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The expansion behavior and structural phenomena of fluid-particle systems was simu- 
lated using a method analogous to the Monte Carlo method for molecular systems. 
Individual particles are moved, and the resulting moves are accepted or declined based 
on the change in the system’s potential energy and the average kinetic energy of the 
system. Several fluid - particle systems have been successfully predicted with the model 
including colloidal particle concentration profiles and random packing of uni fom 
spheres. Additionally, predictions of steady-state fluidized-bed expansion characteristics 
for uniformly sized stainless-steel spheres and narrowly distributed nickel and glass 
spheres show excellent agreement with the theoretical model used in the simulation and 
satisfactory agreement with experimental data. Dynamic expansion predictions of both 
bed height and overall bed structure as a function of time also agree with the experimen- 
tal data. 

Introduction 
Fluidized beds are used in a variety of applications, such 

as catalytic reactors and expanded bed adsorbers. Knowledge 
of the expansion characteristics of fluidized beds is crucial in 
predicting the rate of mass transfer and the contact time be- 
tween phases in the bed. For this reason, the velocity/bed- 
height or velocity/voidage relationship for the expansion of 
uniformly sized particles as well as mixtures of particle sizes 
and densities has been studied extensively. 

Many models exist for predicting the behavior and struc- 
ture of fluidized beds. Several theoretical models (Brinkman, 
1947; Happel, 1958; Kuwabara, 1959) have been proposed, 
with applicability at low particle Reynolds numbers. Most of 
the semitheoretical (Steinour, 1944; Loeffler and Ruth, 1959; 
Oliver, 1961; Letan, 1974; Foscolo et al., 1983; Jean and Fan, 
1989) and empirical (Lewis et al., 1949; Jottrand, 1952; Lewis 
and Bowerman, 1952; Richardson and Zaki, 1954a; Wen and 
Yu, 1966; Barnea and Mizrahi, 1973; Wen and Fan, 1974; 
Garside and Al-Dibouni, 1977; Rapagna et al., 1989; Hirata 
and Bulos, 1990) correlations that have been suggested to de- 
scribe the steady-state expansion characteristics of fluidized 
beds establish a relationship between the superficial fluid ve- 
locity and the expanded bed voidage. By far the most widely 
accepted form for correlations is the Richardson-Zaki rela- 
tionship (Richardson and Zaki, 1954b), which relates superfi- 
cial fluid velocity to terminal velocity as a function of the bed 
voidage. 

We have chosen to model the behavior and spatial phe- 
nomena of fluidized and stationary particle systems from a 
fundamental standpoint using techniques analogous to statis- 
tical mechanical molecular simulations. Molecular simula- 
tions can be used to predict a wide variety of system proper- 
ties, including thermodynamic properties and molecular ar- 
rangements (Gubbins and Panagiotopoulos, 1989; Ciccotti et 
al., 1987), but have yet to be widely used to predict the prop- 
erties of fluid-particle systems. Many fluid-particle systems 
are ideally suited to be simulated using statistical mechanical 
methods because they rely on the interactions of the particles 
with other particles and with the surrounding fluid. 

Recent work on the use of statistical mechanical tech- 
niques to simulate fluid-particle systems has been summa- 
rized by Dickinson and Euston (1992). Early simulations were 
used to investigate static colloidal systems and were focused 
on aggregation and flocculation of colloidal particles (Snook 
and van Megen, 1975; Hirtzel and Rajagopolan, 1985; Dick- 
inson, 1990; Vold, 1963; Hutchinson and Sutherland, 1965; 
Sutherland, 1966) and on the adsorption of polymeric 
molecules in colloidal suspensions (Vincent and Whittington, 
1982; Takahashi and Kawaguchi, 1982; Fleer and Lyklema, 
1983; Fleer et al., 1988). To date, few studies have been pub- 
lished on the simulation of the structure of colloidal systems 
or the structure of other fluid-particle systems using statisti- 
cal mechanical techniques. 
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In our simulation, we use the analysis of the forces that 
affect particle movement to determine the structural and 
macroscopic properties of several fluid-particle systems. In 
addition to being purely predictive, this method has the ad- 
vantage of allowing the visualization of microscopic structural 
phenomena that occur in fluid-particle systems by analyzing 
the position of individual particles. The primary disadvantage 
to this method is the computationally intensive nature of the 
simulations. 

Although a variety of techniques have been used in statisti- 
cal mechanical simulations, most of the techniques can be 
classified into two general categories: molecular dynamic 
(MD) or Monte Carlo (MC) simulations. In MD simulations, 
molecular movement is based upon the overall system energy 
and interactions with neighboring molecules. An analogous 
particle simulation would include, among other things, the 
transfer of momentum between particles and the calculation 
of viscous forces based on the fluid flow field. This approach 
to particle simulations would allow for the accurate predic- 
tion of dynamic behavior of a particle system, but the compu- 
tational intensity of the calculations would far exceed any 
practical limits on even the fastest computers currently avail- 
able. 

An alternative approach to momentum conservation algo- 
rithms for particle simulations is a method analogous to the 
MC method for molecular simulations. MC simulations use 
random number generators to move molecules based on ac- 
ceptance probabilities. The basis for molecular movement is 
the kinetic energy of the system that accounts for the random 
fluctuations of molecules. The advantages of MC simulations 
over MD simulations are the ease of programming and shorter 
computation times. In the analogous MC simulation for par- 
ticle systems, the system is driven toward a steady-state con- 
dition by the external hydrodynamic, buoyant, and gravity 
forces affecting the energy change of the system. 

In this article, we show the development of a computer 
simulation and its ability to predict the macroscopic proper- 
ties of several particle systems. Due to the fundamental na- 
ture of the model, we have used this single model to predict 
the concentration profiles in colloidal suspensions, the ran- 
dom packing of spherical particles, and the static and dy- 
namic expansion characteristics of fluidized beds. 

Model Description 
The macroscopic particle systems are modeled using a 

small, representative number of particles. The simulation 
space consists of a solid bottom, infinite height in the Y di- 
rection, and fully periodic boundaries in the X and Z direc- 
tions (Figure 1). Note that the periodic boundaries in the Y-Z 
and Y-X planes allow for an essentially infinite system. By 
designing the simulation volume in this way, it is possible to 
choose a representative system large enough to remove any 
repeating boundary effects from the periodic boundaries or 
edge effects from the solid surface at the bottom of the simu- 
lation space. 

Random placement and motion 
A typical simulation is performed by randomly placing 

500-5,000 particles within the simulation boundaries. A 

Figure 1. Example of simulation space. 
The simulation space has periodic boundaries in the X and 
2 direction, a solid bottom, and infinite height in Y direc- 
tion. Local void fraction is calculated by passing a plane 
through the center of the selected particle (crosshatched) 
and computing the contribution to the intersected plane area 
from each intersected particle. The tops of the particles have 
been removed to show intersected area. 

pseudorandom number generator computes random particle 
coordinates, and particles are sequentially placed in the sim- 
ulation space in a nonoverlapping configuration. If an at- 
tempted particle placement results in an overlap with an- 
other particle, the particle is removed and another set of cen- 
ter coordinates is generated until all particles have been 
placed in the simulation space. Although the simulation space 
available for particle movement has infinite height in the Y 
direction, particles are initially placed in a space equivalent 
to three times the size of the repeating boundary in the X 
and Z directions. With this type of particle placement, a sim- 
ulation space containing 10 particles per repeating bed width 
can easily accommodate a system of 1,000 particles on initial 
placement. For larger systems, or fewer particles in a repeat- 
ing bed width, the initial placement height is modified to ac- 
commodate particle placement. 

Once particles have been placed in the simulation space, 
particle movement begins with the random selection of a sin- 
gle particle in the representative system. The selected parti- 
cle is moved a fixed distance S in a random direction in three 
dimensions. A particle moving a fixed step size therefore has 
all the positions in a shell of radius S available for move- 
ment. To ensure equal probability of all positions rather than 
all angles in a spherical coordinate system, 4 and cos 6 are 
randomly chosen, and converted to their RCCS counterparts. 
If the movement of the particle results in an overlap with an 
adjacent particle, the selected move is automatically rejected 
and the particle is returned to the original coordinates. A 
nonoverlapping move is accepted or declined based upon the 
acceptance criteria. 

Acceptance criteria 
Nonoverlapping particle moves are accepted based upon 

the change in system energy generated by the move. Energet- 
ically “favorable” moves (moves that result in a lowering of 
the system energy) are accepted with 100% probability. An 
energetically “unfavorable” move may still be accepted, but 
only with some finite probability. 
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Analogous to the Monte Carlo method for molecular simu- 
lations, the acceptance probability ( p , )  of an energetically 
unfavorable move is given by the equation 

A E  

where A E  is the system energy change resulting from the 
move and KE is the average kinetic energy of the system. 
Once the change in the system’s energy is calculated, a ran- 
dom probability ( p , )  between 0 and 1 is generated and the 
particle move is accepted if p ,  is greater than this value. A 
declined move due to a failure of the acceptance criteria re- 
sets the selected particle’s coordinates to their previous val- 
ues. 

Energy calculations 
In our simulation, the system energy change, A E ,  is the 

change in potential energy due to particle movement and is 
calculated using gravity, buoyancy, and fluid dynamic forces. 
Although we have ignored particle-particle forces such as 
electrostatic, frictional, or magnetic forces, the form of the 
simulation allows these interactions to be easily incorporated 
into the energy calculation. The combined gravity and buoy- 
ancy force affecting a submerged body (i.e., all the forces ex- 
cept the fluid forces) is given by 

( 2 )  

where F is the force on a particle, pp is the particle density, 
pf is the fluid density, Vp is the particle volume, and g is the 
acceleration due to gravity. 

Several mathematical models (Brinkman, 1947; Happel, 
1958; Kuwabara, 1959) have been derived for the fluid forces 
acting on a particle in a flow field. For low Reynolds number 
flows, the microscopic fluid dynamic force influencing a par- 
ticle is well represented by Happel’s solution to the equation 
of motion around random assemblages of spheres. This force 
is given by 

47FCLdpUs, ( 3 )  
3 + 2 y 5  

Ff = ( 2 - 3 y  + 3 y 5  -2y’  

where 

y = (1 - d/J, (4) 

p is the fluid viscosity, dp is the particle diameter, and E is 
the local void fraction surrounding a particle. , For high 
Reynolds number flows, we use the Ergun equation: 

where the hydrodynamic force, Ff,  is given by 

( 6 )  

The fluid force calculated using either of these equations is 
a strong function of E, the local void fraction. If the particles 
are uniformly distributed in a given space, this local value is 
identical to the average void fraction of the system, eSys. This 
void fraction is given by 

(7) 

where E, is the packed void fraction of the system, H, is the 
height of the particles when packed, and H is the current or 
expanded height of the system (same initial width). 

For real particle systems, void fractions can be significantly 
different than the average system void fraction. Davis and 
Carter (1990) have suggested that the local void fraction sur- 
rounding a particle may be calculated by using either a finite 
subvolume containing the particle, a plane passed through 
the particle, or a line intersecting the particle. Our simula- 
tion uses a horizontal plane intersecting the center of the 
selected particle and computes the local void fraction from 
the intersected particle area divided by the total area (Figure 
1). The intersected area for each particle, A i ,  is 

A i = a  - - A 1 2  , i: i (8) 

where dp is the diameter of the selected particle and A1 is 
the distance between the selected particle’s center point and 
the plane of intersection. The local void fraction is then de- 
fined as 

A ,  is the unit bed cross-sectional area, and N is the number 
of intersected particles. 

Using Eqs. 2-6, 8, and 9, the net change in system energy, 
A E ,  resulting from an individual particle move can then be 
calculated from the product of the force on the particle (Fg,b 
+ Ff) and the vertical distance traveled by the particle 
(Yold - Ynew). This technique for calculating the change in sys- 
tem energy, which assumes that the forces remain constant 
over the entire move distance, is valid for small step sizes. 

The change in system energy is then substituted into Eq. 1 
and the result compared to p ,  to determine if the specific 
move is accepted or declined. Once such a single particle 
move has been completed, the process (selection, movement, 
overlap check, and acceptance check) is repeated until the 
system converges to a steady-state configuration. Steady state 
is determined by an absence in change in the overall system 
void fraction and any macroscopic structural arrangements 
that may arise in the particle bed as a function of simulation 
time. 

Experimental Studies 
Materials and equipment 

Liquid fluidization runs were performed using 25°C dis- 
tilled/deionized water and commercial-grade mineral oil as 
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the fluidizing medium. Nitrogen at 25°C was used for all gas 
fluidized beds. Expansion data was taken in 1.5- and 2.5-cm- 
ID Kontes Flex-Column chromatography columns. The 
columns were fitted with a porous distributor 0.32 cm thick, 
with pore sizes ranging from 25 to 50 pm. The fluid was 
pumped using a model QD laboratory pump from Fluid Me- 
tering, Inc. for liquid fluidization data. Expansion data were 
obtained by fluidizing stainless-steel spheres ( d ,  = 0.1588 f 
0.0003 cm, p = 7.63 g/cm3) from Winsted Precision Ball 
Company, nickel spheres (dp = 150 pm, p = 8.47 g/cm3) from 
Johnson Matthey, and glass beads (high index, dp = 134 pm, 
p=4.42 g/cm3; low index, dp= 240 pm, p=2.45 g/cm3) 
from Potters Industries. The simulation program used for 
configuration generation, spatial resolution, and position 
analysis was written in FORTRAN and Absoft’s MacFortran 
I1 for the Macintosh. Computer trials were run on IBM RS- 
6000 and SUN Sparcstation computers. Particle distribution 
information was calculated from projected area measure- 
ments with Biological Detection Systems-Image Version 1.2 
image analysis software, a Macintosh IIfx computer, a Ham- 
mamatsu camera, and a Zeiss Axioscop microscope. 

Methods 
Velocity-voidage data were taken 

by adding a known, dry mass of particles to a graduated chro- 
matography column and allowing the particles to settle. h i -  
tial bed depths ranged from 8 to 15 cm. The fluid was pumped 
up through a porous distributor at the bottom of the column 
and through the bed of particles. When operating the gas 
fluidized bed, the gas was directed through the porous dis- 
tributor and particle bed and finally through a flowmeter. 
Void fractions were calculated using Eq. 7. 

Particle Data. The average particle diameter was deter- 
mined using 600 particles from each particle type. Particles 
were randomly chosen and the average diameters were calcu- 
lated using the Sauter mean particle diameter of the distribu- 
tion. 

Particle density was calculated by weighing a volume of 
particles in a volumetric flask. Water at 25°C was added to 
the flask, and the flask was shaken to remove any air bubbles. 
The density of the particles is then calculated from the knowh 
mass of particles and the difference in the flask volume and 
the known volume of water present (calculated from the mass 
of the water added to the flask and the density of the water 
at that temperature). 

Velocity - Voidage Data. 

Results and Discussion 
Model precision 

The final steady-state configurations of simulated particle 
systems must be independent of the simulation parameters. 
We can use a model particle system, such as a fluidized bed, 
to determine the effect of step size, particles per repeating 
bed width, initial bed depth, and initial bed configuration on 
the steady-state particle arrangement. For each of these pa- 
rameters, values should be chosen that facilitate a rapid ap- 
proach to steady state, but do not affect the final steady-state 
structure. 

The step size (random movement distance), S, is one pa- 
rameter that can slow the approach to the steady-state con- 

Sldp = 1.00 
Sldp = 0.10 

0 . 5 5 v  - S l d p = O . O l  

0.454 . 

0 1 2 3 4 5 

Number of Attempted Moves x 106 

Figure 2. Effect of step size on approach to steady state. 
By simulating the expansion of glass particles ( d ,  = ,I34 N m ,  
pp = 4.42 g/cm) resulting from a step change in velocity (from 
0.05 cm/s to 0.5 cm/s), we find that operating at an S/dp 
ratio of 0.1 results in a rapid approach to  steady state and 
very little noise in the data. 

figuration if not chosen properly. As shown in Figure 2, too 
large a step size results in frequent particle overlapping and 
slows the system’s approach to steady state. Choosing too 
small a step size increases the time required to reach the 
steady-state configuration because many more steps are nec- 
essary. Ideally, the step size should correspond to the average 
distance between adjacent particles. This distance varies from 
0.06 dp  at an E = 0.5 (10% expansion), to 0.2 d ,  at an E = 0.7 
(100% expansion). Typically, we operate at an intermediate 
step-size-to-diameter ratio (S /dp)  of 0.1. 

The size of the simulation space can also affect the ap- 
proach to steady state (more particles require more computa- 
tion time) and can adversely affect the steady-state configura- 
tion. Operating with too small a bed width (defined as the 
number of particle diameters in a single nonrepeating bed 
unit) can result in a misrepresentation of the steady-state 
configuration; too large a bed width results in excessive run 
times. Figure 3 shows that greater than six particles per unit 
bed width results in sufficient elimination of the periodicity 
resulting from the repeating boundaries. By expanding a bed 
65%, and comparing the resulting bed height for several ini- 
tial packed bed depths (Figure 41, we have found that a bed 
five particles deep (when packed) minimizes the effects from 
the solid boundary on the bottom of the simulation box. For 
our simulations we operate with 1,000 particles in the simula- 
tion space (10 particle diameters in the X and 2 directions, 
9.5 particles deep when packed) to eliminate repeating and 
solid boundary effects. 

While the final steady-state configuration may be affected 
by the dimensions of the simulation space, it is independent 
of the direction of approach to the final steady state. Figure 
5 shows that the void fraction of an expanded bed will be the 
same regardless of whether the approach initiates from a less 
expanded state (expansion) or a more expanded state (set- 
tling). Note that although the steady-state configurations are 
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Figure 3. Simulated bed expansion as a function of bed 

width. 
A bed 15 particles (240 p m  glass, p = 2.45) deep, shows no 
effects from the wall’s periodicity beyond 6 particles per 
screen width. 

identical, the number of moves necessary to obtain steady 
state is very different. 

Colloidal and packed particles 
Although a number of fluid-particle systems can be simu- 

lated using the technique described in this article, the most 
obvious system is a colloidal suspension. The motion of col- 
loidal particles is physically and mathematically similar to the 
motion of molecules in a static fluid. Thermal fluctuations 

2.0 
0 1 

0 Dimensionless Bed Height, HIH,, 

. 
1.7{ 

0 6 10 16 

Bed Depth (Particles) 

Figure 4. Simulated expansion of 240-pm glass parti- 
cles as a function of bed depth. 
Results indicate that a simulated bed needs to be deeper 
than approximately 5 particles (when packed) to eliminate 
effects from the solid surface at the bottom of the simula- 
tion box. 
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Figure 5. Effect of the direction of approach. 
Expansion of a packed bed or settling of randomly placed 
particles to the same velocity (0.4 cm/s) results in the same 
steady-state void fraction. The particles were 150-mm-dia. 
glass beads (e = 4.5 g/cm3). 

are responsible for the particles’ Brownian motion and, 
therefore, the kinetic energy (Eq. 1) can be defined the same 
way for this system as it is for molecular systems: the product 
of the Boltzmann’s constant and the average system tempera- 
ture. 

Our simulations of colloidal particles are able to predict 
the properties of colloidal suspensions. For instance, col- 
loidal particles will form vertical concentration gradients due 
to the fact that the particles’ settling velocity is on the same 
order as their diffusive flux. Figure 6 shows the steady-state 
concentration of colloidal particles as a function of distance 
above the bottom of the simulation space. As expected, the 
downward settling of the particles is matched by an upward 
concentration-driven diffusive flux. 

The concentration profile generated by our simulations can 
also be predicted analytically. The expression for the concen- 
tration profile is obtained from matching the sedimentation 
and diffusion fluxes (Hiemenz, 1986): 

dc mp -&=E (1-;).., (10) 

where mp is the mass of a particle, k is Boltzmann’s con- 
stant, T is the system operating temperature, pp is the den- 
sity of the colloidal particle, pf is the density of the surround- 
ing fluid, and c is the concentration at any point, x ,  in the 
container. By integrating Eq. 10, we obtain the expression for 
the steady-state concentration profile: 

where c1 and c2 are the concentrations in the colloidal sus- 
pension at points x 1  and x 2 ,  respectively. 
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Figure 6. Simulated and theoretical concentration pro- 
files. 
The particle (0.119 pm gold, p = 19.3) concentration profile 
at 298°C is determined using 5% of the particles in the cen- 
ter of the bed as a reference height and concentration. The 
results show the excellent agreement between the simula- 
tion data and the analytical solution. 

Equation 11 predicts the relative concentration profile of 
the particles (i.e., the concentration at any x-position relative 
to any other x-position). For a reference point, we have cho- 
sen the average concentration at the center x-position in the 
simulated concentration data and have generated the theo- 
retical concentration profile of this system (Figure 6). The 
theoretical curve shows good agreement with the concentra- 
tion data obtained from the simulation, but, as expected, 
tends to deviate at heights close to the container bottom due 
to interactions with that solid boundary. 

As an additional check on our simulation data, we have 
calculated the apparent temperature at specific heights from 
the container bottom in this system. By taking the concentra- 
tions at two x-positions in the simulation and inserting these 
values into Eq. 11, we can solve for the individual tempera; 
tures at specific points. If we average these temperatures both 
near and far away from the bottom, we see the expected cool- 
ing effect near the bottom of the container: 207 K for the 
particles below 20 p m  vs. 299 K for the particles above 20 
pm. This “coo1ing”is also seen as a disproportionately large 
concentration of particles near the bottom of the container 
(Figure 6). 

The concentration profiles that form when colloidal parti- 
cles are allowed to settle in a stationary fluid tend to become 
steeper as the diameter and/or density of the particles in- 
creases. At large diameters or high densities, the particles 
will no longer remain suspended and will form a packed bed 
of particles. Knowing this packed bed void fraction is neces- 
sary for a variety of applications, such as for calculating the 
overall system void fraction from the packed and expanded 
bed heights (Eq. 7). The packed bed void fraction can be 
found by interpolation between special cases of known pack- 
ing fraction (Davis and Carter, 1990) or by a variety of exper- 
imental techniques. 
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Table 1. Simulated Void Fraction after a Specified Number 
of Moves and Decreasing Step Sizes 

No. of Moves Step Size Void Fraction 
1 x lo7 0.1 D 0.459k 0.013 
1 x 107 0.0066 D 0.446 & 0.003 
1 x 10’ 0.0020 D 0.437 _+ 0.001 
1 x 107 0.0010 D 0.4368 f 0.0008 

We have used our simulation to calculate this packed bed 
void volume. One thousand particles were allowed to settle 
for 4 X lo7 attempted moves while stepping at successively 
decreasing step sizes (Table 1). First, lo7 moves were at- 
tempted, then the average distance of the five nearest neigh- 
boring particles was calculated. The next step size was taken 
to be the distance of the second nearest neighboring particle 
to facilitate a rapid approach to a packed configuration. Af- 
ter four iterations of this procedure, a value for the packed 
bed void of 43.7% was calculated. This value is high but in 
the range of reported values of 0.35 to 0.44 for random pack- 
ing (Bernal, 1959; Bernal and Mason, 1960; McGeary, 1961; 
Williams, 1986; Davis and Carter, 1990). 

Fluidized beds 
The same technique used to cal- 

culate colloid particle locations can be used to calculate flu- 
idized bed expansion behavior. The physical motion of parti- 
cles in fluidized beds, however, is not directly analogous to 
molecular motion. In particular, by using the product of 
Boltzmann’s constant and system temperature to represent 
the average kinetic energy of the particles, we only account 
for random Brownian motion and not motion due to fluctua- 
tions in the fluid flow field. Since Brownian motion should be 
insignificant in fluidized beds, the simulation algorithm re- 
duces to an energy minimization routine. However, the simu- 
lation still accurately predicts liquid fluidized bed expansion 
data. Modifications of the kinetic energy term can be made 
to attempt to incorporate fluid-induced fluctuations and will 
be discussed in the following section. 

Figure 7a shows the expansion of uniform-sized stainless- 
steel spheres fluidized with mineral oil. As one can see from 
the figure, the simulation results are nearly identical to Hap- 
pel’s model, and very closely approximate other recent mod- 
els for predicting the expansion of fluidized beds (Foscolo et 
al., 1983; Richardson and Zaki, 1954; Hirata and Bulos, 1990). 
This excellent agreement between Happel’s model (the model 
used in the simulation) and the simulation results suggests 
that the technique used in this work does not introduce any 
artifacts or numerical errors when simulating fluidized beds. 
The agreement also implies that more complicated fluidized 
systems, such as those with interparticle electrostatic or mag- 
netic forces, should be able to be modeled with this type of 
simulation provided the appropriate equations governing the 
physical phenomena are included. 

We have also attempted to characterize the expansion be- 
havior of nonuniform (narrowly distributed) nickel and glass 
particles using the particle distribution’s Sauter mean diame- 
ter. The expansion curves for both the nickel (Figure 7b) and 
glass (Figure 7c) exactly match those predicted by Happel’s 
model, and follow the experimental expansion behavior of the 
particles quite well. Note that the force term used in this 
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Figure 7. Expansion curve for particle fluidization in 
25°C water and mineral oil. 
Plot shows expansion characteristic of (a) 1588-pm chrome 
steel bearings in mineral oil; (b) narrowly distributed nickel 
spheres; and (c) high-index glass spheres in 25°C water. The 
simulations exactly match Happel’s model and agree well 
with the experimental data and the other correlations avail- 
able for the prediction of bed voidage. 

derived for uniform spheres and, therefore, cannot accurately 
be used for nonuniform spheres. Other researchers have done 
alternative derivations of the viscous forces to include effects 
from a particle size distribution, and these results could be 
incorporated in this type of particle simulation (Tien, 1989). 

The nature of this simulation 
allows us to simulate the more complicated dynamic behavior 
of a fluidized bed that cannot be derived from simple predic- 
tive models and mathematical correlations. To simulate dy- 
namic behavior, we must derive an expression for the pro- 
gressed time associated with a particular number of simula- 
tion moves. To calculate this progressed time, we have simu- 
lated a system of particles fluidized beyond their terminal ve- 
locity. The theoretical time required to move a given dis- 
tance, H ,  is 

Unsteady-State Expansion. 

(12) 

where U ,  is the mean velocity of the particles in the direc- 
tion of movement. For this situation, U ,  is simply the differ- 
ence between the interstitial velocity of the surrounding fluid 
and the terminal velocity of the particles. 

By operating this simulation for a fixed number of at- 
tempted steps, we can predict the time required for the parti- 
cles to travel a fixed distance. The resulting equation for the 
time progressed in a fixed number of accepted moves is 
therefore given by 

(13) 
M a c 2  t = -  
2 NpUv ’ 

where Macc is the number of accepted moves, Np is the num- 
ber of particles in the representative system, and S is the 
radius of the sphere formed by the locus of positions avail- 
able for particle movement. Because downward moves are 
energetically unfavorable, the locus of positions available to 
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0 Concentrated Particle System, ~=0.5 
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, ‘ ’ 

Time, Theoretical (s) 

Simulation time vs. theoretical time. 
A system of particles ( d  = 150 fim, p = 8.91 p/cm’> fluidized 
beyond their terminal velocity ( u s  = 300 cm/s) is used to 
compare the theoretical time and the time calculated from 
the simulation. The plot shows excellent agreement between 
the two methods. 

particle movement forms a hemispherical shell of radius S 
above the selected particle’s center. A plot of the calculated 
time using Eq. 13 vs. the theoretical time (Eq. 12) required to 
move the equivalent distance shows nearly exact agreement 
(Figure 8). 

Although Eq. 13 can be used to convert the number of 
simulation moves into real time, the behavior observed is not 
independent of step size. By comparing data from dynamic 
expansion experiments to results from simulations with vari- 
ous step sizes, we can determine the step size that best repre- 

Actual Simulated 
Height (cmf 

Time (s) = 0.0 2.6 4.0 6.6 12.0 0.0 2.6 4.0 6.6 12.0 

Figure 10. Actual and simulated expansion of particles 
in a fluidized bed. 
As particles expand a plug of particles forms and particles 
drop away from the bottom of this plug to their steady-state 
void fraction. The simulated results match experimental 
observations of this phenomenon. 

sents the dynamic behavior of the particles of interest. Figure 
9 shows the results for the simulated expansion of stainless- 
steel particles. By operating at S/dp between 0.1 and 0.25, we 
obtain the best estimate for the dynamic approach of a flu- 
idized bed to a fully expanded state. Note that these two 
bounds on the step size correspond to the average distance 
between nearest neighbor surfaces that would occur in a flu- 
idized bed with voidages ranging from 0.55 to 0.70 (exactly 
the range of voidages shown in Figure 9). 

In addition to macroscopic expansion behavior, the simula- 
tion can be used to predict dynamic microscopic structural 
phenomena. When fluid is introduced into a fluidized bed, 
particles begin to expand as a plug, maintaining their packed 
void fraction. Particles will fall away from the bottom surface 
of this plug to reach the steady state void fraction for that 
particular fluid velocity. Figure 10 shows how a time progres- 
sion of an actual fluidized bed of stainless-steel spheres (1588 
pm, p = 7.63 g/cm3) in mineral oil is nearly identical to the 
simulation results of the same system. 

The particle arrangement in the settling of an expanded 
bed can also be predicted accurately by the simulation; parti- 
cles form a plug at the bottom of the bed instead of at the 
top. However, accurate time predictions cannot be made 
without modifying the calculations. Figure 11 shows the ex- 
perimental settling curve for stainless-steel spheres in min- 
eral oil along with the simulated settling curves. The simula- 
tion results for four different step sizes all drastically over- 
predict the time for the system to settle if the interstitial fluid 
velocity is used in Eq. 13. This result is not surprising since 
the settling of the particles is governed by the terminal veloc- 

20 30 40 ity of the particles and not the interstitial velocity. By replac- 
ing the interstitial velocity in Eq. 13 with the terminal veloc- 

2.0 

1.6 

1.0 

0.5 
*Experimental Data 

0 10 0.0 

ity, we obtain a much closer representation of the dynamic 
behavior of these settling particles. Finally, if we include hin- Time (8) 

Figure 9. Dimensionless bed height as a function Of 

Results for experimental data and simulated results of van- 
ous step sizes for stainless-steel spheres (d,, = 0.1588 & 
0.0003 cm, p = 7.63 g/cm3, U, = 1.15 cm/s). Too large and 
too small a step size result in significant overestimations of 
the time to reach steady-state bed height. 

dered settling using the average system void fraction (Gean- 
time. koplis, 1983): 
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Figure 11. Simulation and experimental data for parti- 
cles settling as a function of time. 
Simulation results for stainless-steel spheres ( d ,  = 0.1588 
k0.0003 cm, p = 7.63 g/cm3, Us = change from 2.0 cm/s to 
0.4 c m p )  settling at step sizes of 0.05 D, 0.1 D, 0.25 D, 0.5 
D exhibit the same general shape as the data, but overpre- 
dict the amount of time necessary to fully settle. Using the 
terminal velocity for the characteristic velocity (S/dp = 0.1) 
yields a better representation of the time. Accounting for 
hindered settling (at the mean system void fraction) in the 
terminal velocity calculation results in better agreement 
between the simulation data and the experimental results. 

where 

(15) 

we find excellent agreement between the experimental data 
and the time predicted by the simulation. 

While these results show that the simulation can predict 
the time behavior of fluidized beds, caution must be exer- 
cised in interpreting the results due to the limited physics 
that has been included in the model. For instance, consider a 
particle in the center of the rising plug in Figure 10. In the 
actual column, the particle is carried up the column by the 
particles below it. For the simulation, there are no 
particle-particle interactions; the particle in the simulation is 
moving up as fast as the particle above it will move out of the 
way. These behaviors, while slightly different phenomenolog- 
ically, are still related to the fact that an effective pressure 
drop is being created across the plug, which in turn is causing 
the plug to move upward in the fluidized bed. 

Many additions can be made to the simu- 
lation to increase the physical accuracy of the predictions and 
expand the method’s applicability. For instance, the kinetic 
energy used in the simulations was the product of the Boltz- 
mann’s constant and system temperature. Physically, this term 
includes the random Brownian motion of fluidized particles, 
but ignores the semirandom fluctuations of particles due to 
fluid motion. Although the fluid motion is not wholly ran- 
dom, we can approximate the effect of fluid-motion fluctua- 
tions on the expansion behavior of fluidized beds by using 
the velocity of the moving fluid in the definition of the parti- 

Kinetic Energy. 
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Figure 12. Simulation of the characteristic expansion 
curves for three different fluid-particle sys- 
tems. 
The threc systems, A (Re, = 0.025, d = 775 pm,  pp = 1.5 
g/cm3, pf = 1.0 g/cm3, p = 1.0 cP), B (Re, = 1.0, d = 1588 
pm, pp = 7.6 g/cm3, pf = 0.869 g/cm3, p = 139 cPf and C 
(Re, = 2.5, d, = 500 @m, pp = 2.2 g/cm3, pf = 2.0 g/cm3, 
p = 1.0 cP), are simulated using two methods of calculat- 
ing the kinetic energy for acceptance probability. Using ei- 
ther the e uation for kinetic energy of a macroscopic body 

temperature (kT) results in identical expansion curves. 
(1/2 mpUS 9 ) or the product of Boltzmann’s constant and 

cle’s kinetic energy. The average kinetic energy of a fluidized 
particle can be taken to have the form 

where mp is the particle mass, U, is the interstitial velocity of 
the fluidizing media, and the constant c is generally consid- 
ered to have the value of 1/2 or 1/3 (Buyevich, 1994; Buye- 
vich and Kapbasov, 1994; Koch, 1990; Nettleton, 1993). 

We have replaced the kinetic energy term in the accep- 
tance probability (Eq. 1) with Eq. 16 and, using c = 1/2, have 
resimulated the expansion characteristics of the uniformly 
sized particles in liquid fluidized beds. The results, shown in 
Figure 12, are identical to those obtained with KE = kT. For 
the low Reynolds number flow of liquid-fluidized beds, this 
result is not surprising since the inertial forces are lower than 
the viscous forces. The insignificant contribution of the parti- 
cles momentum can be seen mathematically by comparing the 
value of KE from Eq. 16 (0.06 g.cm2/s2 for stainless steel 
fluidized at a superficial velocity of 2.5 cm/s) to the change 
in energy of a typical vertical move at identical conditions 
(15.5 g.cm2/s2). 

For higher particle Reynolds numbers, such as those typi- 
cally encountered in gas fluidized beds, the contribution of 
the redefined kinetic energy term is far from insignificant. To 
simulate these gas-fluidized beds, we have replaced Happel’s 
model, which was specifically derived for low Reynolds sys- 
tems, with the Ergun equation for the calculation of fluid 
forces. We chose the Ergun equation because it is suitable 
for turbulent systems and is designed for packed beds (Ergun, 
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Figure 13. Experimental, simulated, and theoretical ex- 
pansion curves for a gas fluidized bed. 
Various forms of the kinetic energy result in different 
curves for the expansion characteristic of 90-pm nickel 
particles. The theoretical expression signficantly underpre- 
dicts experimental results, while the simulation that uti- 
lizes the same theoretical expression overpredicts the ex- 
pansion curve. Reducing the velocity used in the calcula- 
tion of KE by an order of magnitude (0.01 K E )  results in 
an accurate prediction of experimental results. 

1952). Correlations for fluid forces in fluidized beds may lump 
the effects of particle motion into the calculation of fluid 
forces and were therefore not used. 

We would expect that using Eq. 16 for the average kinetic 
energy of the particles would yield a larger simulated steady 
state bed height (void fraction) than that predicted by the 
Ergun equation. Figure 13 shows that this is indeed true; the 
“fluid fluctuations” expand the bed much like Brownian mo- 
tion expands colloidal particles. The Ergun equation does not 
account for this expansion, and therefore underpredicts the 
experimental data. Unfortunately, the simulations overpre- 
dict the data, indicating that the equations found in the liter- 
ature for the kinetic energy of fluidized particles may not be, 
accurate. The overprediction is most likely due to the fact 
that the particles move relative to each other at velocities 
significantly lower than the interstitial fluid velocity. A linear 
reduction of the particle velocity in the kinetic energy term 
by an order of magnitude aligns the simulated results to the 
experimental expansion curves. 

Conclusions 
We have developed a discrete particle simulation, analo- 

gous to a statistical mechanical simulation for molecular sys- 
tems, to describe particle behavior in colloidal suspensions 
and fluidized beds. This statistical-mechanical-type simula- 
tion describes the macroscopic behavior of fluid-particle sys- 
tems using the microscopic forces that affect the movement 
of individual particles. We have shown this model to be use- 
ful in predicting packing fractions for static systems, concen- 
tration profiles in colloidal suspensions, and both static and 
dynamic expansion characteristics of fluidized beds. 

This simulation is easily modified to include other physical 
parameters that may affect the final steady-state behavior of 
particle systems. Electrostatic, magnetic or frictional inter- 
particle forces can be added to the simulation to calculate 
the effect of these forces on the expansion behavior. Alterna- 
tive forms for the hydrodynamic model can also be easily in- 
corporated into the force calculations, including correlative- 
type predictions and effects from adjacent particles (Durlof- 
sky and Brady, 1987; Brady et al., 1988; Brady, 1988). Flu- 
idized beds containing mixtures of particles (i.e., different 
sizes and/or densities) can also be studied. Such fluidized 
beds exhibit a variety of interesting spatial phenomena in- 
cluding classification, segregation, and inversion, all of which 
should be able to be predicted using this technique. 
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Notation 
E, =total system energy 
L =length of packed bed of particles 

U, =superficial fluid velocity 
U, =particle terminal velocity 
X =coordinate in storage of particle locations 
Y = coordinate in storage of particle locations 

Yold =initial Y coordinate of a selected particle 
Y,,, =newly generated Y coordinate of a selected particle 

Z =coordinate in storage of particle locations 

t =time 

A p  =pressure drop in a packed bed 

Subscripts 
b =buoyancy 
g =gravity 
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