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Efficient Computation of Patterned 
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University of Michigan, Ann Arbor, Michigan 

The use of patterned covariance matrices in forming pedigree-based mixed models 
for quantitative traits is discussed. It is suggested that patterned covariance matrix 
models provide intuitive, theoretically appealing, and flexible genetic modeling 
devices for pedigree data. It is suggested further that the very great computational 
burden assumed in the implementation of covariance matrix-dependent mixed mod- 
els can be overcome through the use of recent architectural breakthroughs in com- 
puting machinery. A brief and nontechnical overview of these architectures is offered, 
as are numerical and timing studies on various aspects of their use in evaluating 
mixed models, As the kinds of computers discussed in this paper are becoming 
more prevalent and easier to access and use, it is emphasized that it behooves ge- 
neticists to consider their use to combat needless approximation and time constraints 
necessitated by smaller, scalar computation oriented, machines. 
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INTRODUCTION 

Quantitative segregation analysis, or the statistical inference of genetic mecha- 
nism from metrical or continuous data collected from genetic units such as nuclear 
families or extended pedigrees, has enjoyed a prominent place among many statisti- 
cians and biologists for some time. Early twentieth-century scientific luminaries Karl 
Pearson [ 1893,18951 and Ronald Fisher [ 191 81 developed mathematical models that 
molded the earlier work of Mendel and others into an intuitive and testable framework 
which has become both the inspiration and theoretical foundation for the entire enterprise 

Received for publication July 9, 1990; revision accepted October 22, 1990. 

Address reprint requests to Nicholas Schork, Division of Hypertension, Department of Medicine, Univer- 
sity of Michigan, R6592 Kresge I, Ann Arbor, MI 48109-0500. 

0 1991 Wiley-Liss, Inc. 



30 Schork 

of quantitative genetics. Despite a wealth of theoretical research extending the initial 
work of Pearson and Fisher, there remains at least one problem area for the modem 
quantitative segregation analyst: the implementation of models characterizing the si- 
multaneous activity of monogenic (i.e., single locus, few alleles, etc.), polygenic (the 
combined force of many loci), and environmental determinants affecting quantitative 
phenotypes. The importance of such models cannot be overemphasized since quantita- 
tive traits are generally determined by a combination of genetic and environmental 
mechanisms. Current models for the effects of mixed genetic determinants on quanti- 
tative traits (hereafter referred to as “mixed models”) make use of the intuitive and 
strong theoretical basis put forth by Pearson and Fisher, so the problems surrounding 
them really only involve their application or assessment with respect to data collected 
on a trait whose genetic determinants are in question. Many of these problems are 
almost entirely computational in nature. 

The seminal work of Elston and Stewart [ 197 I] exposed the computational bur- 
den tacit in the implementation of mixed models and offered an ingenious device to 
reduce this burden, but cautioned the reader that, even with the use of such a device, 
implementation of mixed models might not be feasible. Morton and MacLean [1974] 
derived the likelihood function for the first implementable mixed model. Since Mor- 
ton and MacLean’s function involved an analytically intractable integral, they sug- 
gested numerical methods for its evaluation. However, as estimation of the segregation 
parameters assumed in this function must be obtained through the numerical maximi- 
zation of the likelihood function itself, Morton and MacLean’s method basically in- 
volves the approximation of approximation-a task not only itself computationally 
burdensome but of questionable accuracy as well. In an important paper Ott [ 19791, 
building on the work of Elston and Stewart [ 197 11 and Lange et al. [ 19761, derived an 
expression for the mixed model that involved no integrals. Unfortunately, Ott’s for- 
mulation did involve summations that grew as 3”, where n is the number of persons in 
a pedigree and, therefore, drove him to the conclusion that the implementation of the 
exact formulation of the mixed model would be virtually impossible for all but the 
smallest of pedigrees. Finally, Hasstedt [ 19821 incorporated an analytic approximation 
to integrals of the type that appeared in Morton and MacLean’s equation into a model 
which has worked well in practice, but whose accuracy has not been adequately assessed. 

The above discussion suggests that many efforts to reduce the complexity of 
mixed-model implementation through analytic, as opposed to programming or com- 
puter architecture oriented, means have been tried. The reason for this large amount of 
work on analytic, as opposed to computational, approaches stems from a pervasive 
attitude within the modern genetics community that can be summarized by the com- 
ments of Edwards [ 19821, who, in discussing the related analytic technique of linkage 
analysis, said of the complexity of the necessary likelihood functions, that 

. . . solutions are possible in practice, but attempts at developing algorithms 
are difficult and explicit procedures based on enumeration [of necessary as- 
pects of relevant functions] too slow for computers, or for any theoretically 
possible computer. [p. 501. 

Despite Edward’s claim, it is surprising that no one has actually tried to use modern 
“supercomputers” (i.e., vector and parallel processor computers) to evaluate genetic 
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models outside of sequence research given the very explicit computational demands of 
genetic modeling. This paper is meant to describe both experiences with, and the po- 
tential of, supercomputers in evaluating complex statistical genetic models. Though 
the focus of this paper is on Ott’s [1979] method for evaluating mixed models for 
quantitative traits through the use of patterned covariance matrices, it should be un- 
derstood that many of the techniques discussed are entirely applicable to qualitative 
trait segregation and linkage models. Thus, the paper should be of wide interest to the 
genetics community. In addition, though the experiments and ideas described herein 
involve relatively “compact” settings (e.g., nuclear families, univariate traits) similar 
methodologies and ideas are being applied by the author to models for multivariate 
traits, large extended predigree data, multiallelic and linked traits, skeweJ traits, and 
covariate-dependent traits, all of which, it is hoped, will be described in future work. 

MIXED MODELS VIA PATTERNED COVARIANCE MATRICES 

Ott’s [ 19791 derivation of the mixed model uses a technique which has become a 
standard for modern theoretical and applied statisticians: the partitioning of the vari- 
ability of a quantitative measure into identifiable sources or components. The ‘‘sources” 
in genetics applications include variability induced by activity at a single locus (mono- 
genic activity), the combined effects of many loci, each of small effect (polygenic 
activity), and the environment. We shall recast Ott’s derivation of the mixed model by 
focusing first on his method of partitioning polygenic and environmental sources of 
variation, then proceed to his method for modeling monogenic sources of variation, 
and finally consider the combination of polygenic, environmental, and monogenic sources 
of variation. 

Following the lead of Fisher [ 19181 and Lange et al. [ 19761, Ott considered mod- 
eling the covariation among individuals in a given pedigree (e.g., mother-daughter 
covariation; grandfather-grandson covariation; uncle-niece covariation) through the 
use of a multivariate normal probability density function. Recognizing that any rea- 
sonable model would have to be consistent with the laws governing reproduction and 
genetic transmission (such as Mendel’s), he partitioned an n X n,  where n is the num- 
ber of people in the pedigree, covariance matrix IR (whose rows and columns represent 
the pedigree members) of a multivariate normal function into theoretically reasonable 
components. One such partition can be written as 

where a: is the variance in the pedigree due to additive polygenic sources, ui is the 
variance due to the effects of dominance occurring within polygenic sources, 4 is 
the variance due to shared household effects and u: is the variance due to random 
environmental effects. The other terms in Eq. (1) are n X n matrices that specify the 
theoretical relationships that obtain between any two individuals, i and j ,  in the pedi- 
gree and a specific component. Thus, A is the kinship coefficient matrix as described by 
Lange et al. [ 19761, D is Jacquard’s [ 19741 condensed coefficient of identity matrix, A7, S 
is a matrix such that its (ij)th component is 1 if pedigree members i and j  share the same 
household and 0 if they do not, and E is the identity matrix. 
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To obtain maximum likelihood estimates (MLEs) of the variance components, 
d, a:, &, and u?, in Eq. (1) as well as the mean value, p, of the trait under scru- 
tiny, the likelihood equation [Edwards, 19721 involving pedigree data, x,, must be 
maximized, this equation being: 

where p is a mean vector of length n whose components are (the same scalar mean) IJ., 
fl is the covariance matrix given in Eq. (l), and x, is a vector of length n containing 
the trait values of the pedigree members. If data have been collected from N pedi- 
grees, each with nj 0 = 1, . . . , N) members, the appropriate likelihood equation 
would involve the joint density of the N pedigrees, which is given by the product (or 
sum of the logarithms) of the right-hand side of Eq. (2) evaluated for each pedigree. 

Of importance in Eq. (2) is its departure from the paradigmatic form of the multi- 
variate normal density function. The paradigmatic form of an n-variable multivariate 
normal density function implicates n means pi (i = 1, . . . , n); that is, one mean for 
each variable (this is unlike Eq. (2) where there is a single mean for the trait that is 
common among the n pedigree members, i.e., variables). In addition, the paradig- 
matic form need not have a “pattern” to its covariance matrix, as does Eq. (2). These 
departures need to be emphasized since they will reemerge in the discussion of Ott’s 
method of modeling monogenic sources of variation and may be important factors in 
the reliable numerical estimation and interpretation of the parameters themselves. 

In describing Ott’s method of modeling the effects of a single locus on a quantita- 
tive trait, we consider the simplest case: an autosomal locus with two alleles, A and a .  
For clarity, suppose the “a” allele is the “disease” allele or that allele associated 
with an effect of interest. This case has been given considerable attention in the litera- 
ture (see, for instance, Morton [1967] and Elston [1981]). The two alleles produce 
three unique genotypes g E {AA, Aa, aa}  , each occurring in the population with the 
Hardy-Weinberg frequency, fg; i.e., f~ = (1 - pI2, f~~ = 2p(l - p ) ,  faa = p 2 ,  
where p is the frequency of the a allele. Associated with each genotype is a mean pg 
and variance uj implicated in a normal density function labeled the “penetrance” func- 
tion, +g. The variance, ui, characterizes deviations of a trait value x from a mean 
value pg brought about by environmental or, possibly, polygenic effects. The pene- 
trance function, when evaluated at a trait value, x ,  produces a result that is propor- 
tional to the probability that the trait value x would occur given that the person expressing 
x has genotype g: 

Typically, it is assumed the effects of the three genotypes share a common vari- 
ance, u2 (i.e., u AA = uZA, = u2,,). The unconditional probability, @, of a trait 
value, x (that is, the probability derived without reference to a specific genotype), of a 
pedigree member whose parents are not part of the pedigree (termed a “founder”) is 
thus given through the use of a normal mixture probability density function: 

2 
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where, for clarity, we have g E ( I  = AA, 2 = Aa, 3 = a a } .  For offspring, the 
frequency parameters, f g ,  are replaced with “transmission probabilities. ” Transmis- 
sion probabilities reflect the probability that an offspring, k, has genotype gk, given 
that his mother, m,  and father,f, have genotypes g, and gf, respectively. These prob- 
abilities can be expressed as T(gk I g,, gf) and are discussed by Elston [ 198 I]. Basi- 
cally, if one assumes Mendelian inheritance for the trait, then the values for the 7’s 
follow immediately: T(AA IAa, AA) = 1/2, ~ ( a a  IAA, AA) = 0,  T(AA IAA, AA) = 1, 
etc. In estimating the parameters p, pAA, p ~ ~ ,  pas, and u2, one can maximize the 
likelihood equation implicating the trait values of the pedigree members. For brevity’s 
sake, we derive the likelihood equation only for a five-member nuclear family, which 
can be written as 

where g,, i E { 1, 2, 3, 4, 5 } ,  indexes the three possible genotypes (AA, Aa, aa) 
possessed by family member i, and where T(g*) is short for T(g* Igl, g2). The like- 
lihood function for a larger pedigree simply involves further terms and summations 
associated with each member. 

It is important to note that, as with the departure of Eq. (2) from the paradigmatic 
form of the multivariate density function, Eq. (4) and, ultimately, Eq. (5) depart from 
the paradigmatic form of the normal mixture distribution by placing restrictions on the 
“mixing weights” [Titterington et al., 19851 of the implicated mixture distribution. 
These restrictions stem from the Hardy-Weinberg condition for founders and the Men- 
delian transmission probabilities for offspring. 

Ott’s model of the mixed effects of monogenic, polygenic, and environmental 
factors combines elements of Eqs. (2) and (5). The basic component of this combina- 
tion centers around the summations used in Eq. ( 5 )  to express the possible genotype 
arrangements occurring among the pedigree members. These summations would gen- 
erally encompass 3” terms, where n is number of pedigree members, since every pos- 
sible combination of the three genotypes over the n members would be implicated in 
the resulting “mixed” likelihood equation, much as they are in the single locus equa- 
tion of (5 ) .  For each genotype arrangement (hereafter referred to as a “genotype vec- 
tor”, g) one can assign a probability, Vg (g = 1, . . . , n3), by multiplying the appro- 
priate fg and T(g* Ig,, gf) terms. Thus, one possible genotype vector for a nuclear 
family consisting of two parents and three offspring is g* = [ I  = AA, 2 = Aa, 
3 = AA, 4 = AA, 5 = Aa] with probability of occurrence Vg* = (1 - p)* 2p( I - p )  
112 * 1/2 1/2. By invoking Mendel’s laws it becomes obvious that some genotype 
vectors will have probability V, = 0. For example, the genotype vector, g- = [ 1 = 
A A , 2 = A A , 3 = A A , 4 = A A , 5 = A a ] , h a s p r o b a b i l i t y V g -  = ( I  - ~ ) ~ - ( 1  
. 112 * 112 - = 0 = 0, since the mother 1 = AA and father 2 = AA genotypes will 
produce a gamete with the “a” allele (member 5 = Aa) with probability 0. The num- 
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ber of “Mendelian” genotype vectors (i.e., those with probability of occurrence V, > 0) 
is 4 + 3”-2 + 2“ [Ott, 19791, which is considerably less than 3“ as n gets large, but 
can still be quite large. Lalouel et al. [1983], following the original line of thought 
given in Elston and Stewart [ 19711, consider treating the transmission probabilities as 
estimable parameters, the idea being that one could then compare, statistically, the 
model with the transmission probabilities fixed to their Mendelian values to one in 
which they were not so fixed in order to gauge the strength of the Mendelian assump- 
tion for the data. This strategy would obviously involve the consideration of all 3” 
genotype vectors since no assumption of zero probability genotype vectors could be 
made (see Further Considerations in Mixed Model Evaluation for a discussion of is- 
sues pertaining to transmission probabilities and their estimation in mixed model settings). 

The model assuming mixed monogenic, pol ygenic, and environmental effects 
implicates the parameters p ,  p A A ,  pAa, pao, ui, 0-2, 4, previously described. 
The likelihood equation for this model for given pedigree trait values, x, becomes 

where x is the vector of trait values implicated in the pedigree, and k- is a mean vector 
whose components are dictated by the arrangement of genotypes in the relevant geno- 
type vector g; for example, the mean vector associated with g* above would be p,. = 

[JIAA, p ~ ~ ,  FAA, ~ A A ,  PAa], G(n) refers to the number of genotype vectors to be used 
in the evaluation and as such depends on whether or not one wants to compute the 
“Mendelian” model [i.e., G(n) = 4 + 3”-2 + 2”] or the “free transmission” model 
(i.e., G[n] = 3”). 

Note that Eq. (6) has inherited the constraints associated with Eqs. (2) and ( 5 ) ,  as 
it represents a mixture of multivariate normal distributions whose mixing weights are 
restricted by the laws of Hardy and Weinberg and Mendel, whose mean vectors are 
restricted to different arrangements of at most three values, and whose covariance ma- 
trices must follow a specific pattern. It should be understood that extensions to these 
models are straightforward: one merely needs to add or delete covariance terms to 
create different variance models or extend the number of summations and mean vector 
components to allow for more alleles or loci. 

SCALAR, VECTOR, AND PARALLEL NUMERICAL COMPUTATION 
Corn pu ter Architectures 

Consider the problem of adding two vectors, A and B ,  in a component-wise fash- 
ion, and storing the result in a vector, C. Familiar FORTRAN code for such a problem 
would be 

DO 1001 = l , N  
100 C(1) = A(1) + B(1) 

where the variable N is equal to the size of the vectors. A conventional scalar com- 
puter implementation of (7) would proceed by first fetching from memory the contents 
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of components from vectors A and B and placing them in two different “registers,” 
ultimately controlled by a “processor.” The contents of these registers are then added 
together and the result is placed in another register. The content of this last register is 
then sent back to an appropriate memory location associated with components of the 
vector C. At this stage, the contents of the next two components from vectors A and B 
are fetched from storage, added together using registers, and sent back to memory. 
This process is repeated until all the components of A and B have been added together. 
The sequential or scalar-oriented nature of this computational process should be obvious. 

A vector computer implementation of (7) is relatively straightforward. Here, the 
scalar registers, which are filled with relevant operands obtained from memory, are 
replaced by vector registers. Notice that all the components of vectors A and B are 
fetched from memory and placed in (vector) registers. The operations (here, addition) 
between the relevant components of vectors A and B are then done simultaneously, the 
results of which are placed in another vector register whose contents are then put back 
into memory locations associated with vector C .  The time consuming, sequential fetch- 
register-add-return to memory process required for each of the N items in vectors A 
and B has been replaced by a single vector operation. Though something of an over- 
simplification, this description of vector computer operation does encapsulate the 
principal architectural advantages built into the design of vector computers. For an 
in-depth description of the use and features of vector computers, one should consult the 
excellent book by LeVesque and Williamson [ 19891. 

The parallel computer implementation of code such as that in (7) would revolve 
around one very simple idea: parceling out subsets of relevant operands to different 
processors for simultaneous computation. 

Of course, not every problem can be programmed in such a way that a vector 
computer would speed up its solution. Many problems involving “searches,” sorting, 
or complicated functions are truly scalar in nature (i.e., sequential or order constrained) 
and would therefore not benefit from (or may actually be hindered by) implementation 
on a vector computer. In addition, not every program can make efficient use of paral- 
lel processors. For example, one may have a program that can only be broken down 
into subprograms, one of which takes longer to run than the others. Parallel imple- 
mentation of such a program would result in some processors “waiting” (and hence 
not being utilized) for the longer subprogram to complete its tasks. 

Mixed Model Algorithms 
In this section we describe basic strategies one might use to take advantage of 

vector and parallel computers in evaluating mixed models. Since parallel implementa- 
tion of mixed model evaluation is relatively straightforward, we discuss it first and 
then spend more time on vector computer implementation. Before this, however, we 
would like to draw attention to Table I which outlines some timing studies performed 
on various machines to assess the length of time it takes to compute one evaluation of 
the function given in Eq. (6) for various nuclear family sizes and numbers. The times 
given for the IBM 3090 parallel and vector processors were averages of 3 runs ob- 
tained using a program equipped with the computational strategies discussed below. 

Two basic strategies exist for implementing patterned covariance matrix mixed 
models on parallel computers. The first involves parceling out llpth, where p is the 
number of processors available, of the total families under study to each processor. 
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TABLE I. Elapsed Time (in Seconds) Needed on Various Machines to Compute One Iteration of a 
Patterned Covariance Matrix Mixed Model With a 2-Allele Codominant Major Locus, Additive 
Polygenic, and Environmental Effects for 50 and 200 Families of Sizes 4,6, and 8* 

4 6 8 
50 200 50 200 50 200 

IBM XT rnc 25.70 102.87 151.53 606.18 1187.76 4751.05 
Everex 386 14.94 59.59 94.36 377.55 777.54 3102.24 
IBM AT rnc 11.64 46.68 71.78 287.40 575.39 2301.70 
Sun 3/60 9.00 35.82 57.88 23 1.02 465.34 1855.62 
Compaq 286 mc 8.51 34.10 52.45 209.87 420.78 1683.13 
IBM PSI2 50 mc 7.63 30.37 45.86 183.45 364.43 1457.72 
IBM PS/2 80 mc 3.46 13.78 20.43 81.78 159.61 638.28 
Dell 3 10 mc 2.30 9.22 13.84 55.25 108.09 432.26 
Dec 3100 0.22 0.85 1.19 4.84 10.42 40.19 
IBM 3090 s 0.04 0.13 0.17 0.66 1.30 5.12 
IBM 3090 2p 0.06 0.10 0.13 0.46 0.75 2.83 

IBM 3090 6p 0.05 0.10 0.10 0.27 0.43 1.71 
IBM 3090 v 0.03 0.11 0.08 0.34 0.50 2.08 
IBM 3090 2vp 0.04 0.11 0.06 0.23 0.34 1.24 
IBM 3090 4vp 0.05 0.06 0.06 0. I6 0.21 0.76 
IBM 3090 6vp 0.05 0.07 0.08 0.08 0.22 0.79 

*mc, with math coprocessor; s, scalar mode; v, vector mode; 2p, 4p, 6p, number of processors. 

IBM 3090 4p 0.03 0.09 0.10 0.26 0.50 1.77 

Each processor is then responsible for computing log-likelihoods for each of the as- 
signed families and computing their sum. Upon completion, the partial sums are then 
totalled to give the total log-likelihood. A second strategy would be to compute G(n), 
the number of genotype vectors required for evaluation previously discussed and used 
in Eq. (6), for each family and parcel out llpth of these G(n)  genotype vectors to each 
processor for evaluation. Upon completion of the evaluation of the G(n) components 
of Eq. (6) on the different processors, the results are combined to form the log-likelihood 
of the relevant pedigree. This strategy is then repeated for each pedigree. The first 
strategy was used for the times reported on the parallel machines given in Table I. 

Some comments about the times reported in Table I are in order. Ideally one would 
want to see a speed-up on the order of p for parallel algorithms over and above the 
scalar implementations of the same algorithm. That is, with two processors one would 
expect to see the program run in half as much time; with three processors, in one-third 
the time; etc. However, there is typically a “cost” associated with distributing tasks 
to different processors that, for small problems, may outweigh the speed-up due to the 
simultaneous processing performed. Another computational bottleneck for parallel ma- 
chines stems from “network noise” due to multiusers. Though this bottleneck can be 
abolished by using a dedicated machine, it was most likely a source of speed reduction 
for our experiments on the much-used IBM 3090 housed at the Cornell National 
Supercomputer Facility reported in Table I. Thus, though the nonuniform or nonin- 
cremental speed-ups reported for the multiprocessor machines in Table I have an ex- 
planation, ideally (e.g., for problems with a large number of pedigrees or G[n]s) one 
would expect to see better performance gains. 

Since our implementation of patterned covariance mixed models on a vector pro- 
cessor computer centers around the use of the “string method,” as opposed to the “peel 
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method,” for pedigree model computation. The string method of pedigree likelihood 
evaluation involves spelling out all G(n) components (or ‘‘strings”) implicated in an 
equation like (6) and then merely summing them. The peel method, originally dis- 
cussed by Elston and Stewart [ 19711 for nonmixed, major locus traits and whose alge- 
braic basis was rederived by Cannings et al. [1978] for general settings, involves the 
use of conditional likelihoods to compute small segments (or “peel groups”), possi- 
bly at the individual (i.e., pedigree member) level, of the pedigree likelihood individ- 
ually and then combining them to form the total likelihood. Both methods have certain 
advantages. The peel method, by reducing the number of genotype vectors, G(n), to 
G(n*) (where n* < n) needed for a given peel-group evaluation, is much faster. How- 
ever, by breaking up the pedigree one is necessarily sacrificing covariance terms be- 
tween pedigree members. As a result, the peel method produces a likelihood value 
that is at best approximate [see Hasstedt , 19821. For large pedigrees the string method 
may be impossible to compute, given the present state of computing machinery, so 
that strategies like that assumed in the peel method may have to be adopted. Of course, 
aspects of both methods can be combined (e.g., by using peel groups as large as possi- 
ble and computing the likelihoods of these peel groups using the string method). 

Our string-method oriented computational strategy for vector processors involves 
spelling out “mean” vectors relevant to each of the G(n) components assumed in equa- 
tions like (6) and then combining them to form giant matrix that can be used to evalu- 
ate the exponent(s) in Eq. (6). Since the pedigree covariance matrix, fl (of Eq. 6), 
needs to be inverted only once for each pedigree (i.e., it does not change for each 
genotype vector) and the probability of each genotype vector can be computed prior to 
summation using estimated gene frequencies and Mendel’s laws for offspring, the eval- 
uation of (6) can be written to involve an explicitly vectorizable summation (or “DO- 
LOOP”) over G@). That is, all the summed terms in (6) can be spelled out and stored 
in memory so that many of the component terms and operations needed for each of the 
G(n) summands can be evaluated ‘‘simultaneously” through vectorization. The terms 
for the sum over G(n) in (6) will then already be computed, making the summation 
trivial. Of course, the speed-up obtained using this strategy is dependent upon the size 
of the vectors used in the likelihood evaluation, and hence the size of the pedigree: if 
G(n) is small, or the length of the mean vectors associated with each genotype ar- 
rangement (i.e., the number of pedigree members) is small, then the speed of the vec- 
tor processor will not heavily outweigh the requisite fetches to memory needed to get 
each pedigree’s data, nor will it outweigh the computational effort required for the 
covariance matrix formulation and inversion. This is reflected in Figure 1, where the 
speed of vectorized code on an IBM-3090 is given relative to optimimized scalar code 
for different pedigree-size likelihood evaluations. It clearly shows that speed increases 
only occur (outside of some noise-induced fluctuations) as a function of pedigree size 
and not number. 

One problem with the implementation of the “string” method as discussed above 
is that it can be very memory intensive: if all G(n) relevant genotype vector related 
structures (i.e., probabilities, mean vectors, etc.) must be spelled out and then run 
through the vector processor, one may easily run out of working (storage) computer 
memory to hold them all. To avoid this, one could work with subsets of the G(n) 
genotype arrangements and try to balance the number of fetches to memory with mem- 
ory size constraints to achieve some sort of efficiency. Figure 2 depicts relative speed 
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Fig. 1. Relative speed of computation increases for mixed model evaluation on a vector computer, as- 
suming various nuclear family sizes and numbers. The dashed line represents time-identity, or virtual non- 
increase in computational speed. 
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increases for mixed model evaluation associated with the use of different sizes of sub- 
sets of the G(n) genotype arrangements for 100 nuclear families of size 8 (i.e., G[n] 
= 4 + 729 + 256 = 989). An initial subset size of 5 was used since computations 
using one genotype arrangement at a time were exceptionally slow. Figure 2 shows 
that for both a CRAY Y-MP and an IBM 3090 the decrease of computation time re- 
sulting from the use of larger and larger subsets of the G(n) possible (Mendelian) 
arrangements quickly reaches a “saturation” point. Notice that though the largest 
speed-ups occur when running vectorized code, some speed-up does occur when run- 
ning scalar code as well. This is intuitive since in using larger subsets of the G(n) 
genotype arrangements, one is most likely reducing costly memory fetches and com- 
putational overhead that occurs as a result of spelling out the genotype arrangements 
individually and in a sequential manner. The saturation exhibited most likely results 
from “Amdahl’s Law” [LeVesque and Williamson, 19891, which suggests that speed-up 
for vector and parallel programs is limited by that portion of the program (however 
small) that can only be done in scalar. 

Two further comments about Figure 2 should be made. First, the speed-up re- 
ported is a relative one (i.e., relative to a computation assuming a subset of G[n] size 
of 5). One should not get the impression that the IBM 3090 running in vector mode is 
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Fig. 2. Relative speed of computation increases for mixed-model evaluation on two different vector com- 
puters running in different modes, assuming different subset of total genotype arrangement (i.e., work- 
vector) sizes. Note that unlike Figure 1, speed-up is reflected in thefraction of time relative to computations 
involving a work-vector length of 5 .  

faster than the CRAY Y-MP running in vector mode. A uniprocessor Y-MP is gener- 
ally three to five times faster than a uniprocessor IBM 3090 (see Dongarra [1989]). 
Second, the IBM 3090 is equipped with a special “memory cache” that can be used to 
great advantage by a programmer. Though we will not go into detail on cache archi- 
tectures, it should suffice to say that a cache is a chunk of memory that resides be- 
tween main computer memory and the registers to keep oft-used operands close to the 
registers for quick access. The presence of a cache impacted, no doubt, on the results 
depicted in Fig. 2. 

THE IMPLEMENTATION OF MIXED MODELS 
Proteus-G1 : A Vector Designed Program 

An experimental computer program, Proteus-G1 , was designed and coded to eval- 
uate patterned covariance matrix mixed models on an IBM 3090 with vector facility. 
This program uses the NPSOL optimization scheme ([Gill et al., 19861-see section 
below) to compute maximum likelihood estimates of the segregation parameters. In 
order to test this program and gauge its efficiency and usefulness, we ran the program 
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TABLE 11. Proportion of Models Chosen Based on the Akaike Information Criterion for the 
Data Sets Discussed in Konigsbeg et al. 119891 

Analytical model 
Data set Sporadic Polygenic Codominant Mixed 

Model 1 (sporadic) 10 0 0 0 
Model 2a (polygenic) 0 9 1 0 
Model 2b (polygenic) 0 9 0 1 
Model 3 (codominant) 2 4 4 0 
Model 4a (mixed) 0 1 2 7 
Model 4b (mixed) 0 0 0 10 

TABLE 111. Average Parameter Estimates Obtained Across the 10 Replicate Data Sets 
Discussed in Konigsberg et al. 119891 

Gene 
h2 frequency Mean 1 Mean2 Mean3 Variance 

- 18.25 
- 26.93 
- 55.45 

0.80 19.52 25.56 31.00 49.84 
Model 4a (mixed) 0.32 0.73 27.48 29.39 53.70 111.21 
Model 4b (mixed) 0.36 0.68 14.98 23.83 33.14 10.55 

Model I (sporadic) - - 20.02 - 

Model 2a (polygenic) 0.57 - 21.01 - 

Model 2b (polygenic) 0.60 - - 20.52 - 

Model 3 (codominant) - 

TABLE 1V. Average CPU Time in Minutes on an IBM 3090 With Vector Facility and 
Number of Function Evaluations (in Parentheses) Needed to Optimize Likelihoods 
for the Data Sets Described in Konigsberg et al. 119891 

Sporadic Poi ygenic Codominant Mixed 

Model 1 (sporadic) 0.03 (32) 0.12(149) 0.90 ( 156) 0.74 ( 127) 
Model 2a (polygenic) 0.04 (43) 0. I I (139) 0.88 (147) 1.29 (209) 
Model 2b (polygenic) 0.03 (39) 0.06 (79) 0.82 (149) 1.56(273) 
Model 3 (codominant) 0.05 (59) 0.10 (123) 1.30 (196) 1.36 (209) 
Model 4a (mixed) 0.04 (52) 0.09 (108) 1.21 (212) 1.64(287) 
Model 4b (mixed) 0.04 (52) 0.06 (78) 0.87 (152) 0.87 (153) 

on the data sets discussed in Konigsberg et al. [ 19891. In order to obtain results com- 
parable to those obtained by the programs investigated by Konigsberg et al., we evalu- 
ated sporadic, polygenic, codominant, and mixed models as described by Konigsberg 
et al. for each of the 10 replicate data sets assumed for each of the 6 transmission 
models discussed by them. Tables I1 and I11 show the models selected as the “best” 
using Proteus-G1 for each data set and the average parameter estimates obtained for 
the 6 models, respectively. These tables reflect a close agreement to the results ob- 
tained with PAP [Hasstedt and Cartwright, 19811 by Konigsberg et al. Table IV re- 
ports the average CPU time and number of function evaluations (including those used 
for numerical gradient evaluations) using Proteus-G1 for each of the 6 models. Table IV 
suggests that mixed model evaluation requires 30 times the computational effort it takes 
to evaluate sporadic models. To compute real time estimates for patterned covariance 
matrix mixed evaluation on different machines, one can merely multiply an average 
number of function evaluations entry in Table IV with the times given in Table I .  
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It should be kept in mind that scalar computer implemented patterned covariance 
models can be slow (compare Table VI of Konigsberg et al. [ 19891) compared to other 
scalar computer implemented mixed models (e.g., the algebraic scheme used by Hasstedt 
[ 19821 or the regressive scheme of Bonney (19841). This is because patterned covari- 
ance models require computations such as matrix inversions, inner product calcula- 
tions, etc. that are costly computationally. The advantages of patterned covariance models 
are twofold: First, as previously emphasized, they are extremely flexible and intuitive; 
one can merely add or delete variance terms (e.g., Eq. 1) as the need arises without 
facing agonizing analytic reformulation. Second, also as previously emphasized, pat- 
terned covariance mixed model formulations are compatible with, and implementable 
on, machines that can greatly reduce their computational demands. 

Parameter Estimation 
As indicated earlier, estimation of the mixed model parameters involves maximi- 

zation of Eq. (6). Since analytic derivatives for each parameter are (or would be) ex- 
tremely difficult to obtain from (6), various numerical schemes were implemented and 
compared for their efficiency in determining MLEs of the mixed model parameters on 
10 sample data sets. Since numerical schemes that do not rely on analytically derived 
derivative information are very slow by nature, it is imperative that the function to be 
evaluated is coded and evaluated in the fastest and most efficient manner possible. As 
emphasized throughout this paper, the necessary speed and efficiency can be achieved 
through the use of a supercomputer. The numerical schemes investigated included the 
scheme outlined by Box [1965], the simplex procedure of Nelder and Mead [1965], 
the quasi-Newton schemes inherent in the programs GEMINI [Lalouel, 19791 and 
QUASINEWTO (N. J. Schork, unpublished program), and the sequential quadratic pro- 
gramming design implemented in the NPSOL package [Gill et al., 29861. GEMINI 
incorporates a sophisticated line search for step lengths (see Gill et al., [ 198 11 for an 
explanation) but uses fixed length finite-difference intervals in approximating deriva- 
tives. QUASINEWTO, on the other hand, uses a simple linear search for step length 
determination but computes numerically optimal finite-difference interval lengths. Thus, 
these two programs were examined for the trade-offs between optimal numerical step 
length and derivative computations. Table V compares the efficiency of the various 
procedures in determining MLEs for 100 nuclear families of size 5 (i.e., with 3 off- 
spring) with a vectorized segregation function code of the type previously described to 
evaluate the mixed model function. As expected, the routines that rely solely on func- 
tion evaluations (the Box and simplex procedures) spend less time per function evalu- 
ation than the other routines (e.g., because basically all these routines have to do is 
evaluate the fast, vectorized segregation function and not invert Hessians, compute 
numerically stable step lengths, etc.). Also of interest is the intuitive finding that, though 
computation of optimal step-sizes (i.e., the GEMINI results, Table V) results in fewer 
function evaluations, the overhead required to perform the nonfunction evaluation re- 
lated computations necessary for the optimal step-size calculations results in a larger 
time-per-function evaluation index. In addition, computing optimally estimated deriv- 
atives via finite-differencing (i.e., via QUASINEWTO, see Table V) necessarily takes 
a great many function evaluations. The NPSOL package is clearly the most efficient in 
computing MLEs, as it takes, on average (35.2/1000) - 179.9 = 6.3 CPU (not real- 
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TABLE V. A Comparison of Some Optimization Programs Requiring Only Function Evaluations 
in Finding MLEs for the Mixed-Model Using Vectorized Code on 100 Nuclear Families of Size 5* 

Box Simplex Gemini Q-newt NPSOL 
Dataset TIF Like TIF Like TIF Like TiF Like TIF Like 

1 35.03 -667.53 34.89 -666.53 63.29 -666.52 36.31 -664.25 35.30 -666.52 
2 34.85 -687.55 34.92 -687.55 40.19 -687.55 35.62 -687.55 35.37 -687.55 
3 34.82 -699.07 34.86 -698.35 38.45 -698.33 37.25 -698.33 35.11 -698.33 
4 34.88 -667.49 34.87 -668.91 38.09 -666.44 37.55 -666.44 35.30 -666.44 
5 34.86 -667.32 34.84 -676.39 39.48 -676.34 37.04 -676.34 35.36 -676.34 
6 34.85 -679.46 34.98 -679.46 69.03 -679.46 36.17 -679.46 35.12 -679.46 
7 34.73 -672.05 35.01 -672.05 54.32 -672.05 36.45 -673.00 35.11 --672.05 
8 34.74 -691.00 34.96 -691.00 41.46 -691.00 37.00 -691.00 35.21 -691.00 
9 34.70 -677.83 35.02 -679.92 38.45 -679.92 37.10 -679.92 35.04 -679.92 
10 34.81 -687.77 35.00 -687.77 62.21 -687.77 37.20 -687.77 35.09 -687.77 
AVE 34.831626.20 34.931367.90 48.501183.70 36.771532.50 35.201179.90 
GIS 613 512 81 1 812 8i 1 

*Box, Box’s modified simplex; Simplex, NelderIMead Simplex; Gemini, a quasi-Newton program; 
Q-Newt, a quasi-Newton program; NPSOL, a sequential quadratic program; TIF, time per function evaluation 
(in CPU milliseconds); Like, maximum likelihood achieved; AVE, average TIF ratiolaverage number of 
function evaluations; GIs, number of simulations in which the program found the greatestlsmallest likelihood 
value (includes ties only for greatest values). 

time) seconds on an IBM 3090 with vector facility to find them. Of course it is possible 
to restructure optimization algorithms to run faster on supercomputers. For instance, it 
is entirely possible to vectonze Hessian matrix inversion for some quasi-Newton schemes. 
The intent of the comparisons outlined here was to investigate the properties of extant, 
inherently scalar, optimization algorithms that make use of the refinements in the 
Likelihood equation computation previously outlined and not to make claims about 
inherent deficiencies of particular optimization strategies. 

Further Considerations in Mixed Model Evaluation 
The numeric nature of the computation of likelihoods and parameter estimates 

assumed in equations like (6) invites a number of practical problems apart from com- 
putational time or computer memory demands, in that the accuracy of the results de- 
fies easy assessment. Simulation studies like the one carried out by Konigsberg et al. 
[ 19891 and the one discussed in Computer Architectures are by nature indirect. One 
way of directly assessing the accuracy of mixed-model schemes involves simulated 
data, but works though the possible genotype arrangements a pedigree might have. 
Thus, one can simulate data and thereby know at once the genotype possessed by each 
simulated individual. By comparing these known genotypes with those predicted by a 
mixed-model scheme, one can effectively gauge the accuracy of the mixed-model scheme 
in question. Of course, the resulting accuracy indicator depends to a great extent on 
the genotype prediction scheme used. We chose the following prediction scheme for 
its ease of implementation and intuitive appeal: simply choose the genotype vector 
with the greatest likelihood and assign individuals genotypes using this vector. That 
is, after the mixed-model parameters have been reliably estimated, choose the geno- 
type arrangement associated with the largest term in the sum (of G[n] components) in 
an equation like (6). This strategy has the advantage that it predicts individual geno- 
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TABLE VI. Average Proportion of Genotypes Predicted Correctly Given Different Segregation 
Parameter Configurations and Family Data Structures, for 100 Simulations for Each Setting* 

p- 

.25 

.25 

.25 

.25 

.05 

.05 

.05 

.05 

seP H 

1 .5 
1 .25 
2 .5 
2 .25 
1 .5 
1 .25 
2 .5 
2 .25 

Families (offspring) 
50 50 100 Column 
( 3 )  (4) (3) average 

,476 ,411 ,642 ,532 
,509 ,624 ,601 ,578 
.847 ,738 ,823 ,803 
,766 ,579 ,840 ,728 
,485 ,892 .78 I .719 
,490 ,875 ,877 ,747 
.850 ,901 ,897 ,883 
,870 ,821 ,899 ,863 

Row average ,662 ,735 ,795 

* p ,  allele frequency; sep, separation between mean genotype effects (assuming codominance); H, polygenic 
heritability. 

types using data from the entire pedigree. Using this strategy, we performed a simple 
Monte Carlo study of the accuracy of Proteus-G1. We generated 100 data sets follow- 
ing certain mixed-model configurations assuming two codominant alleles, computed 
parameter estimates for each, and then compared predicted and actual genotypes. The 
results are given in Table VI. It is obvious from Table VI that greater separation be- 
tween mean genotype effects results in better prediction. It is also obvious, and intu- 
itively reasonable, that larger samples result in parameter estimates with better predictive 
power, and that lesser polygenic “noise” (i.e., smaller heritabilities) results in better 
monogenotype prediction. Thus, genotype prediction-based assessments of accuracy 
may be useful for the evaluation of mixed-model programs, especially when approxi- 
mations are used, as in Hasstedt [ 19821 and Bonney [1984]. 

Transmission probabilities play an important role in the statistical inference of 
genetic mechanism for qualitative traits, so it is not surprising that they should be con- 
sidered useful for quantitative traits as well. Despite their theoretical and intuitive ap- 
peal, however, the estimation of transmission probabilities, when estimated alone or 
along with other parameters assumed in mixed models, is notoriously difficult (or at 
least our experiences have indicated this) and invites opposition to their use. An im- 
portant question is then whether or not one could do without them; or rather, whether 
one can just work with mixed models with transmission probabilities “fixed” to their 
Mendelian values. In order to address one aspect of this question we performed a small 
Monte Carlo experiment. We generated 100 nuclear family data sets following Mende- 
lian patterns with different allele frequencies and mean genotype effect separations, 
but assumed a heritability of 0.25 throughout. For these same allele frequency, sepa- 
ration, and heritability settings we generated nuclear family data following equal trans- 
mission probability patterns. For each type of data we computed the number of times a 
Mendelian mixed model and/or a single locus model without polygenes better charac- 
terized the data than a polygenic or sporadic model based on Akaike’s Information 
Criterion [ 197 11 and Schwarz’s more conservative Bayesian Criterion [ 19781. It should 
be kept in mind that none of the models compared actually involved the estimation of 
transmission probabilities: the sporadic and polygenic models simply require p = 0 
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TABLE VII. Proportion of Mendelian Single-Locus 2-Allele Codominant Mixed (Total Mixed and 
Nonmixed in Parentheses) Segregation Models Accepted Over Sporadic and Purely Polygenic Models 
Using Two Different Model Selection Devices for Mendelian and Equal Transmission Probability Data* 

SBC AIC 

P sep . Mend. Equal Mend. Equal 

.25 I .OO (.07) .OO (.03) .29 (.64) .10 (.36) 

.25 2 .34 (.98) .OO (.09) .73 (1.0) .06 (.42) 

.05 1 .OO (.02) .OO (.03) .23 (.46) .08 (.48) 

.05 2 .30 (.71) .09 (.29) .80 (.95) S O  (.78) 

*p, allele frequency; sep, separation between mean monogenotype effects; SBC, Schwarz’s Bayesian criterion; 
AIC, Akaike’s information criterion; Mend., Mendelian transmission data; Equal, equal transmission 
probability data. 

and the major locus and mixed models assumed Mendelian transmission and Hardy- 
Weinberg equilibrium. The results are outlined in Table VII, and suggest that although 
the likelihood of accepting a Mendelian major gene model is reduced when the Mende- 
lian transmission assumption is violated, this reduction is not large enough to obviate 
the need for transmission probability assessment in the special case of equal transmis- 
sion probability. Similar results were obtained in the case study of qualitative traits by 
McGuffin and Huckle [ 19901. We are working on the problem of whether or not one 
needs to estimate the transmission probabilities, or merely needs to evaluate models 
with them fixed to certain values (other than Mendelian) to provide sufficient power 
against non-Mendelian data types. It should be emphasized that transmission probabil- 
ity estimation can be easily implemented in vectorized or parallelized code. 

It is also important to emphasize that the questions of accuracy and transmission 
probability use posed in this section had not been addressed before simply because of 
their very great computational demand. These demands were lightened in our case 
because we used a supercomputer. Of course there is no reason to stop supercomputer 
use at the power study or computational efficiency level. Supercomputers can provide 
efficient environments for testing hypotheses (see Schork and Hardwick [ 19901; Schork 
[ 19901; Schork and Schork [ 19891) or the modeling of truly multivariate traits, such as 
the hyperkinetic state described in Schork et al. [1990]). As such, supercomputers 
have a potential in statistical genetics that warrants serious attention. 

CONCLUSION 

In a recent editorial Ott [ 19901 justifiably suggested that extant segregation mod- 
eling devices are not powerful enough to sort out genetic mechanisms responsible for 
complex traits, and that therefore geneticists should look more to linkage or gene marker- 
based strategies for infering genetic mechanism in traits with unknown genetic etiolo- 
gies. This lack of power stems, in part, from computational and estimation difficulties 
that linkage methods do not possess. On the other hand, it is becoming more and more 
obvious that the pardigm and tools assumed in many linkage-based and “bottom-up” 
strategies are unequivocally limited (see, for example, Friedmann [ 19901 or Sing 
[ 19901). Thus, there appears to be an impasse: good genetic research tools exist, but 
only for a small class of traits. Supercomputers and efficient computational schemes 
may provide a way out of this impasse, in that they may allow both the reliable con- 
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struction and implementation of more complex, and hence more realistic, genetic 
modeling devices. 
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