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ABSTRACT Lattice models of proteins 
were used to examine the role of local propen- 
sities in stabilizing the native state of a protein, 
using techniques drawn from spin-glass theory 
to characterize the free-energy landscapes. In 
the strong evolutionary limit, optimal condi- 
tions for folding are achieved when the contri- 
butions from local interactions to the stability 
of the native state is small. Further increasing 
the local interactions rapidly decreases the 
foldability. o 1995 Wiley-Liss, Inc. 
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INTRODUCTION 
The relative importance of the various interac- 

tions stabilizing the native state of a protein is a 
matter of some dispute. In particular, there has been 
significant interest in trying to clarify the contribu- 
tions made by local propensities and tertiary inter- 
actions, not only in determining the final folded 
state, but also in directing the folding process so that 
state can be achieved in a reasonable time-scale. Ad- 
dressing this issue is of obvious importance in dis- 
criminating between various proposed models for 
protein folding dynamics. Studies on the role of local 
and tertiary interactions by G6 and co-workers show 
the essential nature of specific tertiary interactions 
in the stabilization of the native state.'. Monte 
Carlo simulations of the folding process with ter- 
tiary interactions and a small amount of bias toward 
a native local structure have been shown to produce 
successful folding of proteins in adequate 
Zwanzig and co-workers claimed that proteins could 
fold rapidly if there is a rather large local bias to- 
wards the correct c~nformation.~ Karplus and 
Shakhnovich pointed out, however, that in  such a 
case, protein folding would not be cooperative and a 
significant fraction of the population of proteins will 
not be in the ground state at reasonable temper- 
atures.8 Dill and co-workers used simple lattice 
models with nonlocal interactions and helical pro- 
pensities to show that the strength of the local pro- 
pensities has to be small with respect to the tertiary 
interactions in order to obtain the average length 
and number of helices observed in biological pro- 
t e i n ~ . ~ ,  '' Dill and G6 and co-workers have sug- 
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gested that the limited success of the secondary 
structure prediction methods argues against the pri- 
macy of local propensities.', '' With such evidence 
for the primacy of tertiary interactions, i t  is then 
important to question whether folding is in fact en- 
hanced by large local propensities. 

In contrast to many studies that try to understand 
proteins by considering how they reflect the more 
generic properties of heteropolymers, we assume 
that it is difficult for proteins to be able to fold rap- 
idly, resulting in significant evolutionary pressure 
for proteins to have properties that may be be quite 
different from that of more random heteropolymers. 
In particular, we explore the limit where proteins 
have been optimized for rapid folding. While there is 
evidence that suggests that  proteins have not been 
so optimized, this model can help to explain the fold- 
ing process and rationalize the observed structure of 
biological proteins." This is because there is a di- 
rect connection between the most optimizable struc- 
tures and those that are most likely to arise through 
evolution, even in the absence of complete optimiza- 
tion. Here we seek to determine what combinations 
of interactions would give the most optimal folding 
behavior and how this behavior is modulated by 
changes in the magnitude of these interactions, in 
order to try to unravel the magnitude of local pro- 
pensities versus tertiary interactions in the strong 
evolutionary limit. 

Folding proteins must avoid the slow dynamics 
characteristic of rough energy landscapes. We char- 
acterize the roughness of the energy landscape using 
concepts applied to proteins originally borrowed 
from the physics of spin glasses.12p24 In this meth- 
odology, we consider that there are two possible 
phase transitions, the first to the folded state of the 
protein at a temperature Tf, the second to a glassy 
state at a temperature Tg. At temperatures close to 
T,, the dynamics of the system become dominated 
by the roughness of the energy landscape, due to a 
lack of thermally accessible transition states be- 
tween minima. In the thermodynamic limit, the sys- 
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tem becomes nonergodic at temperatures below T,. 
Although there has been some indication that pro- 
teins do have glassy properties at low tempera- 
t ~ r e , ~ ~  in this model, the question is how do proteins 
evolve so as to avoid such glassy behavior. It has 
been observed that protein structures evolve much 
more slowly than protein s e q u e n ~ e s . ~ ~ - ~ ~  The strong 
evolutionary limit involves the assumption that the 
sequence has evolved to optimize the interactions in 
the protein chain in order to facilitate rapid folding, 
by maximizing the ratio of T f / T g .  

We can take advantage of the fact that  for proteins 
confined to a lattice, we can do an  exhaustive enu- 
meration of all compact conformations for short pro- 
teins. This allows us to calculate the thermodynamic 
properties of these proteins exactly, assuming that 
the non-compact conformations are thermodynami- 
cally irrelevant. In particular, we can use the ran- 
dom energy model (REM) for determining how the 
values of Tf and T ,  vary with the strength of the 
various interactions; and if the energy function is a 
linear function of a set of adjustable parameters, we 
can determine the values of those parameters that 
maximize Tf/Tg in closed form.12222-24 

In this work we include both nonlocal and local 
interactions and optimize the interaction parameters 
to maximize the ratio TfITg. We find that the sets of 
interactions with optimal foldability have quite mod- 
est contributions from local propensities. While 
T f / T g  is somewhat increased by the addition of local 
propensities to the energy function, the relative op- 
timizability of various structures does not apprecia- 
bly change. Further increasing the magnitude of the 
local interactions causes a large decrease in Tf/T,. 

METHODS 
We use a simple model where each protein con- 

sists of a chain of 36 monomers, confined to a 6 x 6 
two-dimensional square lattice. The bonds are all of 
unit length, with adjacent residues existing at adja- 
cent sites. There are a total of 114,674 self-avoiding 
walks for the 6 x 6 square lattice, not counting ro- 
tations. With the inclusion of energetic parameters 
representing angles, it is necessary to consider con- 
formations and their mirror images separately. 

The energy function consists of a simple contact 
form combined with an additional term that is a 
function of the local angle: 

E = Xyc( i , j ) t i i j  + C y d ( i , o i )  (1) 

where 6, is equal to one if residues i and j are not 
adjacent in sequence but are on adjacent lattice 
sites, and zero otherwise, and & is the angle formed 
by residues i - 1, i, and i + 1, with possible values 
{-go", O", +go"}. yJi, j )  is the adjustable parameter 
reflecting the energy contribution due to contact be- 
tween residues i and j ,  while yd(i,+J is the local pro- 
pensity for residue i to have angle +i. The sets of 

i<j i 

yc( i , j )  and yd(i,+J are the adjustable parameters 
supposedly optimized through evolution. These en- 
ergy parameters include entropic contributions due 
to the side chain and the solvent degrees of freedom. 

Due to the nature of the lattice, the only contacts 
possible are between odd and even residues, so the 
total number of possible contacts is 289. As each 
compact conformation has exactly 25 contacts, and 
only relative energies matter, there is one fewer ad- 
justable parameters for the contact energies. Like- 
wise, for similar reasons, there are only two inde- 
pendent parameters for each of the 34 nonterminal 
residue angles, bringing the total number of adjust- 
able parameters to 356. 

The set of energy parameters was optimized for 
each compact conformation to maximize the ratio of 
T f / T g ,  using the method developed by Wolynes and 
co-workers to create optimal energy functions for 
tertiary structure p r e d i ~ t i o n , ~ ~ - ' ~  later extended to 
the study of evolutionarily-optimized proteins by 
Govindarajan and Goldstein. '' To summarize this 
approach, in the context of the random energy model 
T f / T ,  is given by 

for 3 = A Ir, where r is the width of the distribution 
of energies of the ensemble of random states, A is the 
average energy difference between these states and 
the native state, and So is the conformational en- 
tropy of the protein.24 As TJT,  increases monoton- 
ically with 3, maximizing 3 will therefore maxi- 
mize Tf/T,.  As long as the energy is a linear 
function of the energetic parameters {yi}, as is true 
with the energy function in Eq. (l), we can express 
the energy of any target state, E,, and the energy of 
any random state k ,  E,, as 

z 
(3) 

(4) 
i 

where ti is equal to one if the interaction correspond- 
ing to yi is present in target structure T or k ,  and 
zero otherwise. In this case, A and r are given by 

A = A y  (5) 

I " = y B y  (6) 
with 

(7) 

where the averages are over all the k random states, 
in this work the total ensemble of compact confor- 
mations. The multiplication of the energetic param- 
eters by a constant does not change the value of 3 or 
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TJT,. %, and therefore T,/T,, is maximized for the 
set of energy parameters given by 

= - B - ~ A  (9) 
Under these conditions, %opt, the value of % with the 
optimal set of y values, is given by 

%opt = -A Y (10) 

In addition to optimizing the interactions for all of 
the compact conformations, and calculating the rel- 
ative contributions of local and tertiary interactions 
to the stabilization of the native state, optimizations 
were also carried out under constraints which fixed 
the relative strength of local interactions and non- 
local interactions. In general, it is not insightful to 
maximize TJT,  while constraining the value of + = 
(EF - (E'""),)/(E, - (E)k) where Eloc is the energy of 
the conformation due to local propensities only; even 
with + = 0, it is possible for large and cancelling 
local contributions to the ground state energy to in- 
crease % through their influence on r. We instead 
optimized the interactions for fixed values on q, de- 
fined by 

' 

.-a - 
. $,.- .. . .  
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- 

t '  
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YloeBlocYloc q2 = 
YtertBtertYtert 

(11) 

where the subscripts loc and tert refer to the local 
propensities and tertiary contacts, respectively. This 
serves the purpose of modulating the total effect of 
the local interactions over the entire ensemble of 
structures. The relationship between q and 4 is 
monotonic and well-behaved, and does not differ sig- 
nificantly between the various structures studied. 

RESULTS 
All the compact structures of the 36-mer confined 

to a 6 x 6 square lattice were enumerated, and the 
energetic parameters for the local and nonlocal in- 
teractions of the energy function of Eq. (1) were op- 
timized for each structure using the spin-glass 
methodology described above. The distribution of 
%opt. values for the optimized structures are shown 
in Figure 1. The results are compared with our pre- 
vious study" where only the tertiary interactions 
were optimized and local interactions are ignored. 
As expected the aopt values increased with the num- 
ber of adjustable parameters. The relative optimiz- 
ability of the various structures did not change sig- 
nificantly, as shown in Figure 2: the highly 
optimizable structures are the same whether or not 
local interactions are included. There was no observ- 
able tendency for highly optimizable structures to be 
either more or less affected by the inclusion of local 
interactions than poorly optimizable structures. 

The + values, representing the percentage of the 
stabilization of the folded state due to local interac- 
tions, were calculated for all of the structures under 
the condition of optimized interactions. The distri- 

R opt 

Fig. 1. The distribution of aOpt values for the optimized struc- 
tures with (-) and without (--) local interactions. 

bution of these 4 among the various structures is 
shown in Figure 3. The contribution from the local 
propensities to the stability of the native state of the 
protein is small under optimal conditions, with a 
mean + value of approximately 0.19. There were 
again no correlations observed between the zopt val- 
ues and the fractional stability due to local interac- 
tions. 

The dependence of the foldability on the extent of 
stabilization of the native state due to the local in- 
teractions was studied by optimizing the interac- 
tions under the constraint of a fixed value of y, de- 
fined by Eq. (11). Optimization of interaction 
parameters was carried out, for various structures, 
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4) 
Fig. 3. The distribution of +, the fractional stability of the native 

state due to local propensities, for various structures with opti- 
mized local propensities and tertiary interactions. 

for several values of q between zero and infinity, 
using the Lagrange's method of undetermined mul- 
tipliers. As the constraint is a nonlinear one, the 
solution was obtained numerically. For each set of 
interaction parameters, + values were also calcu- 
lated. Figure 4 shows the resulting variation of 3 
with + for a number of different structures. As the 
strength of local propensities increases, the opti- 
mizability increases until 3 = aopt value is 
reached, and then 3 decreases rapidly as the local 
interactions begin to  dominate. In a previous paper, 
we showed how correlations between various ener- 
getic terms can affect the optimal set of interaction 
parameters and %opt.12 When we neglect correla- 
tions between the tertiary contacts and local propen- 
sities, there is a small decrease in the % values in 
general, but the dependence of 3 on + does not ap- 
preciably change. 

DISCUSSION 
In an  attempt t o  explain how a protein folds into 

an unique structure from a random unfolded state in 
a short time several models have been developed. 
Some of these models emphasize the importance of 
local propensities for directing the folding process. 
Others involve more balance between the tertiary 
interactions and local propensities. We find, using 
our model, that the optimal folding interactions oc- 
cur when the local contributions are small. 

There are obviously many simplifications and ap- 
proximations made in these calculations, involving 
both our model for the protein and our optimization 
procedure. It is important to understand how much 
the perspectives gained from these models can be 
extrapolated to  biological proteins. We consider the 
nature of the lattice model for proteins first. 

In order to be able to do the exhaustive enurnera- 
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Fig. 4. 3 values for optimized interactions, under a fixed 
strength of local propensities, as a function of +, the fractional 
stability of the native state due to local propensities for (a) the 
most optimizable structure, (b) the least optimizable structure, (c) 
the structure with highest + under optimized conditions without 
constraints, (d) the structure with lowest + under optimized con- 
ditions without constraints, (e) a p meander, (f) packed two-di- 
mensional a-helices. 

tion for the 36-residue protein, we restricted our con- 
sideration to the compact conformations on the 6 x 6 
two-dimensional square lattice. There is experimen- 
tal evidence that the search for the native conforma- 
tion takes place in a compact space, after an  initial 
collapse of the unfolded chain into a compact 
In our previous work, we observed that qualitatively 
similar results were obtained by using an  ensemble 
of random states generated by infinite-temperature 
Monte Carlo simulations of the protein confined to a 
semicompact space. Even so, the relative contribu- 
tions of local and nonlocal interactions will be de- 
pendent on the set of random structures used. Using 
more noncompact conformations should decrease the 
importance of local interactions. If we assume that 
the various interactions are uncorrelated so that B 
is diagonal, then the optimal value of each native 
interaction is given by1' 

1 
Y i =  -- (5 ah 

(12) 

so that native interactions that are less probable are 
in general stronger. As there are three possible val- 
ues for each of the angles, the average local propen- 
sity will be approximately 3. With 25 contacts per 
compact conformation out of 289 possible contacts, 
the average interaction strength of any contact is 
approximately 289/25, or about 11.6. With 34 angles 
and 25 contacts, that means that the fraction of the 
stability due to local interactions will be approxi- 
mately (34 x 3)/(34 x 3 + 25 x 289/25) = 0.26, 
close to what we observe with our calculations which 
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include correlations and the varying probabilities of 
various interactions in the random conformations. If 
noncompact conformations are included, that will 
make contacts more infrequent in the ensemble of 
random conformations, causing their magnitude to 
increase. The relative likelihood of the various an- 
gles will still remain approximately constant. As a 
result, the relative importance of the local interac- 
tions will decrease. 

The various parameters of the model are appro- 
priate for 36-residue two-dimensional lattice pro- 
teins. We can try to relate these parameters to bio- 
logical proteins, again neglecting correlations. 
Again, the optimal interaction energy for each local 
conformation is inversely proportional to the proba- 
bility of such a conformation being found in a ran- 
dom structure, i.e., l / ( l l k ) ,  where k is the total num- 
ber of possible angles. The total energy due to local 
interactions in a N-residue protein would then be 
Nk. If each amino acid makes contacts with 1 other 
residues in random states, the probability of a given 
native contact being formed would be ZIN, so the 
optimal strength of these interactions would be NIL 
Assuming that the same number of contacts are 
formed in the folded state as in random states, the 
total stabilization energy due to the NU2 contacts 
would be p / 2 .  The resulting ratio of the local inter- 
actions to the total stabilization energy, + = 2K12k 
+ N) is plotted in Figure 5 with k = 3 (representing 
the three regions of angles populated in Ramachan- 
dran plots) and with k = 10 (representing the ap- 
proximate number of local conformations derived 
from studies of entropy change during folding). As 
shown, local interactions are a rather small propor- 
tion of the stabilization energy; especially for larger 
proteins. Note that as long as the number of contacts 
in the folded state is equal to number of contacts in 
the random state, the optimal interaction strengths 
are independent of the actual number of contacts 
formed by the individual amino acids. More ex- 
tended random states would further decrease the 
importance of local interactions by decreasing the 
probability of a native tertiary contact. This argu- 
ment also neglects the correlations between tertiary 
contacts and local propensities, as well as the depen- 
dence of interaction probability on the location of 
the amino acids on the chain. In particular, a-helical 
proteins have larger numbers of contacts between 
residues close in the sequence, contacts that would 
be more likely in random conformations, compared 
with more P-sheet proteins. This suggests that local 
interactions would play a more prominent role in 
these a-helical proteins. 

Another, deeper approximation of this method is 
that there is a connection between optimal interac- 
tions for folding and what is characteristic of biolog- 
ical proteins. As emphasized in our previous paper 
and mentioned above, there are many reasons to ex- 
pect that proteins have not been optimized for fold- 
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Fig. 5. The ratio of local interactions to total stabilization en- 
ergy, for a simple model of biological proteins, +, for k = 3  (--) 
and k= 10 (-), as a function of the number of residues N. 

ing. On the other hand, proteins would have been 
more likely to occur through evolution in a form that 
is highly optimizable. As a tall mountain generally 
has a wider base than a short mountain, any random 
point in space is more likely to be on a taller moun- 
tain, especially if that point has to be at a relatively 
high elevation. In a similar way, highly optimizable 
structures, meaning structures with approximately 
the optimal ratio of local to tertiary interaction 
strengths, will be more likely to originate from ev- 
olution, as well as to be more robust to sequence 
mutation. The plasticity of sequences, the ability of 
the sequence to change while preserving the coarser 
aspects of the protein structure, may reflect the pre- 
dominance of highly optimizable structures and the 
concomitant large range of interaction parameters 
resulting in foldability. This argument depends on 
the relative values of Tf and T ,  in biological proteins 
and random amino acid sequences, an  issue that is 
likely to be best resolved experimentally. 

The last approximation involves the use of TJT,, 
and through the use of the random energy model, 3, 
as a measure of the ability of a structure with a 
given set of interactions to fold. While the complete 
story must, of course, be more complicated, there is 
much evidence that dynamic measures of foldability 
are highly dependent on these thermodynamic mea- 
sures. Wolynes and co-workers used this procedure 
to produce optimized energy functions for tertiary 
structure p r e d i c t i ~ n . ~ ~ - ~ ~  Shakhnovich and co- 
workers used a similar form of optimization proce- 
dure to produce sequences that would fold rapidly 
during Monte Carlo s i m ~ l a t i o n s . ~ ~ - ~ ~  Chan and Dill 
and Karplus and co-workers found that a criterion 
similar to 3 distinguished foldable and nonfoldable 
s e q ~ e n c e s . ~ ~ - ~ ~  
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What we have demonstrated in this paper is that, 
for these model systems, optimal folding is obtained 
by limited energetic contributions from local pro- 
pensities. This result is in agreement and supports 
other work that has reached similar conclusions 
through completely different analyses. Conversely, 
such an analysis can be used to justify and rational- 
ize the dominance of tertiary interactions given the 
independent evidence of modest local propensities, 
and provide insight into the nature of protein evo- 
lution, biological optimization, and biological pro- 
teins. 
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