the scattered photons undergo further 
scattering and their energy distribution shifts to lower energies. 

Source: 1-135, Eo = 0.365 MeV 

Full energy photons = 19525 

o.Oe+O 
0.0 0.1 0.2 0.3 0.4 0.5 

Energy (MeV) 

Figure 4. Photon energy distribution calculated by the 
Monte Carlo method. 
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Figure5 Effect of photon travel distance on the scat- 
tered photon energy distribution at short dis- 
tances as predicted by the Monte Carlo method. 

If the distance is increased further, the shift in the energy 
distribution no longer occurs (Figure 6). This is attributed to the 
dominance of the photoelectric effect a t  lower photon energies. 
The intensity of the scattered photon energy distribution decays 
with increasing distances since the photoelectric effect is an 
absorptive interaction. This can be seen as the reduction in the 
area under the curves shown in Figure 6. 

The attenuation of the full energy photons and the scattered 
photons with increasing distance between the detector and the 
source is shown in Figure 7. Here, the scttered fraction is defined 
as the area under the curves in Figures 5 and 6 normalized by 
N,,,,,. The full energy fraction decreases in an exponential 
manner with increasing distance. The slope of this curve is 
simply the product of the cross section and the density of the 
material. On the other hand, the scattered fraction initially 
increases with distance, reaches a maximum, and then de- 
creases. As explained earlier, this maximum is due to the 
competition between multiple Compton scattering and the 
photoelectric interaction. The information in Figure 7 can be 
used to determined the location of the photon source in the 
porous medium. However, one can only measure the full energy 

4.0e+5 

3.0e+5 

UJ 
F 5 2.0e+5 

1 .Oe+5 

n noln 

Nmax = 100,000 
max. std. deviation = 15% 

+:’ 
Y 

u.0 0.1 0.2 0.3 0.4 

Energy (MeV) 

Figure6. Effect of photon travel distance on the scat- 
tered photon energy distribution at long dis- 
tances as predicted by the Monte Carlo method. 

Nmax = 100,000 
Eo = 0.365 MeV 
max. Std. = 15% 

Scatter Fraction 
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Distance (em) 

Figure 7. Attenuation of gamma radiation in Berea sand- 
stone as predicted by the Monte Carlo method. 

intensity and the scattered intensity reaching the detector. The 
normalizing factor in Figure 7, namely the activity of tracer in 
each zone, is an unknown quantity in a full-scale system. 
Consequently, a parameter which is independent of the activity 
of the tracer needs to be used to locate the tracer. The rati of the 
scattered photon intensity to the full energy photon intensity 
(scatter to peak ratio) is independent of the tracer activity. 
Figure 7 reveals that the full energy intensity decays faster than 
the scattered intensity; and as a result, the scatter to full peak 
intensity ratio will increase monotonically with the distance and 
therefore can be used to determine the location of the tracer. 

Tracer Transport in Porous Media 
The above analysis was performed for an isotropic porous 

medium with a point source. In reality, a tracer pulse injected 
into a porous medium will distribute itself due to dispersion. It is 
well known that the spreading of the tracer in a porous medium 
can be approximated by an effective dispersion coefficient and 
that the standard deviation of the tracer spatial distribution 
increases with the square root of time as the tracer pulse moves 
through the porous matrix (Blackwell, 1985). 

- 
(10) u2 = 2Dt 

The movement of a nonabsorbing tracer in a porous medium 
can be represented by the convective4ispersion equation (Per- 
kins and Johnston, 1963). 

The following initial and boundary conditions have been used: 

at aZ, - 0 at  Z’ = 1 -- 
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The value 0, represents the pore volumes of tracer injected 
into the porous medium. The above system of equations can be 
solved analytically using a Laplace transform. The solution was 
provided as an input to the gamma transport code. The intensity 
of gamma radiation attenuates as the tracer moves away from 
the detector as shown in Figure 8. The results reveal that the 
attenuation rates measured on a pore volume basis are indepen- 
dent of tracer velocity in the porous medium. The principal 
reason for the invariance is the weak nonlinear dependence of 
dispersion coefficient on the interstitial velocity in the convection 
regime. The following expression was found to be valid for all 
the naturally occurring consolidated porous media (Fried and 
Cambarnus, 1971). 

10.2: 

2 z 1 0 . ~ :  . 
z 

1 0 . ~ :  

D = CYV" (17) 

L 
A 2 fold change in Pe corresponds to 
50 (old variations in the velocity. 

The exponent in the above equation is in the range: 1 .O-1.2. 
As a consequence, the Peclet number (Pe = v L / D )  in Eq. 11 is 
weakly dependent on the velocity. The important conclusion 
from this result is that the tracer velocity can be determined 
from the time rate of change of gamma intensity. 

Effect of Tailing of the Tracer 
Tailing is another phenomenon which occurs along with 

dispersion during the movement of a tracer through a porous 
medium. Tailing of the tracer molecules is caused by the dead 
zones in the porous medium where there is no direct flow. 
Transport of the tracer between the dead zones and the bulk 
pore space is controlled by molecular diffusion. As a conse- 
quence, some tracer molecules lag behind the bulk tracer pulse 
and the spatial distribution of the tracer assumes the shape of a 
skewed Gaussian function. This capacitance phenomenon could 
be detrimental to the technique proposed here since a small 
amount of tracer lagging behind could contribute more gamma 
intensity to the detector than the bulk tracer slug owing to its 
proximity to the detector. The bulk tracer pulse may not 
contribute significantly since gamma intensity attenuates expo- 
nentially with distance. 

The regions of pore space with no direct flow and the pore 
spaces with extremely large resistances to flow contribute to the 

0.0 0.2 0 .4  0.6 0.8 1 .o 
Pore volumes 

Figure 8. Effect of the Peclet number on the attenuation 
of full energy intensity. 

tailing of the tracer. The effect of microscopic dead zones on the 
movement of a tracer pulse in a porous medium has been studied 
in detail and the results were presented by Jasti et al. (1988). 
Our principal conclusion was that the model developed by Coats 
and Smith (1964) can be used to represent capacitance phenom- 
ena a t  the microscopic scale. However, the three parameters 
used for the model are not adjustable and should be determined 
independently. The procedures for determining these parame- 
ters, the Peclet number (Pe ) ,  the Damkohler number for mass 
transfer (Da) ,  and the fraction of dead-end pore space (I-F) 
from experimental data are given by Jasti et al. (1988). The 
effect of tailing on gamma transport is studied here by coupling 
our Monte Carlo simulation with the Coats and Smith model. 

The governing equations for the movement of a tracer slug in 
a porous medium are: 

a$ 
ao (1 - F )  - = Da(f - $1 

The boundary conditions for the above system of equations 
are the same as Eqs. 12-1 6. The tracer concentration profile was 
calculated using the analytical solution to Eqs. 18 and 19 
(Baker, 1977), and the solutions were provided as an input to the 
Monte Carlo code. The attenuation rates for the full energy 
intensity were calculated for different dead end fractions and the 
results are shown in Figure 9. At short times [O < (1-F)/Da], 
the attenuation rates for all the cases are nearly the same since 
the capacitance phenomenon manifests itself a t  longer times. 
Large deviations from the base case occur when the dead end 
pore fraction exceeds 30% of the total pore space. Since most of 
the naturally occurring porous media such as sandstones and 
carbonates contain less than 15% dead-end pore space, we 
conclude from this study that the tailing phenomenon does not 
influence gamma attenuation rates. 

Experimental Results 
Experiments were carried out using gamma-ray-emitting 

tracers and Berea sandstone cores, 2.5 cm in diameter and 22 cm 
in length, to establish the validity of the model. The porous 
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Figure 9. Effect of flowing fraction on the attenuation of 
full energy intensity. 
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matrix was sealed into an aluminum pipe using white epoxy 
resin and the ends were closed by threaded distributor caps to 
allow uniform injection and removal of fluids. The experimental 
system is shown in Figure 10. The core was surrounded by silica 
bricks having a thickness of 15 cm and a lead shield having a 
thickness of 5 cm. Silica bricks simulate a sandstone system 
since the elemental compositions are nearly the same. Rubidium- 
86 chloride (1.076 MeV) was used as the tracer, whereas 
magnesium in the form of magnesium chloride was used as the 
eluting ion to minimize ion exchange. 

At the onset of the experiment, 0.02 pore volumes of the 
tracer with an activity of 240 microcuries were injected into the 
porous medium. A sodium iodide scintillation detector (7.5 
cm x 7.5 cm) was positioned near the inlet face of the core, and 
gamma spectra were recorded as the tracer pulse moved away 
from the detector. Data acquisition was made using an 
ND-7600 data processing system. Figures 11 and 12 show 
typical gamma energy spectra recorded during an experiment 
and model predictions for this experimental system. The photon 
energy distribution incident upon the detector is different from 
the energy distribution displayed by the detector. This distortion 
of the energy distribution is attributed to the poor resolution and 
partial photon energy absorption in the detector. The detector 
efficiency and its resolution function have been experimentally 
determined using several standard gamma sources. Monte Carlo 
predictions of photon energy distributions have been convoluted 
with the detector response functions in order to account for the 
distortions caused by the detector. Figures 11 and 12 show that 
the model accurately simulates transport of gamma radiation. 
Some discrepancy at  lower photon energies indicate that the 
photoelectric cross sections for the medium are larger than the 
values calculated using Eq. 6. 

Each of the photon energy spectra has been reduced to three 
parameters: the area under the full energy peak, the area under 
the rest of the energy spectrum, and the ratio of these areas. 
These parameters are called the full energy intensity, the 
scattered photon intensity, and the scatter to full peak intensity 
ratio, respectively. Experimental data obtained at  two flow rates 
are presented in Figures 13 and 14. Photon intensity measure- 
ments beyond 0.85 pore volumes should be neglected since the 
tracer pulse begins to exit the experimental system. The results 
clearly show that the data are independent of the flow rate when 
plotted as a function of the pore volumes; and they confirm the 
model predictions. Since the ordinate is made nondimensional 
using the velocity, the time rate of change of these parameters 
will be proportional to the velocity. 

2500 

2000- 
. 

I I 

Tracer pulse width: 0.02 pore volumes 
Pore volumes injected: 0.61 

3, Pe = 110 

: \  Da=1.2 
I F=O.84 

silica refractory bricks 

I flow in flow out I 
Figure 10. Experimental system. 
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Figure 11. Model predictions vs. experimental gamma 
energy spectra at short times. 

Determination of in-situ Velocity Profiles in 
Porous Media 

The attenuation rate of full energy gamma intensity and 
scattered gamma intensity was found to be proportional to the 
tracer velocity in the porous matrix. The rates of gamma 
attenuation, however, also depend on the orientation of the 
detector, the geometry of the system, and the cross sections of 
the medium. An understanding of how these parameters influ- 
ence the decay rates of gamma intensity is required, since, for 
the full-scale system, only time-dependent data will be available 
instead of information on a pore volume basis. 

A schematic representation of the procedure for solving the 
inverse problem is shown in Figure 15. The time-dependent 
experimental data need to be convoluted with distance- 
dependent information in order to determine the tracer velocity. 
The spatially-dependent data can be obtained using either a 
model or a pilot system which has the same geometry, detector 
orientation, medium properties and spatial distribution of the 
source as the full-scale system. A model would make the 
convolution easier, and the Monte Carlo method, in conjunction 
with the tracer transport model, has already predicted gamma 
transport in experimental systems very accurately. The tracer 
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Figure 13. Effect of flow rate on the attenuation of full 
energy intensity 

velocity in a porous medium can be determined from one of the 
following relations: 

where 

R = ratio of the scattered gamma intensity to the full-energy 
intensity 

t = time 
x = location of the mode of the tracer distribution 
Z = full-energy photon intensity recorded by the detector 

lo = total number of full-energy photons released by the detec- 
tor 

v = interstitial velocity 

The slopes of the curves shown in Figure 15 vary with the 
abscissa. For this reason, the derivatives in Eq. 20 or 21 should 
be evaluated at  the same R or Z/Zo values. However, the activity 
lo of the tracer in the full-scale system is an unknown quantity 
and one can only measure the gamma intensity I .  Consequently, 
the derivatives can be evaluated only at  the same R.  

Another important criterion is the choice of the model used 
for determining the derivatives in Eq. 20. Figure 9 shows that 
the capacitance effects are negligible a t  short separation dis- 
tances between the detector and the source and that they are 
only important beyond 0.3 pore volumes. The velocities were 
calculated using both dispersion and capacitance models and 
compared in Figures 16 and 17 with actual velocities used in the 
experiments. At shorter distances between the tracer and the 
detector, the predictions of both dispersion and capacitance 
models are identical and the calculated velocities are within 5% 
of the actual values. At longer separation distances between the 
tracer and the detector, the capacitance model predicts the 
location of the tracer more accurately than the dispersion model. 

0 
m 
U 

.- 
c 

0 *O * I  
P 

0 

o o  /- 

10 - 

5 
Data Q = 0.25 cc I min 
Data Q = 5 cc / min 

- Model Predictions 
I I 1 

0 
u.0 0.2 0.4 0.6 0.8 1 .o 

Pore Volumes 

Figure 14. Effect of flow rate on the ratio of scattered 
photon intensity to the full energy photon 
intensity. 

At higher flow rates, the dispersion model underpredicts the 
velocity by 35%. Nevertheless, the dispersion model is recom- 
mended for the full-scale application, since it is accurate a t  
lower velocities and only requires one parameter, whereas the 
capacitance model requires three parameters. Correlations are 

I 

Mapping the Experimental Data 

i rat io 

R / 
time 

Models 

t ime  

lo cation ( x/L) location(x/L) 

Figure 15. Mapping required to determine in-situ velocity 
using time-dependent experimental data and 
model predictions. 
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intensity values. It is conceivable to measure the horizontal 
velocity components using shielded gamma detectors. 
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0 < 0.3 / 

0.0 ! I , I I 
0.0 0.5  1 .o 1.5 2.0 2.5 

Actual Velocity (crn/rnin) 

Figure 16. Model prediction of in-situ velocity vs. experi- 
mental data at short times. 

available in the literature for estimating the dispersion coeffi- 
cients in porous media (Blackwell, 1985). 

The technique proposed here has some limitations when 
applied to a full-scale three-dimensional system. A detailed 
prediction of tracer spatial distribution in a three-dimensional 
system would require photon intensity data a t  various orienta- 
tions between the source and the detector, and the use of 
tomographic reconstruction procedures. Unfortunately, the 
movement of the detector in a full-scale system is restricted to 
the vertical direction in a well bore. It is possible to detect 
vertical movement of the tracer by using an array of detectors 
spaced in the vertical direction and measuring time-delayed 
responses among the detectors. Average horizontal velocities 
can be determined by measuring the decay rate of gamma 

/ 
2.5 1 

5 

Experimental Velocity (cm/rnin) 

Figure 17. Model prediction of irrsitu velocity vs. experi- 
mental data at longer times. 

Conclusions 
0 The concept of using the shift in gamma energy distribution 

to determine the location of the radioactive source has been 
demonstrated. The changes in the photon energy distribution 
can be quantified using the ratio of the scattered photon inten- 
sity to the full energy photon intensity. 

.The ratio of scattered photon intensity to the full energy 
photon intensity is independent of the amount of tracer present 
in a porous medium. Therefore, the location of the tracer can be 
determined without the knowledge of the amount of tracer 
present in a porous region. 

0 In-situ tracer velocities in the porous matrix can be deter- 
mined by measuring the attenuation rates of either the full 
energy or the scattered gamma intensity. 

0 The spreading of tracer in a porous medium by dispersion 
and tailing has negligible effect on the measurement of tracer 
velocity. This is attributed to the weak dependence of the Peclet 
number on the interstitial velocity. 

0 A Monte Carlo model in conjunction with a tracer transport 
model can be used to simulate gamma transport in porous media 
accurately. 

Notation 
A = atomic weight 

Co = proportionality constant in Eq. 3 
C1 = constant in Eq. 1 

Da = Damkohler number 
DZ = number of photons recorded by the detector in the range E, 

D = dispersion coefficient, cm’/s 

E + dE 
E = photon energy, MeV 
E‘ = scattered photon energy, MeV 
F = flowing fraction of the pore space 
Z = number of photons recorded by the detector in a unit time, 

lo  = number of photons emitted by the tracer in a unit time, 

L = length of the porous medium, cm 

M = splitting factor 
N = photon flux reaching the plane of interest 
n = photon distribution function 
n’ = value between 3 and 4 in Eq. 1 

No./min 

No./min 

moc2 = constant, 0.51 1 MeV 

Navg = Avagadro number 
N,,, = number of random walks performed in a simulator. 

N ( E )  = number of photons reaching the plane of interest with energy 
E 

Pe = Peclet number ( v L / D )  
r = distance, cm 
S = spatial distribution of a radioactive tracer 

S(Eo) = Compton scattering function 
g(Eo) = correction factor for the Compton scattering function 

t = time, s 
v = velocity, cm/s 
wi = weight fraction 
x = distance, cm 
Z = atomic number 

Z’ = dimensionless distance 

Greek letters 
u = cross section for Compton scattering, cm 
T = cross section for the photon electric effect, cm 
p = density of the porous medium, g/cm3 
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6’ = angle of photon scatter 
8 = dimensionless time (pore volumes of fluid injected) 
8,  = pore volumes of tracer injected 
p = total cross section, cm 
s2 = direction of photon travel 

u2 = variance of a function 
[ = nondimensional tracer concentration in the flowing pore space 
I = nondimensional tracer concentration in the dead-end pore 

space 
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