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A method is presented by which ab ini t io  (or empirical) force fields and structures can be converted to 
molecular mechanics energy parameters. Using Cartesian coordinates, the effect of van der Waals and other 
nonquadratic interactions is eliminated from the original spectroscopic force field, and molecular mechanics 
force constants and reference geometry parameters are derived. The computed parameters yield molecular 
structure and vibrational frequencies that are identical to the original ones. The transformation produces a 
complete general valence force field, which in most cases is impractical, and a procedure to reduce the 
number of force constants is therefore described. Different ways of applying the transformation are outlined. 

INTRODUCTION 

High level ab in i t i o  calculations on increasingly 
complex organic compounds have become an im- 
portant tool in the construction of empirical poten- 
tial energy functions used in molecular mechanics 
(MM), molecular dynamics (MD), and Monte Carlo 
(MC) calculations. The reason is that ab in i t i o  cal- 
culations can produce results which in many cases 
would be difficult or even impossible to obtain, with 
comparable reliability, in any other way.’ One draw- 
back, though, is that ab in i t i o  calculations often 
yield different results depending on the choice of 
basis functions, inclusion of polarization functions, 
configuration interactions, e t~. ,2-~ and when force 
fields and vibrational frequencies are computed, 
proper scale factors also have to be used. The choice 
of basis set level in each case is based largely on 
experience. So are scale factors, when they are not 
directly optimized to experimental frequencies. 
However, as experience with basis sets and other 
options increases, the quality of ab in i t i o  calcula- 
tions on large molecules is certainly expected to 
improve. To be able to keep the MM, MD, and MC 
calculations up to date with the ab in i t i o  results, 
methods are therefore needed by which these results 
can be conveniently converted to MM potential en- 
ergy function parameters, preferably without sacri- 
ficing too much of the original accuracy. 

Quadratic force fields are among the quantities 
that are most suitable to study by ab in i t i o  methods, 
since, for large molecules, these are otherwise dif- 
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ficult to determine uniquely: and the transferability 
of the scale factors has generally been found to be 
good! It is a subject of debate as to what extent 
interaction force constants should be included in the 
energy function7,* if the main purpose is to reproduce 
molecular structures properly. It is clear, however, 
that vibrational frequencies, at least, cannot be com- 
puted very accurately without a significant number 
of cross terms. Also, as has recently been pointed 
out: if the initial force field is too crude, substantial 
problems arise with retaining the assignments in the 
optimization of force constant parameters to vibra- 
tional frequencies. The question is then which cross 
terms to include, i.e., which cross terms cannot be 
neglected without severe consequences for the fre- 
quencies. Although this can easily be studied within 
the framework of the original (spectroscopic) ab i n -  
i t i o  force field, the conclusions from such a study 
are not necessarily transferable to the MM potential 
energy function. Neither are the values of the spec- 
troscopic force constants. This is because nonquad- 
ratic interactions (van der Waals, Coulombic, etc.) 
are accounted for separately in the MM model, but 
implicitly included in a spectroscopic force field. 
What needs to be done before the selection of im- 
portant cross terms can be made, is therefore a 
transformation in which the contribution of the 
nonquadratic interactions is eliminated from the 
spectroscopic force field, and true MM force con- 
stants are produced. 

The aim of the present article is to describe the 
formalism of this transformation. In addition to the 
MM force constants, the transformation also gives 
the reference geometry parameters that pertain to 
the quadratic terms of the MM potential energy func- 
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tion. An energy function containing the computed 
force constants and reference geometry, together 
with the original nonquadratic interactions, then 
yields exactly the same structure and vibrational fre- 
quencies as the ab initio calculation itself, and thus 
constitutes a good starting point for the subsequent 
reduction of the number of cross terms, and other 
modifications that may be necessary in the further 
refinement of the energy function. 

As indicated above, we initially assume that the 
parameters of the nonquadratic interactions are 
known. This is not a serious restriction, however, 
since they can to a good approximation be de- 
termined independently of the parameters of the 
quadratic terms, for instance by fitting to crystal 
properties'"-I3 and to ab initio electrostatic poten- 
tials.I4J5 Using ab initio (or empirical) results for 
several conformations of a group of related mole- 
cules, it may even be possible to refine a complete 
set of MM potential energy parameters for these mol- 
ecules. 

Thus, our conversion can be used as a fast method 
to fully utilize new spectroscopic force fields and 
structures, as well as new information concerning 
nonquadratic interactions. An interesting application 
is also the evaluation of the ability of existing func- 
tions for nonbonded interactions to yield a consist- 
ent set of energy parameters. 

THEORY 

In the molecular mechanics method,16aJ6b the poten- 
tial energy function may be considered to consist of 
a quadratic part V, and a nonquadratic part V,,, 

v = v, + v,, (1) 

V,, accounts for van der Waals interaction, Coulom- 
bic interaction, periodic torsions, etc., while V, is the 
potential energy arising from deformation of valence 
bonds and angles. Explicitly, V, can be written 

iJ 

where the Fiis are called MM force constants, the 
R,'s are valence coordinates and the parameters RiO 
define the reference (or intrinsic equilibrium) ge- 
ometry. The reference geometry corresponds to the 
minimum of the quadratic part of the potential but 
does not in general represent the equilibrium ge- 
ometry of any real molecule. The real equilibrium 
geometry is obtained by minimizing the total poten- 
tial energy, usually in Cartesian coordinates. In the 
conversion from ab initio we assume, at fist, as 
explained in the introduction, that V,, is known and 
we only determine the MM force constants and the 
reference geometry. 

If the Cartesian coordinates of the molecule are 
denoted by xka, where k runs over the atoms and 
a = 1, 2, 3, we have for the fist derivatives of the 
potential energy 

(3)  

and for the second derivatives 

or 

(5) 
- a2V a2v,, #V, 

~ _ _ _ _ _ _ _  - 
ax,,ax,, ax,,ax, ax,,ax, 

where lb is defined in the same way as ka. The sec- 
ond derivatives of V with respect to the Cartesian 
coordinates represent the ab initio force field, and 
since we assume that V,, is known its f i s t  and sec- 
ond derivatives can be computed. Thus, in Cartesian 
coordinates, the contribution of the nonquadratic in- 
teractions can be subtracted from the spectroscopic 
force constant matrix to yield a new matrix that is 
purely associated with V,. To obtain the second de- 
rivatives of V, with respect to the internal coordi- 
nates, i.e., the MM force constants, we use the chain 
rule 

which applied twice yields 

(7) 
where Zmin and Rmin denote the minimum of the total 
potential V in Cartesian and internal coordinates, 
respectively. In the expression above we have three 
unknown quantities, the gradient of V, with respect 
to the Cartesians and the f i s t  and second derivatives 
of the Cartesians with respect to the internal coor- 
dinates, all these taken at the minimum of the total 
potential V. The Cartesian gradient of V, is readily 
obtained from (3) since, at the minimum, the total 
gradient is zero. Hence, 
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To compute the f i s t  and second derivatives of the 
Cartesians with respect to the (nonredundant) in- 
ternal coordinates we make use of Taylor expan- 
sions of both types of coordinates, in terms of one 
another, around the minimum of V. Thus, if AR, and 
Ax,, denote displacements, from the minimum, of 
the internal coordinate R, and the Cartesian coor- 
dinate zia, respectively, we can write 

and 

The derivatives that occur in (9) can be evaluated 
analytically so we denote 

Substitution of (10) into (9) then yields (to the sec- 
ond order) 

and equating left-hand side and right-hand side linear 
and quadratic terms we have 

and 

For a nonlinear molecule composed of N atoms eq. 
(12) gives a set of 3N - 6 linear equations for the 
3N unknown derivatives of the Cartesians with re- 

spect to an internal coordinate Rk. The unknowns 
can be solved for if we require that the solution does 
not represent any translation or rotation of the mol- 
ecule as a wh01e.l~ This criterion gives the six ad- 
ditional equations needed to make the set complete. 
Similarly, eq. (13) forms a set of 3N - 6 equations 
for the 3N second-order derivatives of the Cartesians 
with respect to a pair of internal coordinates, Rk and 
R,. These second-order derivatives can be solved 
for if we first compute the first order derivatives that 
occur on the right-hand side, and then again add the 
six equations for elimination of translation and ro- 
tation of the whole molecule. 

Thus, all the unknowns of the right-hand side of 
eq. (7) can be determined, and we are able to cal- 
culate the MM force constants. In fact, what we ob- 
tain are the second order derivatives of V,, with 
respect to the internal coordinates, at the minimum 
of the total potential V. But if V, is quadratic (as we 
assume here) the second derivatives are indepen- 
dent of the actual values of the internal coordinates 
and therefore directly identical to the MM force con- 
stants. If V, is not quadratic, but contains e.g., Morse 
potentials, an additional transformation must be per- 
formed to produce the MM parameters. 

It is interesting to note that the problem of finding 
the MM force constants, as described here, is similar 
to the problem of finding the spectroscopic force 
constants for a nonequilibrium ab initio geometry, 
as described by Pulay.’’ 

In addition to the MM force constants, we also 
want to compute the reference geometry, i.e., the 
values that the internal coordinates would have with- 
out V,,. This can be done as follows. The derivative 
of V, with respect to an internal coordinate R, is 

which, when equated to what is obtained using the 
chain rule (6), gives 

where, for a nonlinear molecule composed of N at- 
oms, the only unknowns are the 3N - 6 Rj0’s. For 
n = 1 , .  . . , 3N - 6, eq. (15) forms a set of 3N - 6 
linear equations which can be solved to yield the 
reference geometry R j o , j  = 1, . . . , 3N - 6. If V, 
contains nonquadratic terms, the set of equations 
becomes nonlinear. 

The force constants and the reference geometry 
obtained in the transformation refer to a set of non- 
redundant internal coordinates, whereas a MM 
energy function is usually defined in terms of 
redundant coordinates. However, this is not a prob- 
lem since it is easy to transform the force constants 
into any redundant set of coordinates.16b The refer- 
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ence geometry pertaining to a redundant coordinate 
basis can also be derived, simply by solving the linear 
system of equations that is formed by the redun- 
dancy relations, the definitions, and the calculated 
reference values of the nonredundant coordinates. 

REDUCTION OF THE FORCE FIELD 

The transformation described in the previous section 
is mathematically exact, and comprises the complete 
general valence force field. For example, for a mol- 
ecule containing 20 atoms this means altogether 1485 
force constants, which clearly is an impractical num- 
ber in a MM force field. The number is, however, 
greatly reduced if the interaction force constants 
that do not significantly affect the vibrational fre- 
quencies are omitted. 

In order to extract the important force constants 
to be included in the final MM energy function, we 
need to compute the derivatives of the frequencies 
with respect to the force constants. In Cartesian co- 
ordinates, the frequencies are obtained from the 
eigenvalues of the mass-weighted Hessian. The 
elements of the Hessian are the second derivatives 
of the total potential V, as given by eq. (4). If A is a 
diagonal matrix containing the eigenvalues, U is a 
matrix whose columns are the eigenvectors, M-IL is 
a diagonal matrix containing the square-roots of the 
reciprocal atomic masses, and H is the Hessian, the 
following relation holds 

(16) A = U'M- I/LHM - I/LU 

and the frequencies are 

VL = s* (17) 

where s is a constant and I.!,, k = 1, . . . , 3 N ,  are the 
eigenvalues. The derivative of a frequency va with 
respect to a force constant F,, is then 

where 

defines the Jacobian. Using eq. (16), an analytical 
approximation for the Jacobian may be derived if 
the eigenvectors are assumed to remain unchanged 
for small changes of the force constants, i.e., 

Obviously, the part of the Hessian that depends on 
the MM force constants is obtained by taking the 

second derivatives of eq. (2), which gives 

ZJ 

where, in the last row, we have defined a set of 
matrices, Cii, with the elements 

Taking into account that Fj, = F, , eq. (20) may then 
be written in the following form 

from which the Jacobian can be calculated. Note that 
in eq. (23) it is not assumed that the whole energy 
function is quadratic, but the effect of the nonquad- 
ratic interactions is taken fully into account by using 
the eigenvectors obtained in the diagonalization of 
the complete (mass-weighted) Hessian. Thus, the 
quantity 

which is obtained by multiplying eq. (18) by F,, is 
an easily computable measure of the effect that 
omission of the force constant Ft, has on the fre- 
quency v k .  The measure is not exact, of course, since 
the frequencies are not linear functions of the force 
constants. However, for small interaction force con- 
stants it provides a good estimate. The force field 
may now be reduced e.g., by leaving out such inter- 
action force constants for which all (absolute) values 
of A vk are smaller than a certain limit. As an example 
the conversion and reduction scheme has been ap- 
plied to an ab ini t io  force field for trans-hi-methyl- 
acetamide,lg using different significance limits Av. 
The number of remaining force constants in each 
case, along with the maximum and root-mean-square 
frequency deviations, as compared to the original ab 
ini t io  results, are given in Table I. As is seen from 
the table, reasonable agreement with the ab ini t io  
frequencies is still retained even with substantial re- 
duction in the original number of force constants. 
This is understandable, since it merely reflects the 
fact that few interaction force constants, other than 
the nearest neighbor ones, significantly affect the 
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Table I. Remaining force constants (N) and frequency 
deviations (in ern ') for different significance limits (in 
em I) in the reduction of the MM force field for N-meth- 
ylacetamide. 

Limit (Av) N Max. dev." R.M.S. dev." 

0.0 
1 .o 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
11.0 
12.0 

465 
175 
142 
115 
103 
92 
87 
80 
76 
73 
69 
67 
63 

2.9 (2.9) 
7.8 (7.6) 

14.8 (14.8) 
17.7 (17.7) 

21.1 (19.6) 
24.7 (24.7) 
25.7 (22.7) 
31.4 (22.9) 
39.2 (23.5) 
39.2 (21.8) 
39.2 (23.9) 

20.2 (20.2) 

1.1 (1.0) 
3.4 (3.1) 
5.2 (4.4) 
6.3 (4.7) 
8.1 (5.6) 
9.0 (5.8) 

10.1 (7.7) 
10.8 (8.5) 
11.9 (9.2) 
12.9 (8.5) 
12.9 (8.5) 
14.2 (10.9) 

"Values in parentheses refer to the exclusion of C-H 
stretching frequencies. 

frequencies. Further, the results listed in Table I were 
obtained simply by dropping the force constants not 
yielding a value of Av greater than the specified limit. 
By reoptimizing part of the remaining force con- 
stants, much better frequency agreement would be 
achieved. The effect on the geometry of the ne- 
glected small interaction force constants is alto- 
gether negligible. 

As a second means of reduction and simplification 
of the force field, force constants of the same type 
can, in a reoptimization, be given the same value in 
similar groups. This has been utilized extensively in 
spectroscopic force field calculations, and in MM 
calculations it ought to work even better because 
the differences in the nonbonded interactions in dif- 
ferent parts of the molecule, or in different mole- 
cules, are no longer represented in the force constant 
values. To be successful, such combining and reop- 
timization of force constants and other parameters 
should preferably be done using frequency and geo- 
metrical data from several different conformations 
and isotopomers of a set of molecules. 

DISCUSSION 

The conversion procedure from ab init io to molec- 
ular mechanics is easy to apply and nicely yields MM 
force field and reference geometry parameters 
which, depending on the degree of reduction, pro- 
duce more or less perfect agreement with the 
original ab init io results. However, the converted 
parameters need not always have physically reason- 
able values. If it is evident that something is wrong 
with the parameters, this indicates that either the ab 
initio results or the nonquadratic interactions (or 
both) are too crude. The calculated reference ge- 
ometry, for instance, should not deviate very much 

from a corresponding empirically obtained one. Pe- 
riodic torsions may be used as a check when the 
intrinsic equilibrium angles are known. If a torsion 
coordinate is only moderately deformed, say less 
than 20 degrees for a three-fold torsion, the potential 
is, in first approximation, quadratic and a force con- 
stant and reference angle may be computed in the 
conversion. This reference angle should then, of 
course, be close to a real one. For a torsion angle 
which is so much deformed that the potential cannot 
be considered quadratic, such a check can still be 
made, but in this case the set of equations that gives 
the reference geometry is nonlinear. 

A situation may also arise, where the ab init io 
force field and geometry are considered very relia- 
ble, but the conversion still yields MM force con- 
stants and reference geometry parameters that in 
some respects are unsatisfactory. If this happens, 
one may consider adjusting some part of the non- 
quadratic interactions. Using the conversion, such 
adjustment can, in fact, be done e.g., if ab init io 
results exist for several conformations of the same 
molecule(s), so that consistency may be required. 
This means that corresponding MM force constants 
and reference bonds and angles, respectively, should 
have values very close to one another. The refine- 
ment can then be carried out in the following way 

Step 1. Adjust the computed force constants and 
the reference geometry parameters in the 
direction of consistency. 

Step 2. For each molecule, use eq. (21) to compute 
the second derivatives of V,, and solve the 
second derivatives of V,, from eq. (5). 

Step 3. Refine the selected parameters of V,, in a 
least squares fit to the second derivatives 
obtained in Step 2. (If the parameters do 
not change, the process has converged.) 

Step 4. Compute new MM force constants and ref- 
erence geometry parameters, and go back 
to Step 1. 

Note that care should be taken when applying this 
kind of refinement, since the adjusted parameters of 
the nonquadratic interactions must not become in- 
compatible with the independent crystal or other 
data from which they originate. 

Although the conversion is primarily designed for 
the utilization of ab init io (or empirical) spectro- 
scopic force fields in the construction of potential 
energy functions, it may also be used to facilitate 
the implementation of new nonquadratic potentials 
in an existing energy function. One may want to do 
the latter for example in order to utilize new im- 
proved van der Waals or charge parameters, or to 
explicitly include totally new energy terms for some 
type of interaction (e.g., hydrogen bonding). If the 
old energy function works well for a certain group 
of molecules, these molecules may be used, one at 
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a time, to derive a set of Hessians, corresponding to 
chosen minima. If the conversion is then applied to 
these Hessians, using the new nonquadratic inter- 
actions, new force constants and reference geometry 
parameters are obtained, which should provide good 
initial values for a reoptimization to the original mo- 
lecular data. The aim of an operation like this would 
of course be to achieve better transferability of the 
whole set of parameters. 

Thus, the conversion offers great flexibility with 
regard to the choice of the most trusted data on 
which to base the construction or improvement of 
MM potential energy functions. Detailed applications 
to N-methylacetamide~'~ and alanine dipeptides20,21 
will be the subject of subsequent papers. 
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