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Conformal Mapping of Long Quadrilaterals and 
Thick Doubly Connected Domains 

R. Laugesen 

Abstract. In this paper we investigate theoretically an approximation technique 
for avoiding the crowding phenomenon in numerical conformal mapping. The 
method applies to conformal maps from rectangles to "long quadrilaterals," i.e., 
Jordan domains bounded by two parallel straight lines and two Jordan arcs, 
where the two arcs are far apart. We require that these maps take the four corners 
of the rectangle to the four corners of the quadrilateral. 

Our main theorem tackles a conformal mapping problem for doubly connected 
domains, and we derive from this our results for quadrilaterals. As a corollary, 
we extend the "domain decomposition" mapping technique of Papamichael and 
Stylianopoulos. 

Similar results hold for the inverse maps, from quadrilaterals to rectangles. 

1. Introduction 

When  one tries to compute  numerically a conformal  map  of  an elongated region, 
one is frequently obstructed by the "c rowding"  phenomenon :  points  that  are 
uniformly distributed in the domain  can come exponentially close to one another  
in the image, and vice versa. A more  helpful feature of  mappings  of  elongated 
regions is that  they are often " local ized":  an alteration of  the bounda ry  at one 
end of  the region will not  change the mapp ing  near the other  end much. In this 
paper  we present a me thod  that  bo th  avoids crowding and takes advantage  of 
localization for the conformal  mapp ing  of  a part icular  class of  long quadrilaterals, 
shown in Fig. 1. We now describe our  main  results. 

A quadrilateral is a Jo rdan  domain  G in the complex plane together  with four 
distinct points  a, b, c, d of  t3G, listed in counterclockwise order. Given such a 
quadrilateral  G, a unique h > 0 and a unique conformal  map  g onto  G from the 
rectangle R = ( - h / 2 ,  h/2) x (0, 1) exist such that  g takes the four corners h/2, 
h/2 + i, - h / 2  + i, - h / 2  of R onto  the points a, b, c, d, respectively. The length h 
of  R is called the conformal module of the quadrilateral  G. 

Suppose G has the form shown in Fig. 1. That  is, the Jo rdan  curve t3G intersects 
{w: Im w = 0} in the segment I-d, a], intersects {w: Im w = 1} in the segment I-c, b], 
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Fig. 1. The conformal map  g of the rectangle R onto the quadrilateral G. 

and intersects {w: 0 < Im w < 1} in the Jordan arcs 71 and ])2- Throughout 
this introduction we take hi = hi2 = hz in Fig. 1. Write R1 for the half-strip 
( -  ~ ,  h/2) • (0, 1) and write G1 for the Jordan domain bounded by 

[ - o %  a] u71 u [ - ~  + i, b]. 

Let 01 be the conformal map from R 1 onto G1 that takes h/2, h/2 + i, oo to a, b, 
0% respectively, as in Fig. 2 (with hi = h/2). 

We will show that g is uniformly well approximated by 91 on the right-hand 
half of R provided G is lon9 (in the sense that its conformal module h is large) 
and provided Yl is "nice." In particular, Theorem 4 and Corollary 2 below give 
the following. Suppose that ~ ~(0, 1] and that 71 can be parametrized as Yl(Y) = 
x(y) + iy, y E [0, 1], where x(y) is absolutely continuous and 

(1.1) ess suplx'(y)l < c o t ( 2  ). 
0 < y < l  

Then 

(1.2) 19(z) - 91(z)1 -< M'e -'~hmin(''l/z), z e R ,  Re z > 0, 

where M' > 0 depends only on 71. We construct an example to show that the 
order of approximation O(e -'~h"i"('' l/z)) in (1.2) is sharp as h ~ ~ .  Clearly, this 
order of approximation is never better than O(e-"h/2), but it can be worse when 

< �89 These results have obvious analogues for the left-hand half of R, in which 
Re z < 0 .  

The reason we search in this paper for a good approximation to 9 is that when 
G is even moderately long, say h > 10, the standard numerical procedure for 
approximating 9 can break down due to the "crowding effect." The standard 
procedure is first to map R to a disk and then to map that disk to G. Roughly 
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Fig. 2. The conformal map  01 of the half-strip R 1 onto G 1. 
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speaking, the intermediate images of h/2, hi2 + i (respectively - hi2 + i, - h/2) on 
the boundary of the disk are only about e -nh/2 apart, yet they must subsequently 
be mapped to the points a, b (respectively c, d) at distance > 1 from each other 
on the boundary of G. This exponential crowding of points on the boundary of 
the disk can cause serious numerical problems, and can be thought of as a kind 
of ill-conditioning of the composite map from R to G. 

For more detailed accounts of the crowding effect and its impact on numerical 
conformal mapping, see [PaKW, Section 21, [Pa, pp. 68, 80], [PaS4], [Well, 
[We2], [MeZ], and [PaS2, p. 353]. For previous work on long quadrilaterals, see 
[GAP], [MoS], [PaKW], [PaS2], and [SeK]. Howell and Trefethen show how to 
eliminate crowding for long polygons  in [HOT]; their idea is to avoid the 
intermediate mapping to a disk by defining a "Schwarz-Christoffel" transforma- 
tion directly on the long rectangle. Also see [DeLE], where an ellipse rather than 
a disk is used as the standard domain for conformal mapping. 

One reason that gl is a worthwhile approximation to g is that gl can be 
evaluated numerically in a way that avoids crowding. Indeed, z~--~e '~z takes R 1 
onto the upper half of the disk A(0, enh/2), while w ~ e ~w takes G 1 conformally onto 
a Jordan domain D'~ in the upper half-plane whose boundary intersects the 
real axis in the segment [-e ~b, e~a]. Let D 1 be the Jordan domain formed by 
the union of D'~ and its reflection in the real axis, together with [e '~b, e'aJ. Let 
f l :  A(0, e nh/2) ~ D1 be the conformal map with f l (0)= 0 that is positive on the 
positive real axis. Clearly, 

gl(z)  =-1 log f l ( e ~ ) ,  z ~ R1, 
7~ 

where "log" denotes the branch of the logarithm with -zr < Im log < z~. Thus to 
evaluate gx it is enough to evaluate fl. This can be done numerically without 
undue fear of crowding since D 1 is not elongated, in general. 

Another feature of our method is that it takes advantage of the localized nature 
of g: in constructing gl we simply throw away the left-hand boundary arc Y2 of 
dG, but still we find that gl gives a good approximation to g in the right-hand 
half of R. Thus, in general terms, it is the localization of g that enables us to reduce 
the problem to that of computing gl and hence to the well-studied problem of 
computing the Riemann map fl. 

Papamichael and Stylianopoulos [PaS2] have also approximated g in a way 
that avoids crowding, by using the "exponentiation then reflection" trick described 
above together with a domain decomposition idea and Garrick's integral equation 
method. They assume ~ > �89 in (1.1), so that ess suprlx'(y)l < 1, and then they 
approximate g by the conformal map ql from the right-hand half of R onto the 
right-hand "half" of G. We shall see that their result 

(1.3) g -- ql  = O(e-uh/2)  

follows from the "ct > ~ case of (1.2). In Theorem 4 and Corollary 3 we generalize 
their result to arbitrary a ~ (0, 1]. Papamichael and Stylianopoulos [PaS1, Con- 
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jecture 3.1] conjectured on the basis of experimental evidence that (1.3) holds for 
all ~, but we disprove this for ct < �89 by means of an example in Section 5. 

Incidentally, our approximation gl is generally easier to compute numerically 
than the map q~ used by Papamichael  and Stylianopoulos: gl is computed from 
the map  f~ that goes from a disk to a simply connected domain, whereas ql is 
computed in the corresponding way from a map that goes from an annulus to a 
doubly connected domain. 

Our  final results address the "inverse" problem of approximating g -  1 by gi- ~ 
and qi-1. Let 

a = m i n  R e  w - m a x  R e  w. 
WE~rl WEy2 

In Corollaries 6 and 7 we show that 

g - i  _ g l l  _ O(e-na/2) and g-1  _ qi-1 = O(e-~a/2) 

uniformly in the right-hand "half"  of G, with no assumptions on 71 or ~2. If 
a > 10, for example, these error terms O(e -~'/2) are at most 10 -6 or so. 

2.  S t a t e m e n t  a n d  D i s c u s s i o n  o f  R e s u l t s  

Our main theorem, Theorem 1, deals with approximating the conformal map 
onto a doubly connected domain. In Corollary 2 we derive from this an approx- 
imation to the conformal map  onto a quadrilateral. Corollary 3 gives a similar 
result for the domain decomposition approach. In Theorem 4 we assume that 71 
has bounded slope and then deduce that our previous results apply. This enables 
us to generalize the results of Papamichael  and Stylianopoulos and to answer in 
the negative two questions raised by them. Lastly, we estimate the errors for the 
approximations in the inverse directions, in Theorem 5 and Corollaries 6 and 7. 

For  Theorem 1 we consider a doubly connected domain D in the Riemann 
sphere that is symmetric in the real axis. Let the components of D c be K 1 and K 2, 
and assume that oo ~ K 1 and 0 ~ K 2. Let 0 < r 2 < 1 < r I < oo and suppose that 

f :  {r 2 < [z[ < rl} ~ D  

is a conformal map that is symmetric in the real axis and is positive on the positive 
real axis. Suppose further that the inner complementary components {z: Izl _< r2} 
and K z correspond under f .  See Fig. 3. Let D 1 = C \ K  i and take 

A: {Izl < r~) ---~D 1 

to be the conformal map with fl(0) = 0 and ( f i - l o  f)(r l)  = rl, as in Fig. 4. Note 
that f l  also is symmetric in the real axis. Define 

Ilflllmi. = lim inflfl(z)l = min Iwl = minlwl. 
Izl~rl  wm~D1 wmK~ 
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The conformal map f onto the doubly connected domain D. Fig. 3. 

Write 

r = - -  and r ,  = max r2, , 
r l  

so that  r ,  < 1 and r < r2,. When  r ,  is small, we say D is a thick doubly  connected 
domain.  

The next theorem shows that  log f l  provides a good  approximat ion  to 
log f for [zl > 1, as long as D is thick and f l  is a H61der map. We prove it in 
Section 3. 

Theorem 1. Suppose f l  is a Hfilder map o f  order ~ ~ (0, 1], with 

(2.1) ]fl(z) - fl(w)l < Mllfll[mi, r?=lz - wl ~, [zl, [w[ < r l ,  

for  some M > O. Then r o > 0 exists such that if r ,  < r0, then 

(2.2) 

( 5 )  ]log f ( z )  - log fl(z)[ _< max 10r2, 4~Mr~ = O(r.inll,2~)), 1 < I zl < rl. 

Here r o depends only on c~ and M, and we can take 

(2.3) " ro = min(e-~, (4~M) - 1/2~). 

Fig. 4. The conformal map f l  onto the simply connected domain D 1. 
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Actually, the hypotheses of the theorem imply a more precise, pointwise 
estimate, which we also prove in Section 3: 

(2.4) 

[log f (z)  _ log f~(z)l < [lOrz]~_loglzl/~og~,[~ 3 -],oglzl/,ogr, _ 4"Mr~J , 1 _< Izl < rl. 

Note that this estimate simplifies to an expression like (2.2) when Izl = 1 and as 
Izl --, r l ;  that is, the order of approximation in (2.4) is like O(r2) < O(r.) when 
Izl = 1, and becomes like O(r ~) < O(rZ. ~) as Izl --' r l .  

A few remarks on the theorem are in order. First, we use in the theorem the 
branch of the logarithm having - rc < Im log _< n. Second, it is indeed reasonable 
to write "O( r ,  in~l' 2,)),, in (2.2), because, for each small r . ,  there is an "f l"  that is 
H61der of order e with the very same H61der constant M. To see this, take 2 > 1 
to be large and replace K~ and K z by their dilates 2K~ and K2/2. It  is found that 
the map "f l"  for the domain C\(2K 0 is H61der of order ~ with H61der constant 
M, while the corresponding " r . "  is small. 

Third, it must be admitted that the theorem invites the question: " I f  all we are 
given is the domain D, then how are we to know f ,  is H61der?" We address this 
question in Theorem 4 and its associated discussion. 

Fourth, the assumption that D, f ,  and f l  are all symmetric in the real axis is 
not of vital impor tance-- i t  simply leads to better constants in the theorem. 

O(r. ) in Finally, in Section 5 we show that the order of approximation mi,~*,2,) 
Theorem 1 is sharp in the following sense. Fix u e (0, 1]. For  each small r > 0 we 
construct a domain D such that (with r 2 = r 1/2, rl = 1/r l/z, r .  = r l/z) the map  f l  
is H61der of order ~ and satisfies (2.1) with H61der constant M, but 

sup [log f (z )  - log fl(z)[ > M " r .  in(l'2~). 
l<[z[<rl 

Here the constants M and M" depend only on ~, and so letting r ---, 0 shows that 
the order of approximation O(r~ in~l" 2~)) is best possible. 

Next we use Theorem 1 to obtain approximations to the conformal map  from 
a rectangle onto a quadrilateral. Let G be a quadrilateral of the form shown in 
Fig. 1, so that ~3G intersects {Im w = 0} in [d, a] and intersects {Im w = 1} in 
I-b, c]. Let h be the conformal module of G and let h I and h z be positive numbers 
with h -- h I + h 2. For  increased generality we redefine the rectangle R to be 

g = ( - h 2 ,  h 0  x (0, 1); 

recall that in the introduction we simply took h t = h/2 = h 2. Write 9 for the 
conformal map  of R onto G that takes the four corners h~, h~ + i, - h  z + i, - h  2 
of R onto a, b, c, d, respectively. Now let G~ be the Jordan domain bounded by 
[ -  o% a] w 71 w [ -  oo + i, b], as in Fig. 2, and redefine the half-strip R1 to be 

R 1 = ( -  o% hi) x (0, 1). 

Let g~ be the conformal map from R~ onto G1 that takes h/2, hi2 + i, oe to a, b, 
o% respectively, as in Fig. 2. 
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We now place ourselves in the situation covered by Theorem 1. Put  

D' = e ~6, 

and let D be the union of D' and its reflection in the real axis, together with the 
intervals [e ~b, e "c] and [e nd, e~a]. Thus D is a doubly connected domain that is 
symmetric in the real axis. Let 

r 2 : e - n h z ,  r 1 = e ~h~. 

We can define a conformal map f :  {r 2 < Izl < rl} ~ D by putting 

f ( z )  = e ~~176 

when Im z > 0, and putting f ( z )  = f(2) when Im z < 0; here "log" is the branch 
of the logarithm with - r c  < Im log < re. 

Now put D] = e ~G' and let D 1 be the union of D'~ and its reflection in the real 
axis, together with the interval [e ~b, e~a]. Thus D is a Jordan domain that is 
symmetric in the real axis. We define a conformal map f l :  {Izl < rx} ~ D  1 by 
putting 

(2.5) fl(z) = e ~g'~l/~)l~ 

when Im z > 0 (with fl(0) = 0), and putting fa(z) = fa(2) when Im z < 0. Note that 
( f ?  ~ o f ) ( r  0 = ra, and that all the other preliminary requirements of Theorem 1 
are satisfied by f and fl- 

From Theorem 1 we immediately deduce that g is well approximated by g~ 
provided f l  is HSlder and 

h.  = min(hl, h2) 

is large. Note that r ,  = e -'~h* and h > 2h,.  

Corollary 2. Suppose f l  is a Hblder map o f  order ae(0 ,  1], with 

(2.6) Ifl(z) - fl(w)l < Mllfll[minrU~lz - wl ~, Izl, Iwl < r .  

for  some M > O. Then h o > 0 exists such that i f  h .  > ho, then 

(2.7) [g(z) - g~(z)l < - max 10e -~h~, 4~Me -~h~ = O(e -~h*min(l'2~)) 

for  all z e R with Re z > 0. 

In view of (2.3), we may take 

ho = max( l ,  2 1  log(4~M) ) �9 

In Section 5 we show that the order of approximation O(e -gh*min(l'2ct)) in the 
corollary is best possible. 
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Note also that from (2.4) we derive the pointwise estimate 

(2.8) 
F 2 7Rr 

1 - go z/h,I 4=Me-  ~h~] , 19(z) - 91(z)1 - - [10e-~h~] 1 , ~  z ~ R ,  Re z > 0, 
Lx/3 l 

provided h,  >_ h o. 
In the special case that ?2 is a vertical line segment, we obtain a much stronger 

result than Corollary 2 by reflecting G in 72 to obtain a new quadrilateral that is 
"twice as long." Indeed, by applying Corollary 2 to this new quadrilateral we find 
that 9 - 9 1  = O(k-nhmin(l '2a))  uniformly in all of R. 

If we wish to use Corollary 2 in practice, we must confront the fact that the 
domain of 91 depends on the conformal module h of G, and that we do not 
necessarily know h if all we are given initially is the quadrilateral G. This difficulty 
can be circumvented by using an approximation/~ to h such as the one developed 
and applied in [PaS2]-[PaS4] by Papamichael and Stylianopoulos and extended 
in [GaH1] and [GaH2] by Gaier and Hayman; see also [La, Theorem 2], [MoS, 
p. 133], and [PaS2, Remark 5.3]. Specifically, given the approximation h, we put 
h 1 = i /2 and h 2 = h - i/2, so that hi + h 2 = h. 

For the next corollary we decompose the quadrilateral G into two simpler 
quadrilaterals Qt and Q2,  then approximate 9 on the right-hand half of R by a 
map onto Q1. This is the domain decomposition approach of Papamichael and 
Stylianopoulos [PaS1], [PaS2]. 

Assume now that the right-hand arc 71 of 0G, along with its endpoints, lies 
entirely in the right half-plane and that the left-hand arc 72 and its endpoints lie 
entirely in the left half-plane. Define quadrilaterals 

Q l = G c ~ ( w : R e w > O }  and Q 2 = G n { w : R e w < O } ,  

with distinguished boundary points a, b, i, 0 and 0, i, c, d, respectively, as in Fig. 
5. Assume h 1 actually equals the conformal module of Q1, so that a conformal map 

ql: R ~'~ {Re z > 0} ~ Q a  

exists that takes the corners hi, hi + i, i, 0 to a, b, i, 0, respectively. Note that h2 
must be at least as large as the module mod(Q2) of Q2, since 

(2.9) h I -F h 2 = h -- mod(G) > mod(Qx) + mod(Q2) = hi + mod(Q2) 

by Gr6tzsch's lemma [He, p. 437]. 

-h 2 
R 

"'*' q' l J  �9 

h I d a 

G 

Fig. 5. Decompose G into two smaller quadrilaterals Q1, Q2, then map the right-hand "half" of R 
onto Q1- 
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The next corollary states that qx also serves as a good approximation to 9 as 
long as h,  is large and f l  is H61der. We prove it at the end of Section 3 and show 
in Section 5 that the order of approximation is again best possible. 

Corollary 3. Suppose f l  is a Hflder map of order c~(0,  1], with 

IA(z) - A(w)l -- MflAIIml.r?=lz - wl ~, Izl, Iwl < rl, 

for some M > O. Then h o > 0 exists such that if h .  >_ ho, then 

(2.10) [9(z) - ql(z)[ < - max 10e -~h*, 4~Me -2~h*~ = O(e -~h*min~l'2~)) 
- ~  , , /5 

for all z e R with Re z > 0. 

Again we may use 

(1 ) 
(2.11) h o = max 1, ~ log(4"M) . 

In Section 3 we derive the pointwise estimate 

(2.12) 

Io(z) q,(z)l < 2 [aOe_~h.],_.oz/h,I~2_~_ 
-]Rez/hl 

- -  - -  l r  L N / / - 3  4~Me- 2"h*'~ , z ~ R, Re z > 0, 

which is valid provided h,  >_ h o. Notice that when Re z = 0, the right-hand side 
of (2.12) is O(e-~h*), and when Re z = h 1 it is O(e-2~h*'). Thus if �9 > �89 the 
approximation ql is expected to be closer to g on {z: Re z---hi} than on 
{z: Re z = 0}. Papamichael and Stylianopoulos observed this occurring numeric- 
ally in Remark 5.2 of [PaS2]. 

The point of the next theorem is that if the arc yx of aG is not too jagged, then 
f l  is H61der and so Corollaries 2 and 3 apply. We prove the theorem in Section 4. 

Theorem 4. Let ct ~ (0, 1]. Suppose 71 can be parametrized as Yl(Y) = x(y) + iy, 
y ~ [0, 1], where x(y) is absolutely continuous and 

(2.13, ess suplx'(y,[< co t ( -~ ) .  
0 < y < l  

Then f l  is Hflder of  order ct, with 

(2.14) JA(z) - f~(w)l __ M[lfl Jlmi.ri-=lz -- w[ ~, Izl, Iwl < rl, 

for some M > O. Thus Corollaries 2 and 3 apply, as well as the pointwise estimates 
(2.8) and (2,12). 



532 R. Laugesen 

We may take 

M = 4(1 + ~)3~e~~ max(l, nOsc(71) + log 2), 

where 

Osc(71) = max x(y) - min x(y) 
Y Y 

measures the oscillation of ~ 1 when it is regarded as a graph against the y variable. 
In Section 5 we show by example that the H61der exponent �9 is best possible, 

in general. 
The hypothesis (2.13) on the slope of ~ 1 has an appealing geometric consequence: 

for each y, the open cone with vertex at x(y) + iy and aperture roe that opens to 
the left lies entirely to the left of 71. Thus Theorem 4 is similar to the results of 
Lesley [Le] involving "interior a-wedges." However, we prove our theorem 
directly so as to obtain explicit constants. 

Many authors have considered the problem of finding conditions on the 
boundary that imply the HNder continuity of f t .  Weaker conditions than (2.13) 
are certainly known: see [BeP], [Le], [NAP], [SmS] and the references in [Po2, 
p. 92]. We do not know, however, of any papers that give a H/51der constant M 
depending explicitly just on �9 and on easily computable properties of 7t. (Though 
Gaier did do this for the inverse map fi-1 in [Gal.) 

Theorem 4 generalizes the result of Papamichael and Stylianopoulos [PaS2, 
(4.20)] that if (2.13) holds for e > �89 then the conclusions of Corollary 3 must hold, 
i.e., 

g - ql = O(e-~h*) �9 

Their conjecture [PaS1, Conjecture 3.1] that this estimate might remain valid for 
all e e (0, 1] is false for e < �89 as we show at the end of Section 5 by means of the 
same example we use to show Corollary 3 is sharp. We disprove Conjecture 3.2 
of [PaS1] also. 

Numerical Usefulness of  Theorem 4 

When the numerical examples studied by Papamichael and Stylianopoulos in 
[PaS1] and [PaS2] are examined, it is found that their estimates on g - ql are 
better than those given by combining Theorem 4 with Corollary 3. One reason is 
that their examples are actually much "nicer" than the general case covered by 
Theorem 4. Specifically, in their examples the arcs ~1 are Dini-smooth except 
perhaps for an inward-pointing corner, and so f l  is actually H/51der of order 1 by 
a result due to S. E. Warschawski, [Po2, Theorem 3.9]. In contrast, Theorem 4 
can give only that f l  is HiSlder of some order e significantly less than 1. 
Furthermore, the H61der constants M given by Theorem 4 are probably much 
larger than necessary for these examples. 
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Approximations in the Inverse Direction 

Our final three results concern the "inverse" approximation problem: How well 
do gi -1 and qi -1 approximate g -1 in the right-hand "half" of G? Again we start 
with a theorem involving doubly connected domains and deduce from it corollaries 
about gi- 1 and qi- 1. 

Consider again, as we did for Theorem 1, the doubly connected domain D, the 
simply connected domain D1, the maps f and f l ,  and the numbers rl, re, r = rz/r 1. 
Recall that D, D 1, f ,  and f l  are symmetric in the real axis. Assume in addition 
that the components K1 and K2 of D c lie in {w:[w[ > 1} and {w:]w[ < 1}, 
respectively. From now on we measure the "thickness" of D by means of the 
quantities 

( 5 p l = m i n l w l > l ,  p 2 = m a x l w l < l ,  p = P ~ < l ,  p , = m a x  P2, < 1 .  
weK~ w~K2 191 

Note that p >__ r since D is conformally equivalent via f -  1 to {z: r z < Izl < rl}. Put 

1 - e -  1 . 5 ~ / 2  ~ • 
K:-- 4~ 

4 

and define 

/3 (w)  = 
log(r 1~If ? l(w) 1) 

log(pl/x) 

for w ~ D. Clearly, fl(w) > O. 
The following theorem says that if D is thick (in that p ,  is small), then log f i -  1 

closely approximates log f -  1 in the outer "half" of D. In the course of its proof 
we show that 0 < fl(w) < 1 when I wl > 1. 

Theorem 5. I f  p ,  < e -1"5~, then 

(2.15) [log f - l ( w )  - log fi-l(w)] < [25p2]P~~ < 25p2 

for  all w e D  with Iwl > 1. 

Again we use the branch of the logarithm having - n  < Im log < n. 
In Section 6 we prove Theorem 5 and in Section 7 we show its order of 

approximation O(p2) is best possible. Note the main difference between the 
hypotheses of this theorem and those of Theorem 1: here we do not assume f l  to 
be a H61der map. Note also that our only assumptions on r 1, r z are that r 2 < 1 < r 1 
and that {z: r 2 < [z] < rl} is conformally equivalent to D. Thus although fl(w) 
involves ra, we are actually free to choose rl to be any number between 1 and 1/r, 
as long as we then take r2 = rrl. 

Next we use Theorem 5 to approximate g-1 by g l l .  Recall the numbers hi, h2, 
h = h 1 + h2. Assume in addition that the right-hand arc ~1 of 9G lies in the right 
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half-plane and that  the left-hand arc ~2 lies in the left half-plane. To  measure how 
" long"  our  quadrilateral  G is, we introduce the new quantities 

0-1 = min Re w, 0" 2 = - m a x  Re w, 0- = 0-1 -F 0-2, 0-, = min(0-i, 0"2)" 

As we did before Corol lary 2, we now construct  symmetric domains  D, D1 and 
maps f ,  f l  with 

f ( z )  = e "(11")l~ A(z) = e ~g'((l/~)'~ 

Clearly, then 

P l  = e"al, P2 = e - n ~  P = e - ~ ~  P *  = e-~ta*, 

and since p _> r = e - ' h  we have that  h > a. Put  

1 1 1 - e -  15~/2 
K = - log x = - log ~ - 0 . 4 4 ,  

rc rc 4 

and define 

h 1 - Re 9i- l(w) 
b ( w )  = , w e G .  

0-a - K  

F r o m  Theorem 5 we immediately deduce that  if G is long, then gi-1 is a good  
approximat ion  to g -  1 : 

C o r o l l a r y  6. I f  a .  >__ 1.5, then 

25 
(2.16) [ g _ i ( W  ) __ g l i ( W ) [  --< 1 [ 2 5 e _ , , r z ] b ( w ) [ 4 . 1 e _ ~ C ] l _ b ( w )  <_ _ _  e -'~'~ 

7~ 7~ 

for  all w ~ G with Re w > 0. 

For  example, if a l  > 1.5 and a 2 >_ 5, then gi- l(w) is within about  10-  6 of  9 -  l(w), 
provided Re w > 0. 

In the special case that  ])2 is a vertical line segment, we obtain a much  stronger 
result than Corol lary  6 by reflecting G in Y2 to obtain a new quadri lateral  that  is 
"twice as long." In  fact, by applying Corol lary  6 to this new quadrilateral  it is 
found that  I g -1  _ g i-11 -< (25 / r0e -~  in all of  G. 

N o w  assume that  hi equals the conformal  module  of  Qt, so that  we may  define 
the m a p  qx, just  as we did for Corol lary  3. Define 

h I - Re qi- 1(w) 
c ( w )  - 

ai -- K 

for w e G with Re w > 0. In Section 6 we prove the following estimates for 
approximat ing g -  1 by qi- 1: 
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Corollary 7. I f  a .  > 1.5, then 

(2.17) 
50 

[g-l(w) - qi- i(w)[ _< - -  e-~O,, 

(2.18) [9_l(w) _ ql_ l(w) [ _< 2.8 [25e_~,]c~w)[4.1e_2~.]l_c~) 
7~ 

for all w e G with Re w > 0. 

The order of approximation O(e-~'*) in Corollaries 6 and 7 is best possible, as 
we show by example in Section 7. 

Questions for Future Consideration 

There seem to be two main ways to improve the results of this paper. The first is 
to find a better way than Theorem 4 of explicitly estimating both the H61der class 

of f l  and its H61der constant M (particularly M) in terms of easily computable 
properties of h -  Once we have good estimates on ~ and M, of course, we may 
apply Corollaries 2 and 3. 

The second way is to improve the 8r Theorem (see below) that we use in proving 
Theorems 1 and 5. Instead of approximating F in that theorem by just the identity 
map, the approximation in the outer half of the annulus could be improved by 
using the identity map multiplied by some "higher-order perturbation term." 

3. Proof  of  Theorem 1 

The main tool of the proof is the "8r Theorem" of Duren and Schiffer [DuS] and 
Gaier and Huckemann [GaHu] :  

8r Theorem. I f F  is a conformal map of {(: r < [(I < 1} such that 0 < IF(01 ~ 1 
for all ~, IF(01 = 1 whenever I(I = 1, and/7(1) = 1, then 

lim sup IF(0 - ~1 < 5r, 

sup IF(0 - (I < 8r. 
r<l~l_<l 

For  alternative proofs of the theorem see [GeH],  [Hu],  and [Me]. We improve 
the 8r Theorem somewhat: 

5r Theorem. Suppose also that F is symmetric in the real axis. Then 

sup I F ( 0 -  (I < 5r, 
r<l r  

sup IF(0 - ~1 < 4r. 
Ir 



536 R. Laugesen 

To deduce the 5r Theorem from the 8r Theorem, it is enough to prove its 
second inequality. To prove this we start by  taking ff with I ffl = 1 to  maximize 
]F(~) - ~]. Write ~ = e i* and F(~) = e i~ Since F is symmetr ic  in the real axis and 
F(1) = 1, we may  suppose 0 < ~p, 0 < 7z. Then F maps the arc (e -~o ei<0) of the unit 
circle onto  (e -i~ ei~), and so 

120 - 2~ol < 8 arcsin r 

by Lemma 7 of  [GeH] .  Hence 

1 0 -  q,I 
I F(~) - ~] = I el~ - e~~ = 2 sin - -  < 4 sin - -  

2 

1 0 -  q,I 
< 4r, 

which proves the 5r Theorem. 
N o w  we begin the p roof  of  Theorem 1. Take r o = min(e - ' ,  (4"M) - 1/2~) and 

assume that  r .  < to. We apply the 5r Theorem to F ( ~ ) ~  ( f ? l  o f ) ( r l~) / r  1 and 
deduce that  

(3.1) I ( f ;  1 o f ) ( z )  - z[ < 5r z, r2 < Izl < rx, 

(3.2) lim s u p l ( f i  -1 o f ) ( z )  - zl < 4r2. 
Izl--,r~ 

To prove (2.2) it is enough,  by the Ma x i m um  Modulus  Principle, to show that  
it holds for Izl = 1 and Izl --, r l .  Suppose Izl = 1. Then, by (3.1), 

I f ( z )  - f l (z) l  = I A ( ( f i  -~ of)(z))  - L ( z ) t  --- max If'i(r 
1s 

Put  

A ( r l ; )  
FI(~)  - rlf '~(O)' ICI < 1, 

so that  F x is ho lomorphic  and univalent in the unit disk with FI(0 ) = 0, F'~(0) = 1. 
Write k(~) = (/(1 - ()2 for the Koebe function. Then the preceding inequality, the 
Distort ion Theorem [Du,  Theorem 2.5], and the fact that  r ,  < ro < e -~ combine  
to imply that  

If(z) - fx(z)l ~ max IF'I(()I If'~(0)15r2 ~ k'((1 + 5e-=)e-=)lf'~(O)15r2. 
Ill ~(1 + 5rz)/r~ 

Hence 

(3.3) If(z) - f~(z)l _< (6.2)lf'~(O)lrz, Izl = 1. 

Next, the Growth  Theorem [Du,  Theorem 2.6] and the fact that  l/r1 < e - "  imply 
that, for Izl = 1, 

Ifl(z)l = rl Fx If'l(0)[ > rl If'~(0)l -> (1 + e-=) 2" 
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Hence 

(3.4) IA(z)l > (0.9)tf'~(0)[, 

Since r z < e -n, we see from (3.3) and  (3.4) that  

(3.5) I f ( z )  - f l (Z)l  _ (0.3)] f~(z) l ,  

Observe now that, for each z, 

Izl = 1. 

Izl = 1. 
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lim sup l f (z )  - fl(z)l ~ [Ifx [Imln 
Izl-~r~ 

2 ,  _ 4 ,M(4 ,M) -  1 1. 4 " M r  " < 4 M r ,  < = 

In order  to help us complete  the proof,  we proceed to show that  

lim inf inf ] wl > x /~  

since 

(3 .8 )  

It follows that  

(3.6) log f ( z )  - -  log f l ( z )  = f _1 d w  
JE f l (z) , f (z)]  W 

because the line segment [fl(z), f (z ) ]  from f l ( z )  to f ( z )  is contained in the domain  
of the logarithm. Thus for Izt = 1 we conclude from (3.6), (3.5), (3.3), and (3.4) that  

(3.7) Ilog f ( z )  - log f l ( z ) t  < - -  Idwl 
fl(z), f(z)] I W I 

1 
< If(z) - fx(z) l 
- (0 .7 ) lA(z) l  

(6.2)1 f ] (0) l r2  < 
- (0.7)(0.9)1 f ; ( 0 )  l 

< 10r2. 

Tha t  is, (2.2) holds. 
Next  we deal with the case of Izl --, rl .  By (2.1) we have that  

If(z)  - f~(z)l = I f l ( ( f i -  1 o f ) ( z ) )  - A(z)l -< MIIA ]lmi=ri-'l(fi - x o f ) ( z )  - z lL  

and so from (3.2) we conclude that  

lim supl f ( z )  - L(z)t  -< 4 " M r ' l l f l  I[mi,. 
Izl--,ri 
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To show this, first note that  by compactness we may suppose the "inf"  and "l im 
inf" are achieved, i.e., we may  reduce to showing that  if 

then 

lul ~ IIAIImin, Ivl ~ Ilfxllmin, IV -- ul ~ IlAHmin, 

(3.9) inf I wl > x/3  ~t . ,~]  - T IIAl]mi.; 

here u ~ f l ( z )  and v ~ f ( z ) .  Since I v - u 1 2 <  Ilfll121., we certainly have that  
liT1 2 llm~n < 2u.  v. Writing w = tu + (1 - t)v, 0 < t < 1, we thus deduce that  

3 2 lwl 2 ~ (1 - t + t2) l lAIl~i .  ~ ~lJA[Imi." 

Obviously (3.9) follows. 
Finally, by (3.6), (3.9), and (3.8), 

f[ 1 (3.10) lim supl logf (z)  - logfl(z)l  < lim sup 
Izl'-'rl Izl-~rl f,(z),f(z)] [W] 

}dwl 

1 
< lim sup lf(z) - fl(z) l 

IIf~ llmi.~/3/2 Uzt ~r, 

4 ~Mr~ II f~ [I min < 

- lif limi~ 

2 
_- _ _  4~Mr ~. 

Now (2.2) follows from (3.7), (3.10), and the Maximum Modulus  Principle. The 
proof of Theorem 1 is complete. �9 

Proof of (2.4). Define 

loglzl~ log 4~Mr ~ 
n ( z )  = logl logf(z)  - logfl(z)l  - 1 logr~jlog(10r2) - 

for 1 < Izl < rD so that  H is subharmonic.  Observe that  H(z) < 0 when Izl = 1 
by (3.7) and that  lim suPlzl_,r, H(z) < 0 by (3.10). Hence H(z) <_ 0 by the Max imum 
Principle, and this implies (2.4). �9 

Proof of Corollary 3 and (2.12). Take ho to be as in (2.11) and assume h,  > h o. 
Extend q~ by reflection in the imaginary axis to a conformal map of ( - h i ,  hi) • 
(0, 1) onto Q = (x + iy: Ix] + i y s Q ~ }  u (O,  i). By applying (2.8) with G and ff 
replaced by Q and q~, respectively, we obtain that  

1 [10e-~h ' ]  1 -Ro~/h 'F~2 I 7R~z/h' -- TC 2~hl~j [ql(z) -- gx(z)] < - kx/~  4~Me - , z e R ,  Re z > 0. 
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Since hi > h . ,  this last  inequali ty and (2.8) yield 
Corol la ry  3 is clearly a consequence of (2.12). 

(2.12). Conclus ion  
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(2.10) of  

(4.3) 

with 

4. Proof of Theorem 4 

O u r  p r o o f  involves the hyperbolic distance, so first we recall some of its properties.  
F o r  f l  a proper ,  s imply connected s u b d o m a i n  of the plane, we define the hyperbol ic  
dis tance function on f~ to be 

1 + [z 1 - z21/ll - z l ~ l  
(4.1) hn(wl, w2) = log 

1 - Izl - z 2 l / l l  - z l ~ l '  

where zi = F-~(wi) and F is any  conformal  m a p  of  the unit  disk A on to  f~. Later  
we use the Schwarz -P ick  L e m m a  [Hi,  T h e o r e m  15.1.3], which states tha t  holo-  
morph ic  functions decrease hyperbol ic  distances: if H :  fl  ~ f~' is ho lomorphic ,  then 

(4.2) hn.(n(wl), H(w2)) < ha(w1, w2), wl, w2 e f~. 

Write  6(w~) for the Eucl idean distance f rom w x e D 1 to the b o u n d a r y  OD 1. The  
first step we take toward  p rov ing  Theo rem 4 is to establish tha t  

~ho,(O, wl) + log 6(wl) < C + n min x(y), w I �9 D 1, 
y 

C = ~ log 3 + nOsc(71) + max(0, log(nOsc(~l) + log 2)). 

To  begin prov ing  this, write wl = IWlle i~ with - n  < 0 _< n and note  that  
exp[nx(lOI/n) + iO] is the image of x(lOI/n) + i(O/~) under  the m a p  w~-~e ~w, and 
thus is a b o u n d a r y  point  of  D1. Let  

W2 _~_ I ll f l ][min eiO = e-log2 + xminyx(y) + iO E 9 1. 

By taking H(z) = zllfx[lmin, Izl < 1, we see f rom (4.2) that  

max  ho,(O, w) < m a x  ha(0, z) = ha(0, �89 = log 3. 
Iwr_<lw21 Iz1_<1/2 

Thus  (4.3) holds if Iwll-< Iw21, because 

ctho,(O, Wl) + log 6(Wl) < ~ log 3 + log max  Iwl 
weODi 

= ~ log 3 + n max  x(y) = ~ log 3 + nOsc(71) + n rain x(y). 
y y 

N o w  suppose  that  Iw~l > Iw21. Define a ho lomorph ic  function H:  A ~ D t by 

H(z) = exp -- nx -- n rain x(y) + log _]\1 + zJ + z~x~--~ + iO ; 
Y 
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to verify that H maps A into D l, observe first that the image of H is exactly the 
image of the open cone 

{~: ]arg(O - n[ < 2 }  + I x ( ~ )  + ~ 1  

under the map (~--~e ~, and second that this cone does not intersect ~:~ since 
[x'(y)l < cot(n~/2) for almost every y. 

Clearly, H(O) -- w2. Also, if we define 

nx(101/70 - log l wx I 
~x(lOI/n) - ~ minr x(y) + log 2 '  

then 0 < ~/< 1 since Iw21 < Iwal < e '~x(l~ Defining z 1 by 

(l_z y 
l + Z l , /  =~l' 

we have that 0 < z~ < 1 and H(z 0 = wl. Thus (4.2) and (4.1) imply that 

~xhol(w2, wl) + log 6(wl) 

< ~ha(0, zl) + log ~(Wl) 

l + z l  
= ~ log + log 6(wl) 

1 - -  Z 1 

nx(lOI/~) - rc minr x(y) + log 2 
= log + log 6(wl) 

nx(lOI/n) - loglwl I ((,0,) ) 
_< log nx  ~ - n min x(y) + log 2 - log(log e ~x~l~ - log[w1[) 

y 

+ log(e ~(1~ - Iwl l) 

_< l o g ( r c x ( ~ ) -  r~ min x (y )+  log 2 ) +  log e '~x(l~ 
Y 

< log(n  max x ( y ) - n  min x (y )+  log 2 ~ + n  max x(y) 

K 

k y y / '  y 

_< log(nOsc(~l) + log 2) + nOsc(?x) + n rain x(y). 
Y 

Estimate (4.3) follows, because 

hD~(O, wl) < hD~(O, w2) + ho,(w2, wO < log 3 + ho,(w z, wl) 

by the triangle inequality. 
Having established (4.3), we now essentially reproduce Becker and Pommer-  

enke's proof of Theorem 1 [BeP] in order to get that  fx is HiSlder. 
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a log 

Hence 

Since 8(wl) > rllf'l(z)[(1 -Jz/rl[2)/4 when w 1 = fl(z) (see p. 22 of [PolJ),  we 
have from (4.3) and (4.1) that 

l+,z/rx,  { 1 -  14/q12 } 
1 - Iz / r l l  + log q[f'l(z)l <_ C + n min x(y), Iz[ < q .  

y 

4eC e . miny x(y) 

r l t f ' l ( z ) l  <- Izl < q .  
(1 -Iz/rll) a-~ '  

Put FI(~) = fl(rl~), Ill < 1. Since e nminyx(y) = ]lflllmin, we see that 

4eC lt A Ilmin 
[F](~)I -< 1r < 1. 

(1 - K I )  ~ - ~ '  

Thus, by Lemma 8 below, F1 is H61der of order c~ with 

IFI(~) - F~(~)l _< Mrlfxllmi, l~ - ~l ~, I~l, Ir < 1, 

where 

( 2) c M = 4  1 + ~  e . 

Since (2.14) follows easily, we have completed the proof of the theorem, except for 
proving the following lemma. 

Lemma 8. Suppose f is holomorphic in the unit disk, f(0) = 0, and 

K 
I f ' (z ) l  < (1 - Iz[) l - = '  ]z[ < 1. 

Then f is Hblder of order cq with 

(4.4) [ f ( z ) -  f(w)l < ( l  + ~ ) K , z -  w] ~, Izl, Iwl < 1. 

That f must be HSlder of order 0~ was proved by Hardy and Littlewood in 
[HAL]; what we do here is to modify their proof somewhat so as to obtain the 
explicit H61der constant in (4.4). 

Proof of Lemma 8. First note that 

I f (z)[  < ] f ' ( 0 l  I de [  < d t  = - - .  
0,~1 - (1 - 0 1 - "  

Thus we may assume [z - wl < 1 in proving (4.4). Write z = Izle i~ w = I w l d L  and 
put 

s =  l - l z - w l > O .  

We may suppose Iw[ > [z[. 
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If s >_ lw[, then 

If(z) - f(w)] _< ft , wllf'(01 IdOl < - -  

and so (4.4) holds. If lz I < s < I wl, then 

If(z) - f (w) l < If ' (01 IdOl + I f'(te~')l dt 
z ,  s e  i~] 

K f l K < Iz - sei~p[ ~ - t ) l - ~  dt 
- (1 - -  s) 1-= (1 

K K 
< ( l - s )  l _ ~ ] z - w l + - ~  ( l - s )  ~ 

K 
(1 - -  s) 1 -~ [z  - w]  = KIz - w l  ~, 

so that  again (4.4) holds. Lastly, if s < I zl, then 

f lz l  f[ f f,wl If(z) - f(w)l _< If'(tei~ dt + I '(01 IdOl + ]f'(te'~~ dt 
.1 ~ s e  io, sei~] LI s 

K K K 
< - -  (1 -- s) ~ + ]se i~ - se i~ l  + - -  (1 -- s) ~ 

o: (1 - s) 1 -~ 

so that  (4.4) holds once more. We have proved the lemma. 

5 .  A n  E x a m p l e  S h o w i n g  S h a r p n e s s  

In this section we construct  an example that  shows the orders of approximat ion  
min(1,2a) O(e-,~h, min(1,200) O(r, ) and in Theorem 1 and Corollaries 2 and 3 are best 

possible, and that  the H61der exponent  a in Theorem 4 is also best possible. At 
the end of the section we disprove two conjectures from [PaS1]  and [PaS2].  

Fix a e (0, 1]. Define a function H in the closed unit disk by 

i 1 - ((1 + i0/(1 - i()) ~ 
H(~) a l + ( ( l + i Q / ( 1 - - i 0 )  ~" t~1<-1. 

When ~ = 1, H is simply the identity map.  To  see that  H is also univalent when 
< 1, and to unders tand its behavior,  notice that  

~__~ (1 + i ~ y  

\ 1  - -  i ~ }  
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HO) = 

Fig. 6. The image of  H is the intersection of two disks. 
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maps the unit disk onto the sector {4: [arg 4[ < ~r~/2} in the right half-plane, and 
the map 

4 v - - ~ m  
1 + 4  

takes that sector to the intersection of two disks, the boundary circles of which 
intersect at - 1 and 1, each making an angle z~a/2 with the real axis at these points. 
Thus H maps the unit disk to the domain pictured in Fig. 6, and H(0 )=  0, 
H(i)  = i/a. Furthermore, H is symmetric in the real and imaginary axes, and 
H'(O) = 1, H"(O) = O. 

Take 0 < r < 1 and put r~ = l l r  u2,  rz = r 112, r ,  = r 1/2. Define 

D= H + ~ / : r < l ( l < l ,  

so that D is a doubly connected domain containing neither the origin nor infinity 
and 

H(- z/rl + r/2 ~= /r'12z + r/2"~ 
f(z) = \1 + (~lr,)rlE) H~,7 + z F ' ~ ) '  r2 _< Izt -< r .  

maps {z: r2 < tz] < ra} conformally onto D. Now notice that 

Thus 

D 1 = D u K 2 =- Image(H). 

< r.  

is the conformal map of {z: Iz[ < rl} onto D I with fl(0) = 0 and ( f ;  1 o f ) ( r l )  = rl" 

Note that both f and f l  are symmetric in the real axis and are positive on the 
positive real axis. 

In order for Theorem 1 to apply, we want f l  to be HSlder of order ~. What is 
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more, for the purposes of this example we need to show that the H61der constant 
M in (2.1) is independent of r. To establish all this, first calculate 

~ / ' ( ~ )  = 
( t  - -  i~)~+=[1 + ((1 + i~)/(1 - i{))=]z(1 + i()  *-~" 

Clearly, 

IH'(()I -< ICI < 1, Im ( ~ 0, 
(1 - 1 ( t )  x-~' 

and the same inequality holds by symmetry when Im ~ < 0. Lemma 8 in Section 
4 now gives that H is H~51der of order ~ with a H61der constant depending only 
on ~. Since IIflllmin >-- �88 by the Koebe �88 applied to H, we deduce that 
(2.1) holds with a constant M depending only on ~, as desired. 

Next we show that the order of approximation O(r~ in(~' 2~)) in (2.2) of Theorem 
1 is best possible. For  this, notice first that 

max Ilog f (z )  - log fl(z)l >_ IIm log f ( ir l )  - Im log f l( iq)l  
l_<lzl_<r, 

= l l m l ~  +r/2~-Iml~ ir/2] 

Im i 1 - (ir/2) ~ i 
= log Im log 

1 + (ir/2) ~ 
�9 . t t  2~t  > M"r ~ = Iw r .  

for all small r, where M" > 0 depends only on ~. (It is for our later use that we 
have considered "Im log" here instead of just "log.") Second, because H ( ( ) =  
( + O((3) near the origin, 

max tlog f(z) -- log f~(z)l > [log f(1) -- log f~(1)[ 
1 <Lzl<_r, 

+ r /2~ 
\1  + ~ / ~ )  -- log H(r 1/2) 

> M " r  1/2 = M " r ,  

for all small r, for some M" > 0. The previous two inequalities taken together 
O(r. ) in Theorem 1 is prove by example that the order of approximation mi,(~,2,) 

best possible, as r .  ~ 0. 
The very same example shows that the order of approximation O(e -"n*mln~'z')) 
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in Corollary 2 is also best possible. That  is, we take 

h = log , h i = ~ = h 2, h .  2 '  

R = ( - h  2, hi) x (0, 1), 

z e R ,  

R l = ( - o % h 0 x ( 0 , 1 ) ,  

z e R  1. 

Given all of this, we have from above that 

(5.1) I Img(hl  ~)-Imgl(hl+~)t -M" -}-- > ~- e -2~h*~, 

m t t  

Io (o )  - m ( o ) l  -> - -  e - ~ * ,  
7~ 

provided h.  is large, i.e., provided r is small. Here M" depends only on ~. Hence 
the order of approximation in Corollary 2 is best possible, as h .  ~ oo. 

Corollary 3 is sharp too, but a few extra steps are needed to see this. First, 
remember that we need 72 and h to lie in the left and right half-planes, respectively. 
As long as r is small, this can be achieved by replacing G, 9, G1, 91 with their 
translates G + 2, g + 2, Gx + 2, ga + 2 for some real constant 2. Note that this 
does not change hi, h2, R, or Rl, and that although f l  must be replaced by e'~afl , 
this map has the same H61der constant M as fl .  

Next, in view of the continuous dependence of the module of Q1 on OQI (see 
p. 26 of [LeV]), we may choose 2 so that the module of Q1 equals hi, as required 
for Corollary 3. Notice that 2 ~ ~ as hi ~ oo. 

Now we remark that by the symmetry of ODl in the imaginary axis, h is 
symmetric in the line {w: Im w = �89 so that both ql and 01 are also symmetric 
in that line. Hence 

ql(hl+ )=,midpointof l,= l(hl+ ) 
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We conclude that 

M 
~ 

> - -  e- 2rch.~t 
7~ 

for r sufficiently small, by (5.1). 
Furthermore, ql(0) = 0 by definition of ql and so 

I g ( 0 ) - q l ( 0 ) l : l ( ~ ) l o g f ( e ' ~  = ( ! ) l o g [ r l / Z + ~ + O ( r 2 ) l + ) ,  . 

However, 

( ~ )  log r-~/2 = hi = mod(Q0, 

while by Theorem 4 of [Gall2]  

mod(QO = [2 + (!) log H(1)l + (~) log R + O(e-2'~L~+(1/')'~ 

for some fixed number R depending only on ~. It is found that R = l/H(1); thus 

( ! )  1 
log r~ ~ = mod(Q 0 = 2 + O(e-Z~). 

In particular, this implies that - 2 n 2  _< log r + 1 for all large 2. Hence we have 
from the last equation that 

2 = log r~ ~ - O(r). 

(~) I r 1 ( 1 )  1 o,r, Jg(O) -- ql(O)t = log r 1t2 + ~ + O(r 2) + log r- ~ -- 

~_ M " r l / 2  = M,e-~h.. 
Combining this estimate with (5.2), we obtain that the order of approximation in 
Corollary 3 is best possible, as h.  -~ ~ .  

To establish the sharpness of the H61der exponent a in Theorem 4 we first verify 
that in the example constructed above for Corollary 2, 71 does indeed satisfy the 
hypothesis (2.13); later we show our f l  is not H61der for any order greater than a. 

We have from our construction that 

~l:{(~)logw w~Ol Imw~0 t 

~52, rim+i+~)Imql(hl+~): Im~(hl+~) Im~l(hl+~)l 
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where 0D 1 is made up of two circular arcs, as in Figure 6. Parametrizing the 
right-hand arc F as p(O)e i~ - n / 2  < 0 < n/2,  we see that x(y)  = (l/r0 log p(ny) for 
0 _< y _< �89 By symmetry, then, (2.13) would be implied by 

(5.3) 0 _< (log p)'(O) < cot , 0 < 0 < ~.  

The left-hand inequality is geometrically obvious. To prove the right-hand in- 
equality, observe that 

arg(d p(o)eiO) - O = cot- [ 

The left-hand side of this equation gives the angle between the tangent and radius 
vectors at 0, and this is easily seen to be minimal when 0 = n/2. Thus p'(O)/p(O) is 
maximal for 0 = n/2. Hence 

(log p)' (O)  - -  p ' (O)  
p(O) 

<__ p ( ~ j - - c o t  + - -  -- : c o t  ~ -  , 

which proves (5.3). It follows that 71 satisfies (2.13), as desired. 
We still want to show that f l  is H61der of no order higher than ~. This is easy, 

however, since by direct computat ion 

I f l ( i r l )  - A( t i rOI  = IH(i) - H(it)l ,~ 

as t ~ l - - .  

21 -~ 21 -~ 
(1 -- t) ~ = lir 1 -- t irll  ~ 

Our final task for this section is to disprove the conjectures of Papamichael  and 
Stylianopoulos [PaS1, Conjectures 3.1 and 3.2], I-PaS2, Remarks 5.2 and 5.4] that 
the two estimates 

(5.4) max lo(z) - ql(z)l = O(e-'h*), 
z~R, gez_>0 

(5.5) max l lm g(hl + iy) - Im ql (h l  + iy)] = O(e -2nh*) 
Y 

hold as h .  ~ oe whenever ?~ and 72 can be parametrized as 

71 = x(y)  + iy, 

with x, x2 absolutely continuous and 

ess suplx'(y)[ < oe, 
y 

72(Y) = x2(y) + iy, 

ess suplx~(y)l < oo. 
Y 
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To see that (5.4) and (5.5) are false, simply take 0 < ~ < ~ and recall (5.2). Our 
only remaining task is to verify the hypothesis that 72 can be parametrized as 
x2(Y) + iy with x2 having bounded derivative; we have previously done this for 
71- Recall that 72 = (l/n) log F 2 q- 2, where 

( / r e  ~+r/2"~  ] 
-- l - t  0 -< <o -< '< 

is the upper half of the inner boundary of D. What we wish to show is that F 2 

may be parametrized as p2(O)e i~ with log P2 having bounded derivative. Toward 
this goal, write 

f re i~' + r12 \ [ re ~ + r12 \ 
0(tp) = arg H t i  + ~-e~-~-/2 ) = Im log H t [  + rYei~/2 ) 

and deduce (since H'(0) = 1) that 

dO 1 + O(r) 
- - = I m i  > 0  
d~p 1 + e-i~'/2 + O(r) 

for all q~, provided r is small enough. Thus we can invert 0(~0) to obtain ~0 = q~(0), 
and so 

with 

F2 = {p2(O)ei~ 0 < 0 < ~} 

I / re ~*(~ + #2  \ l  
p2(O) 

Clearly, log P2 has bounded derivative, and this completes the disproof of 
conjectures (5.4) and (5.5). 

Actually, one final comment is pertinent. For  their conjectures, Papamichael 
and Stylianopoulos used the definition 

h,  = min(mod(Q1), mod(Q2)) 

rather than our definition h,  = min(hl, h2). No harm is done, though, because the 
two definitions are equivalent for the purposes of (5.4) and (5.5): we took 
hi = mod(Q1), and 

h 2 = h - hi = rood(G) - mod(Q~) = rood(Q2) + 0(1) 

as r ~ 0, by Theorem 2 of [GaH2].  

6. Proof of Theorem 5 

Writing w = fl(z), we can restate conclusion (2.15) of the theorem as 

(6.1) [ log( f -  1 o fO(z) - log zl _< [25p2]a(~)l4.1pJt-a(~), 
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where [z[ < rl,  If~(z)l > 1, and "//(z)" means /~(fx(z)). The  condi t ion [fl(z)[ > 1 
prevents Izl from being too small; to make  this precise, put  

L ( r l 0  V l ( ( )  - [(I < 1, 
rlf'l(O)" 

so that  F~ is ho lomorphic  and univalent in the unit disk with Fa(0 ) = 0, F'I(0) = 1. 
Write  k(() = ~/(1 - ()2 for the Koebe  function. Take  Izl < ra with [f~(z)[ > 1. Then, 
by the G r o w t h  Theorem [Du, Theorem 2.6], 

lzl = If l- l(A(z))l  = rl 1 i h f , l (O)  j >- r , k  -1 > 
\ r l  I f ' l (0)IJ  1 \ h  I f ' l ( 0 ) I f  

Also, by the Koebe  �88 I-Du, Theorem 2.3] applied to F 1 we have that  

1 1 1 

rl  [ f'~(0)l - 41lf~ Ilmi, 4 p i '  

and so 

1 
[ z l ~ r i  k -1  - -  

4p~ 

In general it is true that  k - l ( t )  > t(1 - 2t), and thus 

Izl 1 - 2/4pl 1 -- 1/2e 1"5~ x - - _ >  _> - 
rl  4pl  4Pl Pt 

We have just  shown that  if t fa(z)[ > 1, then [z[/r 1 > ~c/p~; that  is, 

/~(z) _< 1. 

We need a partial converse to this, so now suppose that  x /p  1 < Izl/h < 1. We 
show that  

( 6 . 2 )  I f a ( z ) l  > P 2  = maxlw[,  
weKz  

from which it follows in part icular  that  f l ( z )E  D. 
In order  to prove (6.2), observe that, by the Growth  Theorem,  

= __ k - - / s  

Now, r 1 [f'~(0)t > Pl by Schwarz's Lemma  applied to the function 

f ;  l(p~O 
F 1 
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and so 

Ifl(z)l > Pl = (1 + ~c/pl) 2 > (1 + ~c/el'5") z > 0.24 > Pz,  

which is (6.2). 
W h a t  we have shown so far is that  it suffices to prove (6.1) for z with 

x / p l  < I z l / r l  < 1, and that  the function f - 1  of~ is indeed defined for all such z, 
by (6.2). 

N o w  recall the 5r Theorem in Section 3, which yielded (3.1) and (3.2). F r o m  
those two results we obtain that  

~c Izl 
(6.3) I ( f  -1 o fl)(Z) - zl < 5rz,  - -  < - -  < 1, 

Pl rl 

(6.4) lim s u p l ( f -  1 o f O ( z  ) _ zl < 4r2. 
Izl-,r~ 

Using (6.3) and the fact that  p > r, Pz < e= i.5~, we see that, for x / p  1 <_ [z l / r l  < 1, 

f t  1 (6.5) I log(f  -1 o A)(z) - logz l  _ - -  IdOl 
~.~:-,o:~>~i 141 

1 
~< l ( f  - i  o fO(z) -- zl 

r i x / p l  - -  5r2 

1 
< 5r z 
- ( xp / r  --  5p2)(r2/p2) 

5P2 < - -  
--  5p2 

< 25p 2. 

Also, f rom (6.4) we deduce that  

(6.6) lim sup l log ( f  -1 o fl)(z) -- log zl < lim sup f t  1 

1 
_< - -  lim s u p [ ( f -  1 o fl)(z) _ z[ 

r I - -  4r 2 t z l~ r i  

4 
< - - r  
- 1 - - 4 r  

< 4.1r _< 4.1p. 
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Finally, define 

H(z)  = log I log(f-1 o fa)(z) - log z l 

- (1 l~ log[4.1p] 
log(pa/x) ] 

log(r l / I z l )  

log(pl/x) 
log[25p2] 

so that H is subharmonic for x /P l  < I z l / q  < 1. Clearly, (6.5) implies that H(z)  < 0 
when t z l / r  I = x / p l ,  and (6.6) implies that lira sUPlzl_~, H(z)  < O. Hence H(z)  < 0 
for all z by the Maximum Principle. Inequality (6.1) follows, and the theorem is 
proved. 

Proof of Corollary 7. Extend q~ by reflection in the imaginary axis to a conformal 
map of ( - h a ,  h 0 x (0, 1) onto Q = {x + iy: Ixl + i y e Q ~ }  w (0, i). By applying 
(2.16) with G and g replaced by Q and ql, respectively, we obtain that 

1 25 
Iq['(w) - g i -  *(w)l < - [ 2 5 e - ~ ' ] b ( w ) [ 4 . 1 e - Z ~ ' ] l - b ( w ) <  - -  e - ~ '  

for w E G, Re w > 0. Since a i _> cr,, this last inequality and (2.16) give that 

2 2 50 
�9 - -  [9- l(w) - q~-l(w)[-- < - --------[25e-,~,~,jbtw)[4.1e-2~,]l-b(w)< - 25e-~ ,  = _  e-~,, 

/~ 7g 7"g 

for we  G, Re w > 0, which gives (2.17) and also (2.18) except that we have "b(w)" 
rather than "c(w)" on the right-hand side. To derive (2.18) from the preceding 
inequality, just observe that, for w e G with Re w > 0, 

[25e-""*]tb(w)-~'"J[4.1e-  2'~~ -tbcw)-~w)j = ~( 25 e~:a*)Re(q/~(w,-oVl(w,)/('~'-K) 

< (7en%)(Z5e-~l/1"5~) 

_< 7 (25e-t5"/l'5~) exp ff,e -~* 

_< (1.1) exp[25e -1"5'~] < 1.4. 

Since (2/rr)(1.4) = 2.8/rc, the corollary is proved. �9 

7. Another Example Showing Sharpness 

In this final section we construct an example that shows the orders of approxima- 
tion O(p , )  and O(e -~*) in Theorem 5 and Corollaries 6 and 7 are best possible. 
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Take r > 0 to be small and put rl  = 1/r 1/2, r 2 -= r 1/2, r ,  - r 1/2. Define 

D =  rl  l + ~ r / ~ : r < [ ~ l < l  , 

so that D contains neither the origin nor infinity and 

z /r  1 + r/2 z + ra/2/2 
f ( z )  = r~ 

1 + ( z / r O r / 2 -  1 + zr3/2/2 

is a conformal map of {z: r E < Izl < r~} onto D. Both D and f are symmetric in 
the real axis and f is positive on the positive real axis. Also, a conformal map 
(namely, the identity) of {z: 1 < Izl < rl} onto D c~ {w: Iw} > 1} exists. Note that 
P2 < 2r~/2. 

Since 

o ~  = o u / r  = {w: IwL < r~} 

and f ( r l )  = rl, the map f l  is simply the identity: 

f l ( z )  = z, Iz[ < r 1. 

The inverse maps are 

w - rl/2/2 
f l ( w ) - -  f ; l ( W )  = w. 

1 --  wr3/2/2 ' 

Hence 

sup 
weD, l~I> 

[ l og f - l (w)  - logf~-*(w)[ > [log f - t ( 1 )  log f t ' ( 1 ) [  

1 - rl/2/2 I 
= log 1 - r3/2/2 log 1 

M 
cy  

> M"rl /Z  > 2 P2 

for all small r, where M" > 0. Letting r ~ 0, we see that the order of approximation 
O(pz ) in Theorem 5 is best possible. 

By "lifting" this example with the map wv--~(1/n) log w, we deduce that the 
orders of approximation O(e-~'2), O(e -~* )  in Corollaries 6 and 7 are also best 
possible. Note that gl is the lift of the identity map f l  and thus is also the identity, 
and that ql is the identity since Q1 is a rectangle. We leave the details to the reader. 
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