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Norm Asymptotics of Orthogonal Polynomials 
for General Measures 

M. F. Wyneken 

Abstract. Let p. be a fixed positive unit Borel measure with infinite support in 
the unit disk. A carrier of  I~ is any Borel subset B of the support for which 
/~(B)= 1, and another such measure v is carrier-related to i.t when it has the 
same carriers as tz. Let p,,(z, v) be the monic orthogonal polynomial of degree 
n for u. We describe the possible asymptotics for the sequences 
{(~IP,,(-', v)I 2 du)t/2"},,~-i which are associated to the set of measures carrier- 
related to tz. 

1. Introduction 

Let IX be a positive unit Borel measure with infinite support in the unit disk 
A = {z: Izl-< 1}. Let Pn(z, tx) denote the monic orthogonal polynomial of degree n 
associated with Ix for n = 0, 1, 2 , . . . .  Then let the norm of IX, N,(IX) be defined 
by the relationship 

P,,,(z, tx)P,,(z, IX) dix = N,,(IX) 6 . . . .  10 if m = n, 
6,,., = otherwise. 

In 1940 ErdSs and Turfin [3] generalized a fact about the norms of Jacobi 
polynomials by showing that if IX is supported on the interval [ -1 ,  1], and if the 
absolutely continuous part of Ix has a positive almost everywhere Radon-  
Nikodym derivative with respect to Lebesgue linear measure, then 

!im (N,,(IX))'/" = �89 

However, if this derivative is not positive almost everywhere, the asymptotic 
behavior of  the sequence {(N,(IX))I/"},>_I is seen to be dependent upon the 
capacities of  the carriers, i.e., the Borel subsets of the support having unit measure. 
The relevance of potential theory was suggested by Erd~Ss [3], and was developed 
by Ullman [6]-[9]. 
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It is known that the limit point set of {(N,(/Z))~/n},~ is necessarily some 
closed interval subset of a certain maximal interval determined by the carriers. 
In this paper we make crucial use of a new and fundamental potential theoretic 
result of  Ancona in conjunction with a technical lemma of Ullman to prove a 
theorem that will indicate in consequence that no further information about this 
limit point set can be obtained from measurements made on the carriers alone. 
The extension from measures having bounded linear support to those having 
bounded complex support is made possible by an application of a space-filling 
Curve.  

2. Definitions and Statement of the Theorem 

Let/z be a positive unit Borel measure on A. The support of~z, denoted S(~),  is 
the smallest closed set having unit/z-measure,  and a Borel subset of the support 
having unit /z-measure is called a carrier. When S(/z) is an infinite set, such a 
measure/Z is called a weight measure. 

The capacity of a bounded Borel set B is taken as its inner logarithmic capacity, 
i.e., C(B)  = SUpK=a C ( K ) ,  where K runs through all compact subsets of B, and 
C ( K )  is the capacity of K as derived from the logarithmic potential function 
U(z, /z)  = I  log(Jz - t J - ' )  d/z(t) [51. The following are properties of capacity [6]: 
for Borel sets B~ and B2, 

(i) B1c  B 2 ~ C ( B ~ )  < - C(Bz), 
(ii) C(B~) = 0 ~ C ( B 2 u  B,) = C ( B 2 - B ~ )  = C(B.) ,  

(iii) I f  K, is compact, and K, c K,+~ c A (n = 1, 2 , . . . ) ,  then 

Throughout this paper,/Z will denote a given weight measure with support in 
A. A second weight measure v is carrier-related to ~z if it has the same carriers 
as/Z. Associated with the set of measures carrier-related to tz are two numbers, 
C = inf C(B) ,  where the infimum is taken over all carriers, and (~ = C(S(t.t)). 
We say that/Z is a determined measure when _C = C, and that/Z is undetermined 
otherwise. To see the existence of an undetermined measure let {r,},_> ~ be a dense 
subset of A and define a weight measure p by p({r ,} )=2-" ,  n = 1, 2 , . . . .  Then 
S(p) = • so [_c, c 1  = [0, 1]. 

Let v be carrier-related to #, and let [ (N , ( v ) )  ~/" ] denote the limit point set of  
the sequence {(N,(v))~/"},._~. It is known that [ (N , ( v ) )  l/"] is a closed interval 
subset of  [_C, (~1 [6], [71, [91. 

We now state the theorem which we will prove in the next section. 

Theorem. Given a weight measure/Z with support in A, and given any closed 
interval subset [a, 3] of  [ C_, C1, there exists a measure v which is carrier-related 
to lz such that [ (N, (v) ) l / "  1 = [a, ~]. 
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3. Proof of the Theorem 

The proper ty  of  being carrier-related is equivalent  to that of  being mutually 
absolutely continuous [7], and hence it will suffice to construct  a positive almost 
everywhere (/~) Borel measurable funct ion to(z) so that d r =  to(z )d lz  has the 
requisite property.  

We will state four lemmas. Lemma 1 is due to Ancona,  Lemma 2 is due to 
Ullman, and Lemma 3 is due to Szeg5 and Tonelli .  Proofs of  Lemmas 2 and 4 
appear  in the last section. 

Let K be a compact  subset of  C having positive capacity and let ~ be the 
u n b o u n d e d  component  of  the complement  of  K in C. Let IzK denote  the equili- 
brium measure for  K [5, p. 55]. The equilibrium potential U(z ,  i z r )  is harmonic  
for z ~ ~ ,  and when it is cont inuous on C we say that K is regular. 

Lemma 1 [1], [2]. Let B be a Borel subset o f  C with C ( B ) > O, and let e > O. 
Then B has a regular compact subset ~f with C ( ~f) > C ( B ) -  e. 

Lemma 2 [7]. Let i.t be a weight measure with support S( i  z )  in A. Let B be a 
Borel subset o f  S(Iz ), and let ~ be a regular compact subset o f  S(Iz ). Assume  that 
Iz(B c~ N~(z ) )  > 0 for  each z E ~ and all e > O. Let  n be a positive integer. Then: 

(i) There is a nonnegative Borel measurable funct ion ~-~(z), called a t ransfer 
funct ion,  with the properties that ~ "r,(z) dtz = n-" and A, = {z: T,(z) > 0} is 
a compact subset o f  B, 

(ii) There is a sequence o f  positive integers {a,},~_ I with the property that 
l im,_o~(a,) 1/~ = 1 and such that i f  P , ( z )  is any polynomial o f  degree n, then 

f lP.(z)l'-~-o(z) d~ __ ( a . ) - ' ( l l  P . ( z ) l l~ )  ~, 

where IIP.(z)il~ = m a x ~ l P . ( z ) ] .  

Lemma 3 [ 5, p. 73 ]. Let K be a compact subset o f  A, and let 5,/. ( K )  = inf[[ P. (z)[] K, 
where the infimum is taken over all monic polynomials P~(z) o f  degree n. 

(i) l f  K contains at least n points, there is a unique monic Chebychev polynomial 
T . (z ,  K )  o f  degree n satisfying [] T~(z, K)[]K = M . ( K ) .  

(ii) I f  K is infinite, then lim . . . .  ( M . ( K ) )  ~/" = C ( K ) .  
(iii) F o r z c A , [ T . ( z , K ) [ - < 2  ". 

Lemma 4 [ 10]. For each 3/~ [ C, C ] there exists an Fr carrier B~ = Ups_ 1 Kv, p such 
that (i) C ( Bv ) = y and (ii) iz ( Kv. p r~ N~ ( z ) ) > 0 for  each z ~ Kv.p and all e > O, 
where N~(z)  = {w: [w - z] < e}. Moreover, we may  assume p,(Kv,p) > 0, and that 
ct<-fl implies K~,p c Kt3,p ( p =  1 , 2 , . . . ) .  

We will now prove the theorem. Assume first that  a is positive. Let B~ = 
U p ~  K~,p and Bt3 =[.--Jp_~l Ko.p be F~ carriers as described in Lemma 4 having 
capacities a and fl, respectively, with p . (Ks .p)> 0 and K~,p c Ko.p (p  = 1, 2 , . . . ) .  
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Let {8p}pz-O be a sequence of  positive numbers decreasing to zero, and let y 
represent both of the numbers a and ft. For each integer p let ~ . p  be a regular 
compact subset of Kv., satisfying C(YQp)>C(K, .p ) -ep .  From the Wiener 
criterion [5, p. 104], we may assume that Y/'v.p c YQp+~. By Lemma 2, there exists 
for each integer n, transfer functions %.p,, (z) supported on compact subsets Av.,., 
of  Kv.p, such that for any polynomial P,(z) of  degree n, 

f [P,(z)12 r,,,,,..(z) d~, >-(a:,,,,.,)-'(llP,(z)[[~,,)" , 

with lira . . . .  ( a~,.p.,,) I/" = 1. 
Since B~ is a carrier we may assume As,p,, c B~. Let a~,p be an integer such 

that n >-a~,.p implies that 1-< (a~.p.,)~/"- < 1 +ep,  and let ap be an integer greater 
than max{a~,p, as,p, ap_~} ( p =  1 , 2 , . . .  ; ao=0) .  The construction is as follows. 
For a compact set K with C(K)<- y, let [K, g, e] denote the least positive integer 
for which n - [ K ,  % e] implies [IT,(z, K)[[~ <--(y+e)" (Lemma 3). Let [s e] 
denote the least positive integer m for which Y~,~,, n - 2 -  < e. Now let Xo=X~ =0, 
and, for p =  1 , 2 , . . . ,  let 

f2v-t = max{ap, x2p-2 + 1, [s (a/2):*~,-,]} 

and 

f2p=max{x2p-~+l,[K~,po ~_J As.k.x2k, oe, ep],[Ks.p+~,~8, ev]}. 
l<--k~p 

By the principle of recursive definition [4, p. 10], there is a unique sequence 
{xj}~>o which satisfies x2p =fEp-1 and x2p+l =f2p (P = 1, 2 , . . . ) .  Let X2p = tp, x2p+l = 
sp (p =0,  1 , . . . ) ,  and Lp =K~.pw(..J~<_k<p As,k,X2k (p= 1 ,2 , . . . ) .  Then with this 
change of  notation, 

and 

Now let 

n -2~  (a/2)2sp-,, 
n~tp 

IIT.(z, Ks.+,)IIK~ .... ~ ( ~ + ~ ) ~  for n>_sp. 

gp(z) = Xro.p(z)(Iz(K~.p))-'((a/2)E*p -' - (a/2)2sp), 

where XK..(Z) is the characteristic function of  the set K~.p, and let 

to(z)=c ~ (crq(z)+rs..,,,(z)+ ~. r~.q..(z)), 
q>-I tq<n<~tq§ 

where c is chosen so that S ~o(z) d/z = I. 
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We must  demonstrate  four inequalities: 

(i) lim s u p . ~ ( N . ( v ) )  1/" <- fl, 
(ii) lim i n f . .~ (N . (v ) )  ~/" >- a, 

(iii) lim s u p p . ~  (N,~(v))~/~, <- a, 
(iv) lim infp.~(N,~(v)) ~/'~ >-ft. 

In demonstrat ing inequalities (ii) and (iv) we use the fact that 11 P. (z)II ~ >- (C(K))~ 
for monic polynomials  P.(z) of  degree n and compac t  sets K [5, p. 62]. 

(i) For  sp<n<-sv§ 

( N . ( v ) )  2 = f ]P.(z, v)l 2 dv 

= f [P.(z, v)]Zo~(z) d/z 

<- f Jr.(z, K~,.+,)liw(z) d~ 

- -  f Ivz, f d Ki3,p+l J S (It.)-- Ki3,p+ l 

- 03 + ~)~" 

+c22" f s  Z (~%(z)+r~.,.,~(z) + Y r~.q.,(z)) dlz 
bt)--K0 p+l q~l lq<~l~tq+ I 

~ ( j ~ . _ } _ E p ) 2 n . . ~ c 2 2 n ( ( o l f 2 ) 2 S p + l . . ~ _ ~  (/q)-2.+. ~. /I-2) 
q>-p+2 n>tv+ 2 

_< (13 + e~)2. + c2~_.((~/2)2~§ + (a/2)2~+, + (a/2)2~+,) 

--< (1 + 3c)(fl + ep) 2". 

(ii) For tp < n <- t,+~. 

(N'(v))2-- I IPo(z, v)] ~ dv 

= I IP.(z, v)r~o(z) dlz 

>-c f IP.(z. v)12r~,...(z) d~ 
dA  Q,p,l[ 

>- c(a~...)-'(llP.(z, ")11~o.): 

--> c(1 + ep)-"(C(K,,.p) - ep) 2". 
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/. 

(iii) ( N ~ ( z , ) ) 2 = J  = dp 

= f IP~,(z, ~)l%(z) d~ 

I I L.(z, G)l%(z) d~z 

Lp (,u. ) -  Lp 

_< (o~ + ep)zs, ' 

+c22~fs y. (o-.(z) + ~-~,.,.(z) + y 
(l~)--Lp q~--I tq<n<--tq+l 

(o~/2) + Z (t~)-:+ Z n -~ ep)-p + C2 2s, 2~p 
q~ 'p+l  n > t p +  I 

< (a + ep)e'~ + c22".((a/2)2s. + (a /2)2% + (a/2)2*Q 

<- (1 + 3c ) ( a  + ee): ' . .  

(iv) (N~,,(u)) ' --  f ]P,.(z, u)[ 2 de  

f [p,.(z, ,,)1%(z) d~ 

c f .  ]n,.(z, z,)lzr~.p.,~(z) dp. 
~.p, Ip 

c(a~.~+)-'(llPo(z, ~,)[Ex~.,) 2 
c(1 + e.)-'P( C ( K~..) - e.)". . 

"r~,.,,(z)) du. 

The remain ing  cases when a is zero are hand led  similarly. There is no need 
for  t ransfer  funct ions for a carrier o f  zero capaci ty ;  however ,  infinite sets are 
required for  the use of  Chebychev  polynomia ls .  Suppose  Bo is a carrier  o f  zero 
capaci ty.  Since a carrier Bo is an infinite set, and  we may  take Bo= I,_Jp~ Ko.p 
where  Ko.e is compact ,  ~(Ko,p) > 0, and Ko.p c Ko.p+~ (p  = 1, 2 , . . . ) ,  we may  then 
assume the existence of  a convergent  sequence  l imp_~ zp=z t where zp~ 
Ko.e-Ko.p_~ ( p = 2 , 3 , . . . ) .  Since C ( { z ~ ) ) = 0 ,  assume z l ~ B o  so (Zp}p>, is an 
infinite c o m p a c t  subset of  B0. Hence  we m a y  assume  fur ther  that Ko, p i tself is 
an infinite set (p  = l, 2 , . . . ) .  

I f 0 = a < / 3 ,  for  p =  l,  2, . . . , let 

tp = max{ap, Ip_ I 4- 1, [~,  ( ep_t/ 2 )2s,,-~ ]}, 

sp=max{sp_,+l,[Ko.pW ~_J A~.k.,~,O,%],[Ka.p+,,fl, ep]}, 
I<_k<-p 

o'.( z) = XK..~( Z)(lz( Ko,p) )-'( ( ep_,/2)2'. -' -- (%/2 )% ' ) .  
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and let 

o~(z) = c Y 
p-->l 

I f  O= ot = ~ ,  for p =  1 , 2 , . . . ,  let 

and 

(%(z) + r,.,.,,(z)). 

s; = max{se_~ + 1, [ Ko,~, 0, ee]}, 
- 1  2s (rp(z)=x~. ,(z)(Iz(go,p))  ( ( e p _ / 2 ) , - ( e p / 2 ) 2 " , + ' ) ,  
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o ) ( z )  = c Z o ' , ( z ) .  �9 
p-->l 

4. Proof of the Lemmas 

Proof  of Lemma 2. For z c C, let G(z)  = log(C(Y~) - t )  - U(z,/~x), and let G~ = 
max.~x~[G(z)[ where ~ = {z ~ C: min~.~cl z - w [  < 8}. It has been shown [7] that 
if z * ~  is chosen such that [p,(z*)[=[[p,(z)[[x and we set dn = 
[n exp(nG2/ ,)]+ 1 (brackets [ ] indicating the least integer function),  then, for 
any z such that [ z - z *  I < (2d,)  - t ,  it follows that [p,(z)] > (�89 Let x, = 
- 1  + i (6d,)  -~, y j = - 1  +j(6d~)  -~, and let S~.j = { ( x , y ) ~ C :  x~_~<x<x~, yj_,<y<- 
yj}, so that  S(/z) c (._),~.i<_t2a, ' S~.j. Let S,.k, k = 1, 2 . . . .  , m,,  rn,, < (12d,)  2, denote 
those squares S~.j which intersect ~ ,  and let z,,.k ~ ~ c~ S,.~. Let A,.~ be a compact  
subset o f  n~N(4d,,Ut(Zn,k) with ~ ( A , . ~ ) > 0 .  Hence  if z*~S, ,~,  for some k*, 
l <- k* <- m.,  then, for any weAn,k*, Iz* - w] <- lz* - z,..~.[ + l z . . ~ . -  wl <- ( 2d~) - ' .  

Now let A.  = [..]~<_k . . . .  A.,k, let 

r . ( z ) = ( n 2 m . )  -~ Y~ XA,,.~(z)(Ix(A..~)) -~, 
l ~ k ~ r n .  

l /n  and let a .  = 4n2m.. The fact that l im,_~ a~ = 1 follows from the fact that Y{ is 
regular. �9 

Proof of Lemma 4. For B c  S(/~), let Z ( B )  = { z ~  B: I.~(Bc~ N~(z)) =0 for some 
positive 6} and let P ( B ) =  B - Z ( B ) .  Observe that  I~ (Z(B) )=  0; for if z ~ Z (B) ,  
then i ~ ( B n N ~ ( z ) ) = O  for some S > 0 ,  and there is a rational point  w and a 
positive rational • such that z ~ N n ( w ) c N ~ ( z ) ,  and hence Z ( B ) ~ [ . . J , . w B n  
Nn(w),  a countable union of  sets o f  measure  zero. 

Next  observe that P(B)  is closed if B is closed. To see this, let {z,}n>_~ be a 
sequence in P(B)  converging to z in B. I f  z is not  in P(B) ,  then there exists a 
positive 8 such that i~ (Bn  N~(z)) =0. Then,  for sufficiently small positive e and 
sufficiently large n, 0 < I~(B ~ N~(z~)) <- (B c~ N~(z)),  which is a contradiction.  

Let B = [Jp>~ Kp be an F~ carrier of  capaci ty  _C. By the above, we may assume 
Z(Kp)  is the empty set. Let f :  [0, 1] --> A be a cont inuous  surjection. Let Kp.x = Kp u 
{f ( t ) :  0 -  < t <- x} ~ S(l~ ), let Ip..~.,, = Kp,,. - Kp.x, and let C(x)  = C((._Jp>l P( Kp, x) ). 
It remains to show that C(x)  is a cont inuous  nondecreas ing  function on [0, 1] 
whose range is [_C, C].  
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Observe that C(0) = C(U_v> l P(Kp.o)) = C([_Jp~ 1 Kp) = C, and C(1) = 
C([_)v~I P(Kp.,)) = C(SOz)) = C. Next, observe that P ( B i ) c  P(B2) if B, c B2. 
For if z e P ( B , ) ,  then there exists a positive 5 such that iz(B2c~N~(z))> 
tz(Bl c~ N~(z)) > 0, and hence z e P(B2). It then follows that C(x)  is nondecreas- 
ing, since C(x)  = C(L..3p~_, P( Kv.x) ) <- C(Up,_~ P( Kp.y) ) = C(y) if x < y. 

Let e > 0  and B c  S0.t). Then there exists 5 > 0  such that for each A c  S(~)  
with C ( A ) < 5  we have C ( B ) - e < - C ( B - A )  and C ( B ~ A ) < - C ( B ) + e .  This 
follows from two facts [5, pp. 56,63]: (i) If B~B2=B3c{z : l z ]<- �89  then 
(log C(B3))-I ~ (log C(B~))-~+ (log C(B2)) -1. (ii) If a ~ C, then C({az: z ~ B}) = 
talc(re. 

For x < y we have 

Z(Kp .~ ) -Z (Ke ,  y) = { z e  Ke, x: ~(Kp,~ c~ N~(z ) )=0  for some positive 5} 

- { z  ~ Kp,y: t,~(Ke,y ~ N~ (z)) = 0 for some positive 5} 

= {z ~ Kp..~: ~(Kp, x c~ Ns(z))  = 0 and i~(Kp.y c~ N~(z)) 

> 0 for all sufficiently small positive 5} 

c {z ~ Kp, x: I,~(Ip, x,y c~ N~(z)) > 0 for all positive 5} 

= {z~ Kp,.~: p,({f(t): x < - t ~ y } n  N~(z))> 0 for all positive 5} 

c { f ( t ) :  x ~  t<-y},  since this last set is closed. 

Let D s ( x ) = [ x - 5 ,  x + 5 ] ~ [ O ,  1]. We then have 

C(x  + 5 ) = C(pl;sJ_ Ke,~+~ - Z(  Kp,.~+8) ) 

= C(v~_> 1 (Kp.x-Z(Kp,~))w(It ,  ....... a-Z(Kp,.~+~))w(Z(Kp.x)-Z(Kp,x+~)) ) 

<- C(}~.j~ P(K~.x)~ f (  O~(x)),  

and 

By continuity, l i m ~ o  C ( f ( D ~ ( x ) ) ) = 0 .  Hence,  for given e > 0 ,  there exists 
5 > 0 such that C ( x ) -  e <- C ( x -  5) <- C ( x +  5) <- C ( x ) +  e, so C(x)  is continuous.  
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