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Extended Pedigree Patterned Covariance 
Matrix Mixed Models for Quantitative 
Phenotype Analysis 

Nicholas J. Schork 

Division of Hypertension, Department of Medicine and Department of 
Epidemiology, University of Michigan, Ann Arbor, Michigan 

Overt computational constraints in the formation of mixed models for the analy- 
sis of large extended-pedigree quantitative trait data which allow one to reliably 
characterize and partition sources of variation resulting from a variety sources have 
proven difficult to overcome. The present paper suggests that by combining a 
restricted patterned covariance matrix approach to modeling and partitioning the 
variation arising from polygenic and environmental forces with an Elston-Stewart 
like algorithmic approach to modeling variation resulting from a single genetic 
locus with large phenotypic effects one can produce a model that is at once intu- 
itively appealing, efficient computationally, and reliable numerically. Extensions 
and variations of this approach are also discussed, as are some simulation and tim- 
ing studies carried out in an effort to validate the accuracy and computational effi- 
ciency of the proposed methodology. 0 1992 Wiley-Liss, Inc. 

Key words: mixed models, variance components, Elston-Stewart algorithm, quantitative traits 

INTRODUCTION 
Despite the plethora of molecular genetic advances made in recent years, human 

geneticists are still faced with a number of problems which have proven difficult to 
overcome. Most of these problems derive from the obvious fact that breeding experi- 
ments and experimental genetic interventions involving humans are, for the most part, 
unethical. Human geneticists must therefore rely heavily on statistical approaches to 
modeling and exploring the natural variation occurring within and among human pop- 
ulations. Because the complexity of the genetic phenomena currently understood through 
laboratory-based methods has grown dramatically, a gap between basic genetic theory 
and implementable, statistical model-based tools for studying and assessing human 
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variation has arisen, as noted by Ott [1990]. This is especially true in the case of 
quantitative phenotype analysis: theoretically sound methods have been devised for 
dissecting and exploring the basis of quantitative inheritance in plant and animal popu- 
lations, and have, in fact, been implemented in studies on these populations with great 
success, but have not proven to be useful or applicable in human pedigree data con- 
texts. For example, the elegant work of Lander et al. [ 19891 describes methods for the 
analysis of quantitative plant traits that are theoretically sound, but rely almost entirely 
on backcross and intercross information. 

One particularly troublesome problem in human pedigree quantitative phenotype 
analysis centers around the development of realistic and efficient models incorporat- 
ing both the effects of a single locus with large phenotypic effects and polygenic and 
complex environmental factors-the so called ‘‘mixed model’ ’- for moderate to large 
extended pedigree (i.e., nonnuclear family) data. In their pioneer work, Elston and 
Stewart [1971] described methods whereby one could ease the computational burden 
of many pedigree models and suggested that the implementation of a true mixed model 
would be difficult at best. This suggestion was later elaborated by Boyle and Elston 
[ 19791. Morton and MacLean [ 19741 devised an implementable mixed model but relied 
on a numerical method for the relevant function evaluation that made their approach 
approximate, computationally burdensome, and unflexible (see also Elston [ 198 11). 
Ott [ 19791 incorporated the patterned covariance matrix model first discussed by Lange 
et al. [ 19761 to model polygenic variation in a mixed model setting. Though the result- 
ing model’s likelihood function was exact, its utility is limited to small pedigrees because 
its computational load increases exponentially with the pedigree size. In two impor- 
tant papers, Hasstedt [1982, 19911 derived an approximation to certain mixed models 
which is computationally feasible, but whose current implementations do not allow 
easy inclusion of arbitrary covariance components, has not been well studied (e.g., 
through large scale simulation studies) on large extended pedigree data, and relies on a 
method for approximating polygenic parameters which may produce different results 
depending on the order in which extended pedigree members are incorporated into the 
relevant likelihood function evaluation ‘ ‘peeling” procedure. On another plane, Bonney 
[ 19841 elaborated a number of computationally feasible and mathematically elegant 
models for exploring the variation of many genetic phenomena. However, many of 
these models have formulations for characterizing residual (i.e., nonmajor locus) vari- 
ation which do not exploit the sound principles of genetic transmission, and hence do 
not permit the partition of the residual variance into genetic and nongenetic components. 

In fairness to the approaches developed by Hasstedt and Bonney, it is important 
to note that the published, large-scale studies gauging the reliability of each method 
have relied primarily on nuclear family data [Konigsberg et al., 1989; Demenais and 
Bonney, 1989; Demenais et al., 19901. As such, it would be premature to suggest that 
the sources of covariation sacrificed in each approach, as well as the lack of residual 
variance partitioning the case of the regressive models, have a dramatic negative effect. 
In addition, recent simulation work by John Blangero and colleagues suggests that 
arbitrary covariance components may be implemented reliably within the framework 
of Hasstedt’s later model [Hasstedt, 1991 ; J. Blangero, personal communication]. Other 
papers discussing some relevant aspects of mixed model formulation and computation 
are Bonney [1982] and Lalouel et al. [1983]. 

In what follows, a formulation of the mixed model is outlined which can be con- 
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sidered a combination of the approach of Ott and the fundamental algorithm described 
by Elston and Stewart [1971], which was later extended by Lange and Elston [1975] 
and Cannings et al. [1978]. The primary advantages of the proposed model are that it 
allows for the arbitrary partition of the residual variance in extended pedigree con- 
texts, will produce the same likelihood value irrespective of the order in which the 
relevant parts of the pedigree are incorporated into the likelihood function evaluation, 
and is compatible with the efficient computational strategies outlined in Schork [ 1991al 
and Schork [1991b]. As an aside, this paper also presents a simple framework which 
may allow one to assess the effects of sacrificing sources of covariation in mixed model 
likelihood evaluation schemes. As such, this framework could be used in computational 
experiments with both regressive models and approaches like Hasstedt’s which, like 
the proposed method, do not use the full covariance structure of extended pedigrees in 
their constructions. 

METHODS 

As with all mixed models, there are two basic components to the proposed mixed 
model: a component characterizing the effects of the major locus and a component 
characterizing the polygenic and environmental “background” effects. Each compo- 
nent will be briefly described, though their combination-the crucial aspect of the pro- 
posed method-will be considered in greater detail. 

Consider the case of a single locus with 2 alleles, A and a,  which works to form 3 
genotypes AA, Aa, and aa. Each genotype, g ,  has an associated frequency f’, g E 

{AA, Aa, aa}, and mean effect kg. Associated with all genotypes is a common vari- 
ance u2. The frequencies,f,, are, for pedigree members whose parents are not in the 
pedigree, functions of the allele frequencies 1e.g. ,fAA = p 2 ,  fAa = 2p(1 - p ) , f a a  = 
( 1 - p)*,  where p is the frequency of the A allele and Hardy-Weinberg equilibrium is 
assumed], and are dictated by transmission probabilities consistent with Mendelian 
theory for those pedigree members whose parents are in the pedigree [Elston, 19811. 
A likelihood based model assuming a pedigree with n members then involves consid- 
eration of all possible genotypes arrangements for the pedigree members. A likelihood 
function for such a model can be written as 

where 0 denotes the parametersp, ph, pAa, pa, u2, X denotes the trait values, xl, . . . , 
x,, of the n pedigree members, g; refers to the possible genotypes associated with 
pedigree member i, fg is the appropriate allele frequency or transmission probability 
associated with genotype g;, and 0 is the “penetrance probability,” or the probability 
that i shows xi given genotype g;. Note that 0 is typically taken to be the normal den- 
sity function with mean p and variance u2. 

Elston and Stewart [ 197 11, Lange and Elston [ 19751, Ott [ 19741, and Cannings et 
al. [1978] all elaborate and expand on a method whereby the multiple sum given in 
Eq. (1) can be written as an iterated sum. Since these authors characterize their meth- 
ods differently and use a terminology that is consistent with subtleties unique to these 
different characterizations, the characterization of the Elston-Stewart algorithm offered 
in this paper will be based on the notion of a “partition-set.” Basically, “partition- 
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sets” are comprised of subsets of closely related pedigree members (e.g., nuclear fami- 
lies) within the pedigree. One member in each partition-set who is common to another 
partition-set, termed the “pivot,” is then chosen. The likelihood of the other partition-set 
members is then computed conditionally on the genotypes of this pivotal member. 
These conditional likelihoods are then saved and are incorporated into calculations 
involving other partition-sets of which the pivot is a member. The order in which the 
partition-sets are dealt with is dictated by the dependence of the conditional likelihood 
calculations of each partition-set on the other partition sets. To illustrate, consider the 
pedigree depicted in Figure la. The nuclear families defined by ncl = {1,2,4,5}, nc2 
= {3,4,7,8}, and nc3 = {5,6,9,10} define partition-sets; persons 4 and 5 are pivotal. 
Starting with nc2, the genotypes of member 4 are fixed and the three conditional likeli- 
hoods, Lncz(Ol~3,~7r~8.g4 E {AA, Aa, aa}), are computed and saved. The same is 
done for nc3 using member 5 to condition on. These conditional likelihoods are then 
used to “weight” the genotype assignments for members 4 and 5 when the likelihood 
of ncl is computed. If the conditional likelihoods of relevant pedigree partition-sets 
are incorporated in the likelihood function evaluation in this iterative fashion, then the 
likelihood evaluation involving the entire pedigree will be exact. The basic mecha- 
nism behind this algorithm has been extended to work with complex pedigrees and 
pedigrees with loops (see Lange and Elston [1975] and Cannings et al. [1978]). 

n c  1 
I 
I 
I 
I 

I- - - - - - - - - 1  

I 
I 
I 
I 

a b 

C 

Fig. 1 .  
Pedigrees structured with an o-parameter of 1 and 3 ,  respectively. 

(a,b) Two different “partition-set” partitions for a 10-member, o-parameter of 2, pedigree. (c,d) 
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To model polygenic and environmental factors , the patterned covariance model 
of Lange et al. [ 19761 can be adopted. If it is assumed that the variation in the pedigree 
trait values is controlled by the additive and dominance effects of polygenes, shared 
household factors, and a random environmental effect, then the covariation among the 
n pedigree members can be modeled with an n X n matrix defined by 

R = 2Aui + DO: + Huh2 + Icr; (2) 

where 4, u:, u;, and d are the additive variance, dominance variance, shared house- 
hold variance, and random environmental variances, respectively. The other terms in 
Eq. (2) are n X n matrices that relate the variance terms to the relevant pedigree mem- 
ber pairs. Thus, A is the kinship coefficient matrix, D is Jacquard's delta-7 matrix 
[Jacquard, 19741, H is a matrix such that its ijth component is 1 if i and j share a 
household and 0 if they do not, and I is the identity matrix. If a mean, p, is associated 
with the trait in question and one assumes multivariate normality of the trait values 
among the pedigree members [Lange, 19781, then one can compute estimates of p and 
the variance components in 52 by maximizing the relevant multivariate normal likeli- 
hood function as discussed by Lange et al. [ 19761. 

The mixed model of Ott [ 19791 is obtained by evaluating a mixture of multivari- 
ate normal distributions, where each component in the mixture is associated with a 
particular genotype arrangement among the pedigree members. The relevant likeli- 
hood function is given by 

2 2 2 2  where 0 = ~ , ~ ~ , p ~ ~ , ~ ~ ~ , u ~ , u d , u ~ , u , ) ,  X is a vector of length n holding the 
pedigree member trait values, the sum is over all G possible genotype arrangements 
for the n pedigree members, Fk is the product of all relevantf, for the kth genotype 
arrangement, R is given in Eq. (2), and pk is a vector of a mean genotype effects con- 
sistent with the genotype arrangement k .  One should consult Ott [1979] or Schork 
[1991] for further details. As intimated in the introduction, because the sum in Eq. (3) 
grows exponentially with the size of the pedigree, the model in (3) is impractical for 
all but the smallest of pedigrees. 

The mixed model advocated in this paper involves the use of the Elston-Stewart 
approach (or, more specifically, the Lange-Elston extension of the Elston-Stewart algo- 
rithm) to evaluating the major locus component of the model, but uses the model offered 
in Eq. (3) to model the variation within each partition-set. That is, for each partition- 
set, mi, with mi members, one computes the probability of the mi - 1 nonpivotal mem- 
bers conditionally on the genotypes of the pivotal member e, which can be written in 
the form 

where g, E {AA, Aa, aa}. This equation can be written in a manner consistent with 
Eqs. (1) and (3) to produce a likelihood equation which forms the basis for the type of 
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equation which is iterated in the Elston-Stewart algorithm implementation used in the 
proposed model: 

where mi denotes the ith partition-set, 8 is given as in Eq. ( 3 ) ,  the sum is only over 
those genotype arrangements involving the relevant mi partition-set members, F k ,  

is the product of the relevantfge for the members in mi, x is the vector of trait values 
associated with the members of mi, p* is a vector of the mean genotype effects con- 
sistent with the k*th genotype arrangement, R is an mi X mi covariance matrix of the 
type assumed in Eq. (2), but whose terms are restricted to and dictated by the mi partition- 
set members' relationships, and where a; is the total variation a? = af + a: + a2 + 
a:. As such, the combination and joint derivation of the various conditional likeli- 
hoods follow the scheme outlined in Lange and Elston [ 19751. 

The mixed model scheme just outlined does afford a great deal of flexibility. 
Partition-sets can be chosen in a variety of ways; the limiting factor being the amount 
of computation assumed in modeling the variation in the partition-sets through Eq. 
(4). For instance, Figure l b  depicts alternative partition-sets to those depicted in Figure 
la. Complex pedigrees and pedigrees with loops can still be dealt with in the manner 
described in Lange and Elston [ 19751. Further variance components modeling a vari- 
ety of genetic and environmental phenomena can be easily added by extending Eq. 
(2). In addition, covariates, y,  can be added to model by adapting the mean vectors 
appearing in the quadratic form of Eqs. ( 3 )  and (4) to, say 

where cl,(y) is a function (e.g., regression, growth curve, etc.) mapping the covariates, 
y, to the relevant mean genotype effects p which are dictated by the appropriate geno- 
type arrangement under consideration. 

Obviously, the drawback to the proposed scheme is that it sacrifices covariance 
terms between members of the pedigree by allowing parameterization only of the 
covariation between members in a partition-set. This may not be a serious drawback, 
however, given the structure of Eq. (2), since sibs contribute most of the information 
in the identification of dominance polygenic effects, and the kinship coefficient decreases 
exponentially as members become separated by either more generations or greater 
"horizontal" distancing (e.g., cousins to second cousins to third cousins, etc.). A 
related drawback is that the proposed method can deal only with matrilineal or other 
long-term effects by using large partition-sets-a strategy that may be too challenging 
computationally to be useful in certain situations (e.g., in settings in which the rele- 
vant partition-sets have extremely large sibships). 

SI M U LATlON STUD1 ES 
Monte Carlo Studies 

In order to investigate the reliability of the proposed mixed model, a large simu- 
lation study was employed. Because an overriding concern associated with the pro- 
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Fig. 2. Profile likelihoods for an exact and approximate mixed model for an allele frequency and 
mean genotype parameters assuming 25 pedigrees with 10 members each following a segregation pat- 
tern with parameters p = 0.25, JLAA = 12.0, pAa = 10.0, p,,, = 8.0, u: = 0.5, ua = 0.5, and 
0: = 1.0. Note that the dashed line represents the approximation and the solid line the exact method. 
Close agreement causes the lines to overlap. A value of 230 was added to likelihoods obtained with the 
approximate model. 

TABLE I. Characteristics of the Pedigree Structures Investigated in a Simulation Study of the 
ProDosed Mixed Model* 

0 nuc mern tP tz tm frac n = 250 

1 2 5 15 2 11 0.85 50 (250) 
2 3 10 55 8 28 0.60 25 (250) 
3 4 17 153 24 58 0.45 15 (255) 
4 5 26 35 1 56 103 0.35 10 (260) 
5 6 37 703 110 166 0.28 7 (259) 
6 7 50 1275 192 250 0.23 5 (250) 

*o is the offspring parameter; nuc the number of nuclear families in the pedigree; mem the number 
of members in the pedigree; tp, tz, tm are defined by Eqs. (6), (7), and (8), respective1y;fruc is the frac- 
tion of the total pairs of pedigree members that could potentially assume nonzero values in the 
covariance matrix built from these pairs used in the proposed model; n = 250 is the number of 
pedigrees needed to produce at least 250 subjects (actual number of subjects given n = 250 is in 
parentheses). 



T
A

B
L

E
 11

. R
es

ul
ts

 o
f t

he
 S

im
ul

at
io

n 
St

ud
y 

U
sin

g 
10

0 
In

de
pe

nd
en

t R
ep

lic
at

io
ns

 of
 th

e P
ed

ig
re

e 
T

yp
es

 a
nd

 N
um

be
rs

 G
iv

en
 in

 T
ab

le
 I 

fo
r 

T
w

o 
D

iff
er

en
t S

eg
re

ga
tio

n 
Pa

ra
m

et
er

s S
et

tin
gs

* 

0
 

1 
2 

3 
4 

5 
6 

~ 0.
27

 
(0

.0
1)

 
11

.9
 

(0
.1

1)
 

9.
99

 
(0

.0
7)

 
7.

94
 

(0
.0

5)
 

1.
00

 
(0

.0
8)

 
0.

18
 

(0
.0

1)
 

0.
71

 
(0

.0
3)

 

0.
30

 
(0

.0
1)

 
0.

27
 

(0
.0

1)
 

0.
27

 
(0

.0
1)

 
0.

27
 

(0
.0

1)
 

0.
27

 
(0

.0
1)

 
11

.7
 

(0
.0

9)
 

11
.9

 
(0

.1
0)

 
12

.0
 

(0
.1

2)
 

11
.8

 
(0

.1
0)

 
11

.9
 

(0
.1

0)
 

9.
88

 
(0

.0
7)

 
9.

96
 

(0
.0

6)
 

9.
97

 
(0

.0
7)

 
9.

89
 

(0
.0

8)
 

9.
98

 
(0

.0
8)

 
7.

84
 

(0
.0

6)
 

7.
91

 
(0

.0
4)

 
7.

95
 

(0
.0

5)
 

8.
00

 
(0

.0
5)

 
7.

97
 

(0
.0

5)
 

0.
88

 
(0

.0
6)

 
0.

79
 

(0
.0

6)
 

0.
89

 
(0

.0
7)

 
1.

03
 

(0
.0

8)
 

0.
78

 
(0

.0
6)

 
0.

28
 

(0
.0

4)
 

0.
16

 
(0

.0
3)

 
0.

25
 

(0
.0

4)
 

0.
19

 
(0

.0
4)

 
0.

23
 

(0
.0

4)
 

0.
67

 
(0

.0
4)

 
0.

92
 

(0
.0

4)
 

0.
75

 
(0

.0
5)

 
0.

79
 

(0
.0

5)
 

0.
85

 
(0

.0
5)

 

P 
0.

28
 

(0
.0

1)
 

0.
27

 
(0

.0
1)

 
0.

25
 

(0
.0

1)
 

0.
28

 
(0

.0
1)

 
0.

25
 

(0
.0

1)
 

0.
25

 
(0

.0
1)

 
~

-
A

A
 

11
.8

 
(0

.0
9)

 
11

.9
 

(0
.1

0)
 

11
.9

 
(0

.1
0)

 
11

.7
 

(0
.1

1)
 

11
.8

 
(0

.0
8)

 
12

.0
 

(0
.1

2)
 

m
-A

a 
9.

95
 

(0
.0

6)
 

9.
95

 
(0

.0
7)

 
10

.1
 

(0
.0

8)
 

9.
93

 
(0

.0
8)

 
9.

94
 

(0
.0

6)
 

10
.1

 
(0

.0
7)

 
m

-aa
 

7.
92

 
(0

.0
4)

 
7.

91
 

(0
.0

4)
 

7.
95

 
(0

.0
4)

 
7.

91
 

(0
.0

4)
 

7.
98

 
(0

.0
4)

 
8.

09
 

(0
.0

5)
 

v-
0 

0.
54

 
(0

.0
6)

 
0.

39
 

(0
.0

4)
 

0.
47

 
(0

.0
5)

 
0.

38
 

(0
.0

4)
 

0.
50

 
(0

.0
5)

 
0.

43
 

(0
.0

5)
 

0.
51

 
(0

.0
8)

 
0.

67
 

(0
.0

7)
 

0.
62

 
(0

.0
6)

 
0.

49
 

(0
.0

6)
 

0.
48

 
(0

.0
5)

 
0.

59
 

(0
.0

6)
 

v
-d

 
v

-e
 

0.
84

 
(0

.0
3)

 
0.

77
 

(0
.0

6)
 

0.
83

 
(0

.0
6)

 
1.

04
 

(0
.0

6)
 

0.
97

 
(0

.0
6)

 
0.

94
 

(0
.0

6)
 

*R
es

ul
ts

 s
ho

w
n 

ar
e 

th
e 

m
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
n 

of
 th

e 
pa

ra
m

et
er

 e
st

im
at

es
 g

le
an

ed
 fr

om
 th

e 
10

0 r
ep

lic
at

io
ns

. 
Th

e 
up

pe
r p

an
el

 r
ep

or
ts

 th
e 

re
su

lts
 fr

om
 th

e 
fir

st
 p

ar
am

et
er

 s
et

tin
gs

, t
he

 lo
w

er
 p

an
el

 th
e 

se
co

nd
 (s

ee
 te

xt
). 

p 
is

 th
e 

fr
eq

ue
nc

y 
of

 th
e 

A 
al

le
le

: m
A

A
, m

A
a

, 
ar

e 
th

e 
m

ea
n 

ge
no

ty
pe

 e
ff

ec
ts

; v
-

~
, v

-~
. an

d 
v-
, a

re
 th

e 
ad

di
tiv

e,
 d

om
in

an
ce

, a
nd

 e
nv

iro
nm

en
ta

l v
ar

ia
nc

e,
 re

sp
ec

tiv
el

y.
 



Pedigree Mixed Models 81 

posed method is its sacrificing of covariance terms, a special type of pedigree was 
investigated in the simulation study. This pedigree type has three generations, but its 
size is dictated by a “number of offspring” parameter 0. This parameter gives the 
number of offspring in the second and third generations for each set of parents in the 
first and second generations. Figure l a  and b depicts a pedigree of this type with o = 
2. Figure l a  and b depicts pedigrees with o = 1 and o = 3, respectively. Such pedi- 
grees allow easy characterization of their covariance and related terms. The number of 
nuclear families in such pedigrees is simply o + 1; the number of pedigree members, 
m, is simply m = 2 + 20 + 02. The number of possible pedigree member “pairs,” 
tp, whose covariation could be parameterized is, because of symmetry 

tp = m * ( m  + 1)/2. (6) 

Because only additive variance, dominance variance, and random environmental vari- 
ance terms were assumed in the models studied, many of the tp covariance terms in 
Eq. (6) would naturally be 0 (e.g., excluding inbreeding, spouses should not share 
genes, neither should inlaws, etc.). The number of such terms, t z ,  given a pedigree of 
the type discussed above with o offspring parameter is 

tz = 2 * 0 + 02(0 - 1). (7) 

Since the partition-sets used in the simulation study were defined by the o + 1 nuclear 
families, the number of pedigree members pairs, tm, whose covariation is parameter- 
ized in the proposed mixed model is given by 

} -0. (0 + 2)(0 + 3 )  tm = (0 + 1) { 
2 (8) 

Six different pedigree types defined by the parameter o were investigated. A total 
of 250 simulated subjects were targeted for inclusion in any one simulation study. 
Because this number was not possible to achieve given certain of the pedigree sizes 
investigated, an effort was made to get as close to this number as possible. Table I 
displays some of the characteristics of the pedigree settings investigated. As noted in 
Table I, the pedigree types investigated (i.e., 3-generation, o parameter dictated) allow 
easy quantification of the sacrificed covariance terms. 

Two different segregation parameter settings were studied. The first assumed allele 
frequencies of 0.25 and 0.75, codominance, with mean genotype effects of 12.0,10.0, 
and 8.0, an additive variance of 1 .O, a dominance variance of 0.0, and a random envi- 
ronmental variance of 1 .O. The second setting was similar to the first except that the 
additive variance and dominance variance were both set to 0.5. Pedigree data con- 
forming to each of these parameter configurations for each of the pedigree types out- 
lined in Table I were generated. Pedigree data were generated with the covariance 
matrix defining genetic parameters [i.e., Eq. (2)] complete and intact to produce the 
polygenic and environmental effects. Major locus genotypes and effects were assigned 
to each pedigree member by the simple “gene dropping” method applied to the found- 
ers of each pedigree [MacCluer et al., 19861. One hundred replications for each con- 
figuration were run. For each replicate run, estimates of the segregation parameters 
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were obtained by maximizing a likelihood function consistent with the scheme outlined 
above and Eq. (4) with the NPSOL optimization package [Gill et al., 19841. The object 
of the study was to see if the proposed mixed model scheme could recover the generat- 
ing parameters despite the loss or sacrifice of covariance terms assumed in the model. 
FORTRAN subroutines written by the author to implement the relevant llkelihood func- 
tion for the pedigree settings discussed are available at no charge from the author through 
e-mail (Nicholas-Schork@um.cc .umich .edu) . 

The results of the study are displayed in Table 11. As can be seen from Table 11, 
the generating parameters were recovered well, although there does appear to be a 
consistent underestimation of the environmental variance. The settings involving a true 
dominance variance of 0.0 did, of course, force some bias in the estimation of the 
variance terms in those settings. Remarkably, there does not appear to be any relation- 
ship between the amount of covariation not parameterized in the proposed model and 
the reliability of the parameter estimation, which suggests that the scheme may work 
in other settings and have some general utility in identifying major loci in the presence 
of polygenic and environmental ‘‘background’ ’ effects while allowing for the isola- 
tion and separation of these other genetic and environmental sources of variation. 

Profile Likelihood Evaluation 
In order to better assess the accuracy of the proposed methodology, a comparison of 

likelihoods evaluated exactly and those obtained using the approximation discussed in 
this paper was pursued. Three data sets with 25 pedigrees, each with 10 members and 
3 generations (i.e., an o-parameter of 2), were generated that assumed different segre- 
gation patterns. Each data set assumed an allele frequency, pa,  of 0.25 and mean geno- 
type effects of p~ = 12.0, p~~ = 10.0, and kaa = 8.0. However, the first data set 
assumed a: = 0.5, a: = 0.5, and u? = 1.0, the second, a: = 1.0, and u: = 
1.0, and the third, a: = 2.0, and u: = 0.0, and u: = 1.0. MLEs were obtained 
for the exact model by maximizing the complete multivariate normal likelihood func- 
tions over all the pedigrees’ 10 members (i.e., no partition-sets or conditioning were 
used) using a complete covariance structure (i.e., no sacrficing of covariance terms 
was used). This function maximization required consideration of all 3,607 possible 
Mendelian genotype arrangements for each pedigree’s 10 members at each iteration. 
Maximization was carried out using the NPSOL package. MLEs using the approxima- 
tion discussed in this paper were also obtained from these data sets. After MLEs were 
obtained, each parameter was allowed to vary within a reasonable range while the oth- 
ers were held fixed at their maximum values so that an investigation and comparison 
of the effects this variation had on the likelihood of the parameter estimates for each 
data set could be made. It should be emphasized that the approximate model did yield 
likelihoods that were uniformly lower than those produced by the exact method. This 
is to be expected because of the sacrifice of covariance terms. However, by adding a 

Fig. 3. Profile likelihoods for an exact and approximate mixed model for variance component parame- 
ters assuming 25 pedigrees with 10 members each following segregation patterns with parameters p = 
0.25, paA = 12.0, pAa = 10.0, paa = 8.0, at = 0.5, u$ = 0.5, and at = 1.0 (upper pane1)p = 
0.25, paA = 12.0, pAa = 10.0, paa = 8.0, pt = 1.0, uz = 1.0, and a: = 1.0. The dashed line 
represents the approximation and the solid line the exact method. A value of 230 was added to likelihoods 
obtained with the approximate model. 
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TABLE 111. Time in Seconds on Various Computers Needed to Compute One Iteration of the 
Proposed Mixed Model for Pedigrees of Various Sizes* 

Computer 

IBM XT (6 mhz) 
Apollo DN3000 
Apollo DN3500 
Apollo DSP4000 
IBM PSI2 80 (16 mhz) 
Sun SPARCstation 1 
Dec 3100 
Dec 5000 
IBM 3090-600E (scalar) 
IBM RS/6000 
IBM 3090-600E (vector) 

1 2 3 

4.390 
0.100 
0.033 
0.033 
0.052 
0.016 
0.008 
0.004 
0.001 
0.001 
0.001 

13.840 
0.251 
0.117 
0.100 
0.109 
0.012 
0.008 
0.004 
0.002 
0.001 
0.002 

43.280 
0.830 
0.400 
0.367 
0.432 
0.023 
0.019 
0.008 
0.005 
0.012 
0.003 

4 

138.570 
2.723 
1.267 
1.267 
1.260 
0.081 
0.055 
0.031 
0.016 
0.023 
0.009 

5 6 

455,930 
9.000 
4.167 
4.083 
3.960 
0.256 
0.178 
0.113 
0.052 
0.045 
0.024 

1533.680 
30.101 
13.867 
13.800 
12.960 
0.817 
0.676 
0.402 
0.174 
0. I50 
0.074 

*o corresponds to the o-parameter used to characterize the pedigree size and shape (see text). 

constant of 230 to all the likelihoods produced by the approximate model, agreement 
between the likelihoods obtained by both methods was found. This is encouraging 
since it suggests that the approximate model yields likelihoods that may only differ by 
a constant amount from the exact method in certain settings. 

Figure 2 displays the “profile” likelihoods for the allele frequency and mean 
genotype effect parameters for the first data set. The general agreement between the 
exact and approximate (plus a constant of 230) likelihoods, especially around the maxi- 
mum, was also found using the other data sets. Figure 3 displays the profile likeli- 
hoods for the variance component parameters obtained with the first two data sets. 
There is marked agreement between the two methods, even with respect to the under- 
estimation of u; for the second data set. Excellent agreement was also seen between 
the two methods in the consideration of the variance component parameters for the 
third data set. 

Timing Studies 
In order to assess the efficiency with which parameters could be estimated using 

the proposed scheme, some timing studies were performed. Table I11 reports the time 
in seconds needed to compute one function evaluation of the proposed method for 
various pedigree sizes and structures on some commonly used computers. Schork [ 199 la] 
suggested that it generally takes 150-200 function evaluations to maximize mixed model 
likelihoods for nuclear family data using NPSOL (note: this includes function evalua- 
tions used to compute finite-difference approximations of derivatives). This range 
of numbers can be used with Table I11 to gauge the length of time one might 
need to obtain estimates of segregation parameters using the proposed scheme. 
Further comparisons involving other machines can be obtained by using Table I11 
and the relative speeds of certain machines described by Dongarra [1991], since 
the program used to carry out the studies described in this paper was written to 
exploit the matrixhector characterization of the likelihood functions given in Eqs. 
(3) and (4). 
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DISCUSSION 

As noted in the introduction, the construction of reliable and practical mixed mod- 
els for human quantitative phenotypes has been hindered by computational difficul- 
ties. The methodology outlined previously responds to these difficulties. The method 
is both intuitive and flexible. Though more detailed investigations involving a variety 
of possible segregation parameter settings are called for, especially in the area of hypoth- 
esis testing, the results of the simulation study described previously suggest that the 
method may also be a reliable one. Evaluation of the necessary likelihood functions 
can be facilitated through the vectorization strategy outlined in Schork [ 1991al (see 
Table 111, last row) for computing over patterned covariance mixed models involving 
partition-set members, and can be further facilitated through the parallel strategy dis- 
cussed in Schork [ 1991bl for large, possibly complex, zero-loop pedigrees. 

The methodology described in this paper invites comparison with the “regressive” 
approach advocated by Bonney [ 19841. Bonney [ 19841 also suggested that modeling 
variation occurring in the “background” of a major locus could be restricted to partition- 
sets within the pedigree. However, Bonney explicitly restricted his partition-sets to 
nuclear families within the pedigree and parameterized his “background” effects in 
terms of correlations that were not wedded to Mendelian theory. Though such parame- 
terization does afford some flexibility, it does not allow the isolation and distinction of 
variation attributable to genetic and nongenetic sources. In addition, although Demenais 
and Bonney [ 19891 showed that one parameterization of a regressive model was equiv- 
alent to a certain mixed model parameterization for nuclear family data, they later 
considered the use of less complicated models in an effort to avoid computational bur- 
dens [Demenais et al. , 19901. The method described in this paper is relatively efficient 
computationally (Table 111) and can be made more so, as noted above. In addition, the 
covariance matrix used in Eq. (4) for each partition-set could be parameterized in terms 
of correlations compatible with regressive models, if it was desired to do so. 

Obviously, greater focus on, and research interest in, both previously proposed 
mixed models and the method outlined in this paper will force a more precise charac- 
terization and determination of the practical and theoretical merits of various mixed 
model strategies-something sorely needed if the investigation of the genetic basis of 
human quantitative traits is to keep pace with developments in laboratory technologies 
and plant and animal genetic analysis techniques. 
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