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On the Asymmetry of Biological Frequency 
Distributions 
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Michigan, Ann Arbor 

The long-standing problem of determining whether the skewness in a sample fre- 
quency distribution is the manifestation of the intermixing of disparate groups 
characterizable by a normal mixture distribution or the manifestation of non-mixture, 
skew-producing determinants is discussed. Biometrical tools for modeling and quan- 
tifying the significance of the skewness in a trait of interest that invite interpreta- 
tions other than those formed in mixtures or “subgroups” are elaborated. Statistical 
methods for testing whether a normal mixture distribution better characterizes a set 
of data than the proposed (or any other) skewed, single-population-oriented mod- 
els are offered. The power of these tests is examined through Monte Carlo experi- 
mentation. A brief application in hypertension research demonstrates some of the 
problems and methods discussed in the paper. 

Key words: normal mixture distributions, commingling analysis, bootstrap tests, skewness, blood 
pressure 

1. INTRODUCTION 

The use of normal mixture distributions in quantitative genetics has a history that 
spans more than 100 years, dating back to the time of Karl Pearson [ 18931. Despite 
this long history, one crucial problem with the application of normal mixture distribu- 
tion arguments in genetics remains: determining whether the asymmetry in the poten- 
tially mixed distribution of the trait under scrutiny-the asymmetry which often initially 
suggested the possibility of a mixture--can actually be characterized by an asymmet- 
rical distributional model that does not invite the mixture interpretation. In the words 
of Karl Pearson [ 18951, the problem concerns 
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. . . how [we are] to discriminate between a true curve of skew type and a 
compound [i.e., mixture] curve, supposing we have no reason to suspect 
our statistics a priori of mixture. I have at present been unable to find any 
general condition among the moments, which would be impossible for a skew 
curve and possible for a compound, and so indicate compoundness. I do 
not, however, despair of one being found [Pearson, 1895, p. 3941. 

Though criteria for distinguishing distributions of a “skewed” type from nor- 
mal mixtures based on moments have not been developed (see Murphy [1979] for a 
related discussion), general methods designed for this purpose have been proposed 
[MacLean et al., 1976; Ott, 1979b; and Schork and Schork, 19881. Unfortunately, 
these methods have been misunderstood, improperly implemented, inadequate to the 
task, or, most commonly, ignored altogether. Many modem applications of mixture 
distributions arguments compare mixed normal hypotheses only against single normal 
(or lesser number of component normal mixture distribution) hypotheses and not against 
skewed (i .e., non-normul) single-population-oriented alternatives, despite the argu- 
ment presented by Schork and Schork [1988] and, less directly, by Preston [1953], 
that, given a certain level of skewing in a data set, one will almost always conclude 
that a mixture distribution fits the data if a single normal distribution is taken as the 
alternative against which it is compared. 

The purpose of this paper is to elaborate both models of skewed data and tests for 
determining the significance of normal mixtures when given skewed, single-population 
alternatives. As such our work can be viewed as an extension of Pearson’s system of 
curves (i.e., types I-V) which he developed as homogenous, single-population-oriented 
alternatives to the mixture distribution (i.e., subgroup) explanation of skewed data 
[Pearson, 18951. The format of this paper is as follows. Section I1 will describe math- 
ematical models for skewed data that are intuitive and heuristically appealing biologi- 
cally. Section I11 will describe tests one can use to discriminate between normal mixture 
and skew alternative hypotheses, and offers results of Monte Carlo studies investigat- 
ing the power of these tests and aspects of the robustness of some of the modeling 
devices (e.g., covariate adjustment) that go into them. Section IV provides a brief 
application of the methods described in sections I1 and I11 by investigating the distri- 
bution of human blood pressure, since issues relating to mixture distributions and blood 
pressure generated a very heated debate about the pathophysiology of hypertension in 
the 1950s and 1960s-the famous “Pickering/Platt” debate [Swales, 19851-whose 
impact remains with medical and genetics researchers today. Part V offers a discus- 
sion and some brief summary remarks. 

II. MODELING ASYMMETRICAL DISTRIBUTIONS 

There is no question that the mere fitting of distributions to data in an effort to 
determine a “best-fitting’’ model is both dangerous and potentially counterproduc- 
tive. The motivation behind model fitting practices in the biological and medical sci- 
ences typically is to provide interpretable models. In this light, normal mixture 
distributions provide an excellent model for the intermixing of homogenous subpopu- 
lations, as described in the following. 
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Writing +(x) as the normal density function: 

we consider the existence of G different subpopulations or subtypes occurring in the 
proportions p g ;  g = 1, . . . ,G, such that C:= Ips = 1 ,  each characterized by a nor- 
mal distribution with a unique mean, pg, and variance, ui. The probability density at 
an observed trait value, x, taken from a sample comprised of these various subgroups 
is then: 

Often one can make the assumption of equal variances (i.e., IT: =a; = . . . = uh) 
among the groups. 

Though mixture distribution analyses have wide applicability, they have been par- 
ticularly useful in genetics. MacLean et al. [1976] considered the case of a quantita- 
tive trait determined by a genetic locus with 2 alleles A and a whose genotypes (AA, 
Aa, and aa) produce phenotype values that are normally distributed around a mean 
value unique to each genotype. Modeling the phenotypic expression of the locus as a 
mixture of three normal distributions, they considered the theoretically appealing re- 
striction of the proportion parameters or “mixing weights” to values dictated by Hardy- 
Weinberg equilibrium: pAA = q2; pAa = 2q( 1 - 4); and paa = (1 - q)2, where q is the 
frequency of the “A” allele. For data, 3, collected on a quantitative trait with un- 
known genetic determinants, MacLean et al. considered comparing the likelihood of a 
homoscedastic (i.e., equal variance) mixture of three normal distributions, 

(where N is the number of observations in the sample, 2 denotes a vector, and the 
subscripts 1, 2, and 3 index the genotypes AA, Aa, and aa) to the likelihood of a single 
normal distribution (i.e., G = 1) to test hypotheses about the monogenetic control of 
the trait. MacLean et al. further suggested that by restricting the mixture to two- 
component normals, one could test for possible dominance or recessivity (i.e., FAA = 
pAn or pna = F ~ ~ ) .  Such work with normal mixture models for loci controlling quan- 
titative traits manifested itself in the development of segregation analysis for quantitative 
traits [Elston and Stewart, 1971; Morton and MacLean, 1974; Ott, 1979aJ. This analytic 
technique essentially uses normal mixture distributions to model the genetic transmission 
of a quantitative trait from generation to generation. This paper will not delve into 
segregation analysis; instead we confine our attention entirely to the use of normal mix- 
ture distributions with cross-sectional, as opposed to generational or familial, data. 

There has been a great deal of research on the statistical comparison of normal 
mixture distributions with G components to a single normal (G = 1) or lesser number 
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of component normal mixtures (G’ < G )  [see the book by Titterington et al., 1985, for 
an extensive list of references]. In addition to their interpretability, normal mixture 
distributions have the favorable quality of being able to take on a wide variety of shapes, 
as depicted in Figure 1. However, as intimated in the opening section, this flexibility 
also poses some problems. These problems arise from the fact that normal mixture 
distributions that show skewness (Fig. 1, top right) as opposed to multimodality (Fig. 2, 
bottom right) generally look and behave mathematically like a number of other dis- 
tributions whose parameters invite interpretations wholly unlike those of normal mix- 
ture distributions. Pearson, of course, recognized this, as have others in the more recent 
past [Murphy, 1964, 19791. In what follows we develop mathematical models that can 
rival the normal mixture model of skewed data. Each model has characteristics which 
make it heuristically appealing from a biological standpoint. Later, we offer methods 
for discriminating among these models. 

Log-Normal Distributions 
It is well known that the distribution of phenomena determined by numerous in- 

dependent and additive forces can generally be modeled as a normal distribution. When 
determining forces are not additive but rather interactive or “multiplicative,” the re- 
sulting phenomena may be log-normally distributed [see Aitchison and Brown, 1957 
for a discussion]. The likelihood function for the mean, IJ., and variance, u2, given 
data, 2,  which are assumed to follow a log-normal distribution, is 

where x > 0. The relationship of the log-normal distribution to the normal distribution 
is obvious: taking the logs of data following a log-normal distribution will produce 
normally distributed data. The log-normal distribution is extremely flexible, can ex- 
hibit an extremely large range of skewness-levels (see Fig. 2), and characterizes a 
number of biological phenomena [Aitchison and Brown, 19571. 

In addition to non-additivity , a quantitative trait may possess an intrinsic “lower 
bound” or threshold; e.g., “0” is an absolute lower bound for blood pressure and 
heart rate. Pearson recognized this fact and therefore felt compelled to work with dis- 
crete distributions (such as the binomial) whose forms more easily integrate threshold 
phenomena, since discrete distributions typically have well-defined, finite ranges, un- 
like many continuous distributions which can be defined on - x < x < c~ [Pearson, 1895, 
pp. 388-3891. In modeling phenomena that exhibit non-additivity and a threshold, one 
can use the three-parameter log normal distribution with threshold parameter T ,  mean 
IJ., and variance a2. The likelihood function for these parameters given data, 2 ,  is 

where T < x < m. Estimation of the parameters of the three-parameter log-normal distri- 
bution is discussed in Cohen [ 19881. 
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Fig. 1 .  Homoscedastic mixtures of two normal distributions with mixing weight 0.75 and varying sepa- 
rations (in standard deviation units) between the means. Note that as the mean separation gets larger, the 
mixture moves from a skewed appearance (upper right) to a himodd appearance (lower right). 
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Fig. 2. Log-normal distributions with mean 0 and different variances 
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Truncated Distributions 
As a direct analog to the notion of a “threshold,” one can think in terms of the 

“truncation points” of certain phenomena. As an example, consider a quantitative 
trait that would be normally distributed except that low values of the trait, e.g., ex- 
tremely low blood pressures, are lethal. The lower tail of the distribution would then 
be missing. Such a trait would not manifest itself as a patently obvious normal distri- 
bution, but would show a degree of skewing toward higher trait values that would be 
roughly proportional to the size of that part of the distribution that has been lost. If we 
let K stand for the truncation point, then the likelihood of the parameters for a trun- 
cated normal distribution given data 2 is 

where x > K and @(xIp, 02) is the cumulative normal distribution function with mean p 
and variance o2 evaluated at the point x. 

Of course, one can model truncation events with distributions other than the nor- 
mal. Aitchison and Brown [I9571 discuss the truncated log-normal and related distri- 
butions, as well as parameter estimation techniques for them. 

Convolutions of Distributions 
It may be the case that a variable is determined by the sum of independent factors 

whose individual distributions are known. For the sake of argument, let us say a vari- 
able, 2, is determined by the sum of a factor, X ,  with distribution functionfJx), and a 
factor, Y ,  with distribution function f,(y). The density function, fi(z), of Z = X + Y 
can be evaluated through the convolution integral: 

Convolutions can not only produce a wide variety of distributional shapes, but 
also admit a wide range of interpretations. For example, the convolution of normal 
and exponential distributions can produce distributions that are skewed and unimodal. 
Again using blood pressure as an example, the normal/exponential convolution might 
invite the following interpretation: blood pressure is determined by the sum of a basic 
variable that, because of the additivity of its own determinants, is normally distributed, 
and a component that increases the pressure exponentially (say, because it reflects the 
aging process and blood pressure’s tendency to increase through time or with repeated 
exposures to certain environmental stimuli). Those with a high “basic” pressure com- 
ponent (i.e., a pressure value in the upper tail of the normal distribution characterizing 
this basic component) would be most likely to suffer the greatest effect of the age or 
environmental component. Such activity would create skewing toward higher values. 

Estimation of parameters implicated in a convolution is difficult. Davis and Kutner 
[ 19761 discuss parameter estimation in the case of the normal-exponential(s) convolu- 
tion. Considerable analytic and computational advantages for the estimation of convo- 
lution parameters can be gained through the use of characteristic functions and/or Fourier 
transforms [Lukacs, 19701. 



Asymmetrical Distributions 433 

Covariate-Dependent Distributions 
Many traits exhibit regular associations or dependencies with other traits. Ac- 

cordingly one may want to “remove” the effect of the associated trait in order to bet- 
ter quantify certain other properties of the distribution of the trait of interest. Certainly 
weight, age, and sex are all-too-obvious sources of variation in need of removal for 
the study of the distribution of blood pressure. Makuch et al. [ 19791 and Murphy [ 19791 
argue further that age-mediated effects may impact on the symmetry of biological 
distributions. 

If we assume a variable, Y, is linearly related to another variable, X ,  such that the 
distribution of the adjusted variate j = y - bx, (where b is the regression coefficient) is 
f,dj), and if we assumeAdj) (i.e., the distribution of the residuals or adjusted variates 
9) has parameter vector, 8, then the resulting likelihood function is 

Extensions to multiple covariates and non-linear associations are straightforward. 
Note that for estimation purposes equation 7 assumes that b is estimated simultaneously 
with 8. Problems may arise if one adjusts the variate prior to estimating the parame- 
ters, 8, as will be discussed in the next section. Of course, the form of the distribution 
function,f, should reflect biological properties appropriate to the adjusted variate. Thus, 
one may assume log-normality, mixed-normality, etc. for the distribution of the ad- 
justed variate j. 

Arbitrarily Skewed Distributions 
Skewness in a distribution can arise for reasons or through disturbances not easily 

quantifiable such as biased sampling, measurement artifact, or the effect of unknown 
factors. If one assumes that apart from these disturbances, the relevant trait values 
follow a distribution, f ,  then one may wish to adjust for skewness induced by these 
disturbances while estimating the parameters associated withf. This adjustment can be 
performed through the use of a flexible transformation-flexibility is the key since the 
ultimate form of the disturbance is unknown-such as the power transform 

(x’ - l)/A + A, i fh  # 0; 
= log(x) ,  ifA = 0, 

where x > 0 is the variate under scrutiny. Equation 8a is variant of a transformation 
discussed in Box and Cox [ 19641, which has the advantage that with A = 1 the data 
remain untransformed [see Ott, 1979bl. Using the Jacobian of the appropriate trans- 
formation one can then compute the likelihood of the parameters, 0, assumed in the 
distribution function, f. For example, the likelihood equation assuming the transfor- 
mation given in equation 8a is 



434 Schork et al. 

Heref can be the normal distribution, the log-normal distribution, a mixture of 
normal distributions, etc., MacLean et al. [ 19761, Ott [ 1979b], and Schork and Schork 
[ 19881 all consider use of the power transformation in settings wherefis a mixture of 
normal distributions. Two problems arise in the use of the power transformation in 
equation 8b: its implementation and its interpretation. As with concomitant variate 
adjustment, some investigators transform their data prior to fitting the mixture whereas 
others estimate it simultaneously, as implied in equation 8b. In the next section we 
show how one can use both the prior and simultaneous estimation of the power trans- 
formation parameter, A,  in omnibus tests of the hypothesis that a mixture of normal 
distributions better explains the variation of a trait than a single, non-mixed, arbitrar- 
ily skewed distribution. Questions about the interpretability of the transformation will 
be addressed in the final section. 

111. TESTING ASYMMETRICAL DISTRIBUTIONS 

In this section we first describe procedures used to test hypotheses about whether 
skewing in data with unknown determinants results from a mixture or from causative 
agents whose expression is characterizable by a log-normal or some other inherently 
skewed, single-population-oriented distribution. We then describe problems that may 
arise in covariate adjustment strategies, since, as mentioned earlier, covariate relation- 
ships can impact on the distribution of a trait of interest. 

For expository purposes, we consider two distinct kinds of tests: those in which 
the alternative to the mixture hypothesis is specified (e.g., a log-normal alternative, a 
truncated normal alternative, etc.) and more omnibus tests where the alternative is 
simply that the skewness does not arise from a mixture. The same testing strategies are 
used in both cases and are flexible enough to be used in virtually any parametric, data- 
dependent hypothesis-testing situations. 

To aid the discussion of the first testing scenario, we describe tests involving 
mixtures of normal and log-normal alternative distributional hypotheses, though any 
of the models described in section I1 (or any other model, for that matter) can be used 
in place of the log-normal alternative. We consider the direct comparison of the likeli- 
hoods of the mixture model (equation 2 or 3) and the log-normal model (equation 4a 
or 4b). Akaike [ 19741 suggests transforming the likelihood of each model by first mul- 
tiplying it by - 2 and then adding two times the number of free parameters in the model 
to this product. Akaike argues that the model with the lowest value should be consid- 
ered the best model. Though not a statistical test in the Neymann-Pearson sense (i.e., 
there are no probabilities associated with the outcome), the “Akaike Information Cri- 
terion” (AIC), as it is known, has been used widely. However, at least two problems 
should be mentioned. First, the term “2 times the number of free parameters in the 
model,” which is based on entropy and information-theoretic devices, is one among 
many asymptotic criteria, some of which may have superior analytic and asymptotic 
justifications [see Linhart and Volkers, 1984; Linhart and Zucchini, 1984, for example]. 
Second, it has been argued that for large samples, the AIC tends to favor models with 
more parameters [McDonald, 19891. As an alternative to the AIC, we consider testing 
(i.e., using P-values) the log-ratio of likelihoods computed under the mixture and log- 
normal hypotheses. Since the distribution of the resulting log-ratio is unknown, we 
simulate it and estimate critical values and significance levels from the simulated dis- 
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tribution. Schork and Schork [I9891 describe two tests for segregation analysis set- 
tings, the parametric bootstrap (PB) and SOS tests, that are easily extended to the 
situations outlined herein. Though we forego an indepth elaboration of these tests since 
they are fully described in Schork and Schork [ 19891, the following provides the basic 
motivation behind them. One first computes a test statistic, t N ,  (e.g., likelihood ra- 
tio), whose distribution is unknown, over some data, x i  ,. . . ,xN.  One then draws r ran- 
dom samples, xrI ,. . . ,xrN, from the distribution assumed in the null hypothesis (e.g., 
using random number generators) and computes, for each of these r samples, the sta- 
tistic, t,$. The number of t,$ exceeding zN divided by r gives the P-value for the ob- 
served t N .  Such test constructions are not entirely new and have received sporadic 
attention in the statistics literature [Birnbaum, 1974; Hope, 19681. 

In order to examine the usefulness of the PB and SOS tests in discriminating be- 
tween normal mixture and log-normal hypotheses, we performed a few Monte Carlo 
experiments. Since it is generally acknowledged that it is better to err on the side of 
non-mixture (e.g., non-major locus) hypotheses, we consider the case where the log- 
normal distribution is taken as the null hypothesis. In a first experiment 250 deviates 
following log-normal distributions with the variances given in Figure 2 were gener- 
ated to which normal mixture and log-normal distributions were fit. For each variance 
level, this experiment was replicated 100 times with each replicate’s resulting log- 
ratio being tested with the PB and SOS tests of the hypothesis of log-normality. Nineteen 
bootstrap replications were used to conduct each test [Schork and Schork, 19891. Re- 
sults are given in Table I and suggest that, with the exception of the small variance 
case for the SOS test, the PB and SOS tests are at or near the expected significance 
levels. We also note that the AIC (correctly) accepted the log-normal hypothesis in 
each experimental setting. 

We next assessed the power of the PB, SOS, and AIC tests to reject the log- 
normality hypothesis when the data actually follow a two-component normal mixture. 
We again considered samples of size 250 and generated mixtures with a mixing weight 
of 0.75 and distances between the two means ranging from 1 to 4 standard deviations 
(see Fig. 1)-the idea being that as bimodality became more pronounced (i.e., there is 
greater separation between the means) the log-normal hypothesis would be more eas- 
ily rejected. The results are depicted in Figure 3 and indeed suggest that all three tests 
work better as the separation between the means increases, but that the AIC and SOS 

TABLE I. Estimated Significance Levels for the Parametric Bootstrap and SOS Test of the 
Hypothesis That A Mixture of Two Homoscedastic Normal Distributions Fit Log Normally Distributed 
Data With Different Variances Better Than a Two-Parameter Log-Normal Distribution* 

PB sos 
Variance 0.05 0.10 0.20 0.05 0.10 0.20 AIC 

0.25 0.02 0.10 0.24 0.19 0.32 0.56 0.00 
0.50 0.02 0.04 0.13 0.11 0.23 0.44 0.00 
I .OO 0.00 0.01 0.08 0.02 0.09 0.29 0.00 
2.00 0.01 0.06 0.13 0.08 0. I5 0.31 0.00 
4.00 0.00 0.00 0.10 0.06 .0.15 0.26 0.00 

*PB = parametric bootstrap test; SOS = SOS criterion test; AIC = proportion log normal hypothesis 
rejected based on the Akaike information criterion; .05, . lo ,  and .20 = theoretical significance levels; 
variance = variance used with mean 0 to generate the log normal data. 
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tests have better power at lower separations. We repeated this experiment with a 
3-parameter log-normal hypothesis as the null hypothesis. The results are depicted in 
Figure 4, and suggest that all these tests behave roughly the same, though the AIC and 
SOS tests have somewhat better power at lower mean separation levels. 

To carry out omnibus tests of the hypothesis that a mixture of normal distribu- 
tions better characterizes a set of data than an arbitrarily skewed, non-mixture, distri- 
bution, we consider testing the likelihoods of a normal mixture and a power-transformed 
single normal distribution (i.e., equation 8b with f = +) using the 3 methods discussed 
in the foregoing remarks on ‘‘specified alternative” tests. We again employed Monte 
Carlo experiments to assess the usefulness of the tests in this situation. Table I1 shows 
the estimated significance levels for 250 data points generated with different A values 
(from equation 8) based on 100 replications; it suggests that the SOS and AIC tests too 
easily reject the null hypothesis of power-transform-induced normality when it is true. 
Figure 5 shows the power the tests have in rejecting the power-transform-induced nor- 
mality hypothesis when data actually come from a two-component normal mixture 
with varying mean separations. The power of the SOS and AIC tests should be inter- 
preted with caution since they do not appear to behave like true level a tests (i.e., they 
too easily reject true null hypotheses-see Table 11). Figure 5 also suggests that dis- 
criminating mixtures from non mixture, skewed distributions is difficult when the mean 
components are separated by less than 2 standard deviations-the “critical” point for 
bimodality for certain parameter settings [Behboodian, 19701. This is intuitive because, 
as has been emphasized throughout this paper, normal mixtures without multimodality 
generally look like simply skewed distributions. 

It would have been impossible to assess the properties of the AIC, SOS, and PB 
tests in all situations (i.e., mixing weights of 0.5, sample sizes of 100, etc.). Although 

\ I  Null Hypothem 2 parameter lognormal 
Alt Hypolhess normal mixture 

--_, 
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Fig. 4. Power of the AIC, PB, and SOS tests to reject the three-parameter log-noma1 hypothesis for 
samples of size 250 as the mean separation in a two-component normal mixture with mixing weight 0.75 
gets larger. 

TABLE 11. Estimated Significance Levels for the Parametric Bootstrap and SOS Tests of the 
Hypothesis That A Mixture of Two Homoscedastic Normal Distributions Fit Normal Distributed 
Power-Transformed Data Better Than a Power-Transformed Normal Distribution* 

PB sos 
Transformation 0.05 0.10 0.20 0.05 0.10 0.20 AIC 

0.10 0.00 0.04 0.10 0.16 0.37 0.50 0.01 
0.30 0.06 0.15 0.28 0.36 0.57 0.77 0.26 
0.50 0.03 0.08 0.20 0.34 0.60 0.82 0.25 
0.70 0.04 0.08 0.21 0.36 0.62 0.88 0.21 
0.90 0.01 0.04 0.15 0.40 0.65 0.88 0.16 

*PB, SOS, AIC, .05, . lo ,  .20 (see Table 111); transformation = the value of the power transformation (see 
text) whose inverse was used along with a mean of 2.0 and variance 0.25 to generate skewed data. 

Schork [ 19901 investigates the power of the tests as a function of sample size, further 
experiments are called for. Despite this, our results suggest these tests have promise, 
if nothing else. 

Mention should be made of the omnibus testing strategy originally developed by 
MacLean et al. [1976], which was later elaborated by Ott [1979b] and Schork and 
Schork [ 19881. This strategy involves estimating a power transformation parameter 
(e.g., equation 8a) simultaneously with the normal mixture parameters and using 
X2-based likelihood ratio tests to determine the number of components in the mixture 
and the significance of the skewing in the data. This testing procedure has a number of 
problems. Scaling problems inherent in the simultaneous estimation process make it 
difficult and often unreliable. However, these scaling problems can be addressed through 
the clever use of Taylor series approximations (the “delta method”) as suggested by 
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Null HypolhesIs power-transformed normal 
,,,- 

____I‘ PB All Hypolhesis normal mixture 
.a 

Ott [ 1979b]. In addition, it is known that mixture distributions violate the regularity 
conditions assumed for the log-likelihood ratio statistic to have a x2 distribution, as 
mixture models are not identifiable in the statistical sense [Ghosh and Sen, 1985; 
Hartigan, 19851 and often produce test statistics whose distributions are not independent 
of their parameters [Wolfe, 1971; Everitt, 19801. Thus, use of x2 tests in mixture model 
settings is invalid. Schork and Schork [ 19881 also showed that a variant of the MacLean 
et al. test has low power for rejecting incorrect models. It is our belief that the “spe- 
cified alternative” and omnibus testing procedures based on the AIC, PB, and SOS tests 
outlined above provide intuitive, reliable, flexible, and easily implemented alterna- 
tives to the MacLean et al. [ 19761 testing strategy. 

As mentioned earlier, and as will become clear in the following, covariate depen- 
dence may impact on the distribution of the trait of interest and therefore influence 
testing strategies, like those mentioned above, which are meant to assess the signifi- 
cance of the mixture hypothesis. Current covariate adjustment techniques for a trait 
whose distribution is to be tested as a mixture of normal distributions typically involve 
performing the adjustment prior to fitting the mixture. That is, one first regresses the 
variable of interest on known concomitants or other factors, saves the residuals from 
the resulting regression equation, and then subjects these residuals to a mixture analy- 
sis (say, by using maximum likelihood techniques and equations 2 or 3 ) .  However, 
when the prior regression analysis is carried out, one may not want to assume, say, a 
log-normal distribution for the error terms, simply because it is this error distribution 
that is being tested in the later mixture analysis. For instance, if one assumes a log- 
normal distribution for the error terms in the prior regression and then finds evidence 
for a normal mixture using the residuals saved from this prior regression analysis, then 
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this would really only suggest that the regression model used initially (along with its 
assumption of log( j ) -+(x) )  was incorrect! Thus, the estimates of the regression coeffi- 
cients would be invalidated. To avoid this, one can use least squares estimates (or 
estimates derived assuming j -+ (x )  since the relevant likelihood equations produce co- 
efficient estimates equivalent to the least squares estimates). By the Gauss-Markov 
theorem it is known that least squares estimates have the smallest possible variance of 
any linear unbiased estimators. Since this holds irrespective of the true distribution of 
the error terms, it seems that use of prior least squares regression adjustment of 
covariates in mixture analysis settings is ideal. 

However, two problems with this strategy arise. First, Gauss-Markov results hold 
only if the error terms have a common variance, thus invalidating the optimality of the 
prior least squares regression approach in settings in which the components in the normal 
mixture characterizing the adjusted variate possess unique variances. In addition, in 
using prior covariate adjustment through least squares techniques and then estimating 
the mixture parameters from residual values, one is relying on two different estimation 
techniques (e.g., least squares and maximum likelihood) for parameters meant to charac- 
terize a single phenomenon. It is not clear what properties such “mixed” estimation 
procedures have for finite samples. Thus, in certain situations, the simultaneous esti- 
mation of “b” and ‘‘0’’ parameters, as suggested in equation 7, may seem appropriate. 

In order to investigate the aforementioned problems, two small Monte Carlo studies 
were performed. Both involved the comparison of results gleaned from the simulta- 
neous estimation of regression and mixture parameters with results gleaned from the 
two-step approach of least-squares regression adjustment followed by a maximum likeli- 
hood based (i.e., equation 2 with G = 2) mixture analysis of residual values obtained 
from the regression. 

The first experiment involved the generation of deviates known to conform to a 
homoscedastic (i.e., equal variance) covariate-dependent normal mixture distribution. 
One thousand samples of size 25, 50, 100, 200, and 400 were generated from which 
mixture and regression coefficient parameter estimates were obtained using the simul- 
taneous and two-step least squares/maximum likelihood estimation approaches. The 
mean squared error (MSE) and bias of the mixing weight, mean separation, and re- 
gression coefficient were computed from the 1,000 replicates at each sample size. The 
results are described in Table 111. The two models mentioned in Table I11 assumed 
different parameter settings to generate the data. Model 1 assumed a mixing weight of 
0.75, means of 0.00 and 2.00, a regression coefficient of 1 .00, and a residual variance 
of 1 .00. Model 2 assumed a mixing weight of 0.75, means of 0.00 and 2.00, a regres- 
sion coefficient of 0.35, and a residual variance of 1.5. Table I11 suggests that the 
simultaneous and two step procedures behave similarly, and show similar rates of de- 
cline in MSE and bias for increasing sample sizes. 

The second experiment was similar to the first except that data following a 
heteroscedastic covariate-dependent normal mixture were generated. The results are 
described in Table IV. Model 1 assumed a mixing weight of 0.50, means of 0.00 and 
2.00 and variances of 1 .00 and 1.50 for the two components, and a regression coeffi- 
cient of 1 .00. Model 2 assumed a mixing weight of 0.50, means of 0.00 and 2.00 and 
variances of 1 .OO and 2.00 for the two components, and a regression coefficient of 
1 .00. Table IV suggests that the two-step procedure does a little better in estimating the 
regression coefficient, but much worse in estimating the separation between the means. 
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Also of note is the fact that for each replication we used the Akaike information 
criterion [Akaike, 19741 to determine if a single normal distribution better fit the data 
than the resulting mixture. In the first experiment the two estimation procedures pro- 
vided similar powers for rejecting the single normal hypothesis. In the second experi- 
ment it was found that the two-step procedure had 10-15% less power to reject the 
single normal hypothesis for small samples, but virtually equal power for larger Sam- 
ples. These studies suggest some caution and/or discretion should be used when em- 
ploying the two-step estimation procedure, since typically one does not know, a priori, if 
the equal variance assumption should be made. 

IV. PICKERING, PLATT, AND THE BLOOD PRESSURE DISTRIBUTION 

In this section we apply some of the methods outlined in sections I1 and 111 to the 
distribution of systolic and diastolic blood pressure. Our treatment of the blood pres- 
sure distribution is not meant to be exhaustive but rather expository, since the normal 
mixture distribution argument was a keystone in one of the most widely publicized 
medical disputes in this century: the famous Pickering/Platt debate on the nature of 
hypertension (for a description the Pickering/Platt debate we refer the reader to the excel- 
lent book by Swales [ 19851 on the subject and all the references contained therein). 

Pickering and Platt were two noted English internists with differing views on the 
etiology of essential hypertension. Platt claimed hypertension was a “disease” with 
discernible characteristics, whose underlying pathophysiologic determinants (genetic 
or otherwise) admitted almost “qualitative’ ’ interpretations: one simply either had them 
or did not. Platt placed a great deal of emphasis on evidence derived from his personal 
observations that the distribution of blood pressure values has a skewness that may be 
the manifestation of the effects of a Mendelian dominant gene (i.e., the blood pressure 
distribution admits a mixture). Pickering staunchly opposed Platt’s interpretation, ar- 
guing that the designation “hypertension” was entirely arbitrary and that in sufficiently 
large samples no mixture was evident. For Pickering, the determinants of blood pres- 
sure were numerous and of small effect individually. As such, hypertension, Picker- 
ing maintained, is not a qualitative disease but merely a label assigned arbitrarily to 
those with pressure readings in the upper tail of the distribution. Pickering held that 
any evidence for a mixture in the blood pressure distribution was most likely due to 
measurement artifact (“digit preference”) and possibly to non-additivity. 

Many researchers have tried to settle the dispute by fitting normal mixture 
distributions to large samples of blood pressure values [Cicchinelli, 1962; Clark et al., 
1968; and McManus, 19831, but results have been inconclusive. An overriding criti- 
cism of these studies has been aimed at, not surprisingly given the context of this 
paper, their testing strategy: the alternative hypothesis to the mixture distribution hy- 
pothesis posited in each has been a single normal distribution and not a single skewed, 
non-mixed distribution. 

We applied the techniques outlined in sections I1 and I11 to a large population- 
based sample of blood pressure values. The alternatives to the normal mixture distri- 
bution hypothesis considered were the two-parameter log-normal (equation 4a) and 
the power-transform-induced normal distribution (equations 8a and 8b). It should be 
understood that the log-normal distribution is a special case of the power-transformed 
normal as defined in equation 8a. Our data consisted of systolic and diastolic blood 
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pressures collected on 94 1 white male subjects participating in a random, statewide 
blood pressure screening in Michigan [Schork, et al., 19901. 

In order to adjust the systolic and diastolic pressures for the effects of age, height, 
and weight (see Table V) while avoiding the problems discussed in section 111, the 
following adjustment procedure was employed. Age was stratified by decade (the range 
of the ages of the participants in the sample was 8-83), and weight was broken into 
quintiles. Blood pressure values were then standardized within each age-decade x 
weight quintile category. The original sample means of systolic and diastolic pressure 
were added back to the standardized values to preserve positive observational units 
[Schork et al., 19771. No regression procedure was employed. This standardization 
procedure effectively reduced the contribution of age, height, and weight to blood pres- 
sure variability, as indicated in Table V. 

The distributions of the standardized values are plotted in Figure 6, using an opti- 
mal width for display as described in Schork and Schork [1990]. The best fitting 
homoscedastic two-component normal mixture distribution, log-normal distribution, 
and power-transformed-induced normal distribution were then determined for each dis- 
tribution by maximizing likelihoods for each. The log-likelihoods were, for the sys- 
tolicpressuredistribution, - 1,291.68, - 1,315.21,and - 1,311.62;andforthediastolic 
pressure distribution, - 1,310.02, - 1,314.48, and - 1,312.23. In each case, the null 
hypothesis was either the log-normal or power-induced normal. By the AIC, the mix- 
ture distribution better characterized each pressure curve than either skewed distribution. 
However, as remarked earlier, the AIC may not be an optimal criterion and does not 
appear to be overly effective in comparing mixed normal and power-induced normal 
distributions (see Table 11). We therefore used the PB test to determine the most likely 
distribution. The difference in the log-likelihoods for systolic pressure were 23.53 for 
a log-normal null-hypothesis-based test and 19.94 for a power-transformed normal null- 
hypothesis-based test. Critical values determined from the PB test at the 5% level for 
these situations were, respectively, 2.57 and 2.83. Thus in each case the skewed dis- 
tribution null hypothesis was rejected. For diastolic pressure, the differences in log- 
likelihoods were 4.46 for the log-normal case and 2.18 for the power-transformed 
normal case. Critical values obtained from the PB test in these settings at the 5% level 
were 2.75 and 3.02. Thus, though the log-normal hypothesis was rejected, the power- 
induced normal hypothesis was not. This may not have been surprising since Figure 6 
suggests that greater skewing-and hence greater “potential” for a normal mixture- 
exists in the systolic distribution. Also, there appears to be a greater discrepancy be- 
tween the best fitting normal mixture and the best fitting log-normal distribution for 
systolic pressure rather than diastolic pressure, as also evidenced in Figure 6. 

TABLE V. Pearson Product-Moment Correlation Coefficients and P-Values (in Parentheses) 
Between Anthropometric Measures and Systolic and Diastolic Blood Pressure, Before and After 
Covariate Adjustment 

Unadjusted Adjusted 
Measure Systolic Diastolic Systolic Diastolic 

*&e 0.328 (<.0001) 0.163 (<.0001) 0.007 (.83) 0.002 (.95) 
Body mass index 0.210 (<.0001) 0.246 (<.0001) 0.034(.25) 0.021 (.50) 

Weight 0.185 (<.OOOl) 0.249 (<.0001) 0.010(.76) 0.001 (.77) 
Height -0.018 (.15) 0.047 (.76) -0.050 (. 12) - 0.025 (.44) 
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Fig. 6. Histograms showing the distributions for weight- and age-adjusted (see text) systolic and dia- 
stolic blood pressures taken from a sample of 941 white men. The superimposed solid-line curve is the best 
fitting two-component, homoscedastic, normal mixture distribution and the superimposed dotted-line curve is 
the best fitting lognormal distribution. 

As emphasized earlier, this analysis of the blood pressure distribution is not meant 
to exhaust the issues raised in the Pickering/Platt debate. Consideration should be given 
to heteroscedastic mixture distributions, the mean blood pressure distribution [Weder 
and Schork, 19891, multivariate situations [Weder and Schork, 1989; Schork et al., 
19901, other alternatives to the normal mixture, and, most importantly, the interpret- 
ability of the test outcomes. 

V. SUMMARY AND CONCLUSIONS 

The problem of distinguishing skewness resulting from normal mixture distribu- 
tions and skewness inherent in distributions such as the log-normal and others is not a 
new problem for the statistical geneticist. We have suggested that this problem was 
actually confronted as early as 1895 by the highly influential mathematician Karl Pear- 
son. Despite this lengthy history, the recent genetics literature tends to describe the 
problem without actually combatting it. Most workers have followed the practice of 
transforming genetic data to normality, working entirely with the transformed data and 
then interpreting the results as though the transformations used were arbitrary and non- 
meaningful biologically, or have simply used single normal distributions as an alternative 
hypothesis to mixture hypotheses. What is counterintuitive in these practices is that most 
geneticists recognize that skewness may be an integral part of a biological trait, and may, 
in fact, have a biological meaning. Certainly for quantitative traits with purely poly- 
morphic, monogenic determinants the skewness in data sampled for this trait “means” 
a mixture exists. As such, the practice of indiscriminant transformation to normality 
should be avoided since by inducing normality (via transformation) one has, in effect, 
chopped off the very branch ( i . e . ,  skewness) upon which the more interesting genetic 
hypotheses rest: namely, monogenic determination, non-additivity, and the like. In 
addition, by positing single normal distributions (or lesser component mixed normals) 
as alternatives to the mixture distribution hypothesis, one is providing a less than optimal 
and very unconservative testing environment for the mixture hypothesis. 
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Two points concerning skewness should be mentioned at this point. First, often- 
times the use of a specific transformation is called for on purely a priori grounds. For 
instance, if it is known, say, that the variability in a measure increases with increases 
in the measure itself-thereby inducing skewness in the distribution of the measure- 
then one may want to perform a transformation to induce homoscedasticity. Often, 
however, such a priori knowledge is absent and forces one to look for explanations of 
the skewing in a reliable and flexible way. The chapter on scaling in Falconer [1981] 
contains an excellent discussion on this issue and does much to convince the reader 
that transformations can actually effect the revelation of certain genetic phenomena 
(e.g., dominance effects can be masked by log transformations). Second, though the 
focus of this paper is on normal mixture distribution models, there is no reason why 
the effects of various genotypes cannot produce distributions that are themselves skewed. 
In such situations one can model the phenotype distribution as, say, a mixture of log- 
normal or Weibull distributions. The testing procedures outlined earlier would be en- 
tirely applicable in such settings. 

In an erudite and somewhat rhetorical fashion Murphy [1964] explored issues 
relating to the use of normal mixture distributions. His message, that one should be 
aware of the dangers that come with the indiscriminant use of mixture analyses, was 
well taken. It is our hope that the message and methods outlined in this paper will pick 
up where Murphy left off by both cautioning the use of, and promoting further re- 
search into, the use of mixture distribution arguments in genetics research. 
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