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Abstract

We examined the proximal conformation of three com-
monly used self-expanding stents when the stents were de-
ployed adjacent to one another in a tubular model,
simulating a “kissing’ stent technique. The stent pairs were
evaluated by computed tomogrphy to determine the cross-
sectional area excluded by the stents within the model. The
mean areas associated with each stent pair were compared
and significance evaluated by a t-test. A statistically sig-
nificant difference was found when the area excluded by
adjacent Wallstents was compared with both the Luminexx
and SMART stents (p < 0.001 and p < 0.002, respectively).
The difference in the area excluded and differences in
conformation might play a role in the lower patencies that
have been observed in “‘kissing’ stent series.
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Percutaneous reconstruction of the aortic bifurcation using a
“kissing” stent technique has been described as a treatment
option in the setting of stenosis or occlusion [1, 2]. Reported
patency rates of these stents in several series are lower [3-5]
than either isolated aortic [6] or iliac stents [7, 8]. Many
in vitro characteristics of various stent designs have been
explored in an attempt to determine the optimal device for
given clinical settings [9-13]. We examined the proximal
conformation of three different self-expanding stents
deployed using a ‘“kissing” stent technique in a simple
tubular model with cross-sectional imaging. The results are
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discussed in relation to the postulated theories for the clin-
ical experiences of decreased patency.

Methods

Three commonly used self-expanding stent designs were selected
for evaluation: Wallstent (Boston Scientific, Natick, MA), Lum-
inexx (CR Bard, Covington, GA), and SMART (Cordis, Miami,
FL) (Fig. 1). Ten-millimeter-diameter stents were chosen based on
the previous clinical experience of the authors and historical evi-
dence in the literature as a common stent diameter in treating
common iliac artery stenoses and occlusions. The stent dimensions
were as follows: Wallstent, 10 mm X 42 mm; Luminexx, 10 mm X
60 mm; SMART, 10 mm X 60 mm.

The stents were deployed simultaneously within a polypropyl-
ene plastic tube that was rigid and symmetrically round (diameter:
15.2 mm; length: 76 mm). The stents and model were then im-
mersed in a 37°C water bath to simulate body temperature and
facilitate an accurate conformation of the nitinol stents. The stent
pairs were allowed to remain in the water bath for a minimum of 5
min prior to imaging. Imaging was also performed with the stent
pairs in the water bath.

Computed tomography (CT) imaging was performed using a
multidetector CT (GE Light Speed, 8-slice scanner; GE Medical
Systems, Milwaukee, WI). Imaging parameters are as follows: slice
thickness, 1.25 mm; slice interval, 5 mm; kvP, 100; MA, 80; Dfov,
9.6 cm. Aninitial longitudinal scout image was obtained to document
accurate stent deployment at the same level. Four contiguous axial
images were then obtained to evaluate the shape and conformation of
the stents. The images were then transferred to a computer work-
station (GE Advantage/Windows 4.0; GE Medical Systems; Mil-
waukee, WI) to determine the area excluded by the stent pairs.

At the workstation, one of the axial CT images was selected and
windowed appropriately to allow the operator to (1) visualize the
inner wall of the model and (2) determine the outer margin of each
stent pair. Using a free-hand technique, the area excluded by the
stents was drawn using the workstation’s mouse (Fig. 2). The
workstation software provided a calculated area (mm?) for each
region of interest that was drawn. The two areas were summed to
provide the total area excluded for each deployed pair. The regions
were redrawn five separate times for each pair, and this task was
performed by the same author for consistency of tracing
methodology.



256

RERKL

—

/
O
Wbt

P ,

2
RIS “A"":‘.“
o B
RELZ WA
S W
BB AN A
% e 9.3‘\’," Al

b

SRR
RN N
e
AR AR '
NI
oottty
S

s
LR
W) )}3

Fig. 1. Side-by-side comparison of the three stent designs
evaluated: (left to right) SMART (Cordis, Miami, FL), Wallstent
(Boston Scientific, Natick MA), Luminexx (CR Bard, Cov-
ington, GA).

The cross-sectional area of the tube was calculated using the
diameter of the model (as measured by digital calipers; area of a
circle = ). Each area excluded was also expressed as a per-
centage [i.e., (area excluded/cross-sectional area of model) x 100].
The corresponding percentage of cross-sectional area preserved by
the stent lumens was calculated as well {[1 — (area excluded/cross-
sectional area)] x 100}.

The stent pairs were deployed three times each. Therefore, each
stent pair, being deployed 3 times, and the excluded areas drawn 5
times, yielded 15 values per stent design.

Statistical Analysis

The mean area excluded was calculated for each stent-pair
deployment. These mean values were then compared with the other
stent designs using a simple t-test (Two-Sample Assuming Un-
equal Variances). A p-value of less than 0.01 was considered to be
significant.

Results

Qualitatively, the cobalt—chromium alloy stent (Wallstent)
assumed adjacent circular configurations: a ‘‘double-barrel”
appearance. There was no flattening of the stent—stent
interface. In all cobalt-chromium stent deployments, one
stent assumed a visibly larger lumen than the other, despite
both stents being of identical diameter and length. Both
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nitinol designs demonstrated more apposition and flattening
along the midline; this was termed a ‘“‘double D’ appear-
ance, as it appeared similar to two adjacent letter ““D”’s back
to back (Fig. 3).

The mean, median, and observed range of the area ex-
cluded (mm?) by the stents is detailed in Table 1. The mean
area excluded by the Wallstent was 83.5 mm? (range: 80-87).
The mean area excluded for the nitinol designs (Luminexx
and SMART respectively) were 47.9 mm? (range: 43-52) and
45.0 mm® (range: 40-49). The average percentage of the
excluded area and preserved lumen are presented in Table 2.
When the area excluded by the cobalt—chromium stent was
compared to that of each nitinol design, there was a statisti-
cally significant difference (p < 0.001 for the Luminexx and
p < 0.002 for the SMART stent) (Table 3). No significant
difference was found when the area excluded by the two
nitinol stent designs were compared to one another
(p =0.23).

Discussion

In general, the reported patency rates of “‘kissing” iliac
stents is lower [3-5] than aortic stents [6], iliac stents [7, 8]
or surgical aorto-bifemoral grafts [14]. Possible contributing
factors include local thrombus formation, altered hemody-
namics, the process of intimal hyperplasia, and physical
properties of the stent itself.

As an explanation, some clinicians postulate potential
thrombus formation arising from the midline interface be-
tween two opposing stents [2]. There are two interrelated
factors that potentially contribute to an increased risk of
thrombogenicity. One is the inherent physical properties of
the stent itself. A review of this topic by Palmaz [15] dis-
cusses the role of physical stent characteristics such as
surface roughness of the metal alloy, the surface charge of
the alloy, and the free-surface energy (surface tensions)
of the material and how these can affect the rate and degree
of thrombus formation on the newly deployed stent. These
properties, in turn, influence the rate of stent endothelial-
ization.

The second is the inherent coagulation system of the
patient. All three elements of Virchow’s triad are potentially
present when a patient with bifurcation atherosclerotic dis-
ease undergoes ‘‘kissing” stent placement. Endothelial
damage is intimately associated with atherosclerotic vas-
cular disease. Frank stasis, or, at the very least, disturbed
flow, has been shown following kissing stent deployment, as
discussed earlier [9, 16]. Finally, at least local alteration in
the coaguable environment can be assumed with the pres-
ence of metallic endoprotheses.

A description of the histopathologic examination of
early, failed ‘kissing” stents describes the stents as con-
taining a web of gelatinous appearing tissue [17]. Micro-
scopically, this web was composed of smooth muscle cells
in a collagenous background matrix. The authors concluded
that altered flow dynamics in the treated segment, caused by
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diameter differences (10 mm left, 12 mm right) as well as
flow alterations adjacent to the stents, were responsible for
accelerated intimal hyperplasia and failure.

Detailed examinations of blood flow at bifurcations have
been performed using both computer simulations and
in vitro circuit models [18-20]. In a nonelastic, glass model
of the human aorta with steady-state flow, areas of slowed
and stagnant flow can be identified [18]. In addition, sec-
ondary flow patterns (vortices) were observed under simu-
lated resting conditions.

The hemodynamics in a pulsatile flow model of the in-
frarenal aorta change during the cycle of systole—diastole.
At peak systole, flow is not disturbed or turbulent; whereas
at mid-diastole (the point of slowest blood velocity), there
are areas of turbulent flow along the outer or lateral aspect
of the flow column [9]. Localized changes in flow can and
do occur with varying angles of the bifurcation [21], the
degree of curvature of the infrarenal aorta in the anterior—
posterior (A-P) dimension [20], changing from the resting
to the exercise state [18, 20] as well as within the cardiac
cycle itself. The flow of blood in the distal infrarenal aorta
can not only be altered, but small areas of frank stagnation
have been confirmed at the level of the posterior wall near
the bifurcation in the exercise state [20].

The introduction of unilateral or bilateral stents adds yet
another variable to the list of parameters that can alter flow.
In Saker’s abstract under steady-state flow conditions, glass
beads were injected into the model to assist with visuali-
zation of flow [16]. These beads were shown to accumulate

Fig. 2. Example of excluded area (marked
by asterisks) drawn on the CT image for
measurement.

in the space between the kissing stent vertex and the model’s
flow divider. The authors went on to report the lack of
observed laminar flow following the kissing stent
deployment.

There is a relationship between blood flow and observed
intimal hyperplasia. A decrease in blood flow (i.e., low
shear stress) has been associated with increased neointimal
thickening in the anastomotic region of synthetic bypass
conduits. Conversely, a high-shear-stress environment can
inhibit or even initiate regression of neointimal thickening
[22]. Similar observations have also been shown in vein
bypass grafts [23]. More importantly, decreased blood flow
through a stented vessel segment has been shown to promote
neointimal hyperplasia [24].

The materials used in the manufacturing of the stents are
partly responsible for our observations. The self-expanding
properties of the Wallstent are a result of a spiral con-
struction with a mesh of longitudinal wire strands. Stents
made of nitinol depend on shape memory of the material.
Shape memory is the property of nitinol where an initial
shape is re-formed or restored at a temperature level pre-
determined in the manufacturing process [25]. It is the
characteristic that is responsible for the return to a circular
cross section after deployment of a nitinol stent. In addition,
continued expansion force (radial force) is generated in the
drive to return to the original unconstrained diameter. This
characteristic contributes to the observed flattening of the
stent-stent interface, resulting in the ‘“double D>
appearance.
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Fig. 3. Transverse CT image of each stent pair evaluated. Note the difference in configuration between the two nitinol stents
(@ and c) and the cobalt-chromium alloy stent (b). (a) SMART,; (b) Wallstent; (c) Luminexx.

Table 1. Areas excluded by the stent pairs

Mean area Median area Observed

excluded excluded range

(mm?) (mm?) (mm?)
Wallstent 83.5 84 80-87
Luminexx 47.9 48 43-52
SMART 45.0 46 4049

Table 2. Percent of transverse area excluded and included for each stent
pair

% Area excluded % Area included

Wallstent 46 54
Luminexx 26 74
SMART 25 75

The radial strength of stents can vary at different degrees
of stenosis across a curved vessel segment [12]. In addition,
cell design has also been shown to affect stent expansion

Table 3. Comparison of area excluded by stent type

Difference (mm?) Significance
Wallstent vs. SMART + 38.5 p < 0.002
Wallstent vs. Luminexx + 35.6 p < 0.001
SMART vs. Luminexx -29 p =023

and configuration. Comparisons of the physical character-
istics of self-expanding stents (hoop strength and radial
force) have shown conflicting results. Dyet et al. [11] ob-
served that the Wallstent had a greater hoop strength than
nitinol stents. These findings were contradicted in another
study in which it was observed that the SMART stent (in
addition to other nitinol designs) showed better performance
than the Wallstent [10].

Our study shows that the different configuration of two
adjacent stents can result in varying amounts of excluded
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cross-sectional area. This can approach 50% in one of the
stent designs evaluated. This region can theoretically in-
crease the possibility of thrombus formation and the
development of intimal hyperplasia due to slowed and tur-
bulent blood flow. Stents constructed of nitinol displayed
more apposition in the midline. This “double D confor-
mation reduced the excluded space compared to the “double
barrel” appearance of the cobalt-chromium metallic stent,
simultaneously preserving a greater portion of the model’s
lumen for flow patterns that are less disturbed. These find-
ings indicate that placement of ‘‘kissing’ nitinol stents in
aortic bifurcation disease might yield better patencies and
clinical outcomes.

An admitted limitation of this study was the use of a rigid
polypropylene model without pulsatile flow. It was our
intention to focus on the behavior of two adjacently de-
ployed stents and how this affected their conformation with
one another. Further investigation of the effect in a flow
model constructed from a more compliant material could
help guide the choice of devices for placement at the aortic
bifurcation even further.
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