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On Theorems of Jackson and Bernstein Type in the 
Complex Plane 

J. M. Anderson, A. Hinkkanen, and F. D. Lesley 

Abstract. We consider best polynomial approximation to functions analytic in 
a Jordan domain D and continuous on/5 .  We relate theorems of Jackson and 
Bernstein type to the HSlder continuity of the exterior conformal mapping 
functions for D. 

1. Introduction 

Two of  the fundamental theorems in the "constructive theory" of approximation 
by complex polynomials are those of  Jackson and Bernstein. We state them in 
the very simple case that the domain in question is the unit disk A = {[z I < 1}. We 
write f e  Lip(a)  on a set S to mean t h a t f  is uniformly HSlder continuous on S 
with exponent  a :  there exists a constant K such that for all z~, z2 e S 

If(z ,)-f(z2)l---  KIz, - z21". 

For a given set S we write Ilglls = sup{Ig(z)l, z ~ S}. The order of best approxima- 
tion to f o r t  S is E , ( f )  = i n f { l l f - P ,  Ils, P, a polynomial of degree -<n in z}. Then 
Jackson's theorem for the disk is 

(J) I f f i s  analytic in A and Lip(a)  on A for a ~ (0, 1], 
then E , ( f )  = O(1/n")  on A. 

Bernstein's theorem in this context is 

(B) For a ~ (0, 1), if En ( f )  = O( 1/n ~) on A, then f ~  Lip(a ) on A. 

This paper  is addressed to the question: for which Jordan domains D are these 
theorems true? 

The answer to this question depends on the behavior of  the exterior conformal 
mapping functions for D. Let A and A* be respectively the interior and exterior 
of  the unit circle in the w plane. We denote the boundary 0D of  D by C and 
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denote by D* the exterior Ext C of  C For  w ~ A*, we let 

r  ~, a,w -n 
n ~ O  

be a conformal mapping of  A* onto D*, and we let, ~p-i = ~ .  If  C is a curve of  
bounded rotation, then a result of  KSvari [7] implies that if ~ Lip(/3) on &* 
and f ~  Lip(a)  on s for a -- 1 and/3  -< 1, then E , ( f )  = O(1/n '~) .  Theorems of 
Jackson type have been considered by Belyi [4], the results being expressed in 
terms of the quantity p(1 + l /n ,  z) which is the distance from the point z ~ C to 
the level line {~(w): Iwl = 1 + 1/n}. In particular, Belyi's results imply that if C 

is a rectifiable quasicircle and if �9 ~ Lip( l )  on A*, then Jackson's theorem is true 
o n / ) .  (See also pp. 54-56 of  [6].) Further results of  this type have been obtained 
by Andreevski [3]. We remark that �9 ~ Lip( l )  if C has a continuously turning 
tangent (i.e., C is smooth), and if, in addition, the tangent angle has modulus 
of  continuity as a function of  arclength which satisfies a Dini condition. Smooth- 
ness alone is neither necessary nor sufficient for qb e Lip(l)  (see [9] and [11]). 

Converse theorems, expressed again in terms of  p(1 + 1/n, z) hold for arbitrary 
compact connected sets, as was proved by Lebedev and Tamrazov [8]. (The direct 
theorem is not true in this amount of generality, as was shown by Shirokov [14].) 
In our case, the result of [8, p. 1358] shows that if ~ L i p ( 1 )  on /5", then 
Bernstein's theorem is true on/5 .  This leads naturally to the conjectures, already 
partially established: 

(1.1) Jackson's theorem holds o n / 5  i f  and only if ~P ~ Lip(l)  on A*. 

(1.2) Bernstein's theorem holds on s if and only if ~ ~ Lip(l)  on/5*.  

Note that our conjectures do not require that C be a quasicircle, so that the 
sufficiency of  the condition for (J) is not established by the results of Belyi and 
Andreevski. Nor do we address that problem here. We are principally concerned 
with the necessity of the conditions for (B) and (J). In Section 2 of  this paper 
we use a method of Szeg8 [15] to prove local generalizations of Bernstein's 
inequality, on which the proof  of  Bernstein's theorem is based. This celebrated 
inequality, stated for the disk A is: let P, be a polynomial of degree n with 
[[ P, [[ a-< 1. Then [[ P'I[ ~ -  n. We will then use these generalizations, which depend 
only on the local behavior of  �9 at a boundary point, to prove new versions of 
Bernstein's theorem. One of  these is a new proof  that ~ ~ Lip(l)  o n / 5 "  implies 
Bernstein's theorem. Another will imply that if ~ fails to be Lip(l)  at a single 
point of  C in a very weak sense, then Jackson's theorem cannot be true. 

In Section 3 we apply the method of strip mappings to study the local boundary 
behavior of  the conformal mappings. First we prove a theorem, of  independent 
interest we believe, that allows us to infer behavior of the mapping function for 
unrestricted approach to a boundary point from behavior on a "relatively thick" 
sequence. This result then strengthens our necessary condition for (J) to hold. 
Then we use a strip mapping to construct a class of  examples which are used in 
examining the necessity of  the condition for Bernstein's theorem. 

In Section 4 we then use these examples, together with the methods of [2], to 
demonstrate that if ~ fails to be Lip(l)  at a single point of C, in a weak sense, 
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then Bernstein's theorem may fail to be true, so that the condition is "almost 
necessary." 

2. Bernstein's Inequalities and Applications 

We begin by proving a local generalization of  the classical Bernstein inequality. 
The method of proof is adapted from that of Szeg6 [15], who was concerned 
with domains D which are bounded by piecewise analytic arcs meeting at angles. 
Our hypothesis requires only that aD = C be a Jordan curve and that the function 

be in Lip(I/ /3) for/3 e (0, 2], at the point in question (say z = 1). There have 
been many geometric criteria given for such continuity in recent years [10], [12]. 
A particularly simple one is that the domain D be bounded by a quasicircle and 
contain a wedge of opening (2 - /3 )  ~r with vertex at z = 1. SzegS's method is based 
on the following observation. The exterior mapping function �9 is conformal at 
oo, with ~(co)=co.  Thus, if P~ is a polynomial of degree n, the function 
P , ( z ) / W " ( z )  is analytic at co. Furthermore, if IP.(z)I-< 1 on/3,  then the maximum 
principle guarantees that 

(2.1) IP.(z)l<_lW(z)l for z ~/3" .  

Theorem 1. Suppose that C is a Jordan curve with interior D and exterior D*, 
and that z = 1 ~ C. Suppose that �9 maps D* conformally onto A* and that there 
exist K > 0 and/3 ~ (0, 2] such that, for  z ~ /3*  with ]z - 1[ < 1, 

(2.2) I*(z)  - II-< K l z  - 11 '/~. 

Then for any polynomial P, o f  degree n, for  which IIP.IIo-< 1, we have 

(2.3) IP'(1)I < e~n ". 

Further, for  Iz - 11 <- 1/(2ha),  

(2.4) ]P,(z) - P, (1)1 < 4eKn ~ [z - 11. 

Proof. By Cauchy's formula, for p > 0, we have 

(2.5) I e ' ( 1 ) l -  ( l / p )  ( max IPn(z)D. 
Iz-ll=p 

On account of (2.1), for z ~ 13" and Iz-11 = p, 

IP. ( z ) l -  N'(z)l" - l1  + (,tt(z) - 1)1" 

- (1 + I*(z )  - ll)" 

-< (1 + Kpl/a)"  = (1 + (Knpl /a ) /n )  ". 

Now choose p = n -~ so that, for Iz - 11 = p, 

IP.(z)l--- (1 + K / n ) "  < e •, 

and (2.3) follows from (2.5). 



310 J.M. Anderson, A. Hinkkanen, and F. D. Lesley 

For I~-11 < p / 2  we have 

IP'(OI < (4/p)e K -- 4n#e r', 

from which (2.4) follows by integration. �9 

Corollary 1. Suppose that D is a Jordan domain, and that the exterior mapping 
function xIr ~ Lip(l) on D*. Then Bernstein" s theorem is true on E). 

Proof. For fl = 1, the above Lemma is essentially the classical Bernstein in- 
equality, from which Bernstein's theorem f o r / 5  follows as in [5, p. 200]. �9 

Our next result assumes that the difference quotient associated with H61der 
continuity converges to 0 for uniform approach in /5* .  The result will be used 
to establish a strengthening of Bernstein's theorem. 

Theorem 2. Suppose that for xt r as above" there exists a function g, continuous and 
increasing for t >- O, with g(0) = 0, g(1) > 1, and such that, for some fl E (0, 2], 

(2.6) Iq, Cz)- 1 1 - l z -  ll'/'gCIz- 11) 

for all z~  D* with Iz-ll<_ 1. Then there exists a function h(n) defined for n =0, 
1, 2 . . . .  , with h( n)~oo monotonically as n-~ oo, such that, for any polynomial of 
degree n with II Pn II ~-< 1, we have 

(2.7) IP'(1)I < en#/h(n) .  

Further, for ] z -  11-< h(n) / (2n ' ) ,  we have 

(2.8)  IP . (z )  - Pn (1)1 < (4n#/h(n))lz- 11. 

Proof. As in the proof of Theorem 1, for [ z -  11 = p - 1, we have 

IP.(z)l-< I't'(z)l = ~- (l + [~(z) - ll)" 

< (1 + npl/~g(p)/n)  ". 

For each n >- 1 let h(n) be the unique solution to the equation g ( x / n  ~) = 1Ix 1/~, 
so that 

(2.9) g(h(n) /n  ~) = 1/hl/rJ(n). 

Since g ( 1 ) > l ,  we have h ( 1 ) < l .  Set h(O)=h(1)/2.  Because g is increasing, 
h(n)->oo monotonically, so that 1/hl/#(n)  decreases to 0. By (2.9) it follows 
that h(n) /n  ~ decreases to 0. Thus, for [z-11 = p  = h(n) /n  ~, 

I e . ( z ) l - ( l + h l / ~ ( n ) g ( h ( n ) / n ~ ) / n )  ~ 

= ( l + l / n ) " < e ,  

and, by (2.5), 

IP'(1)[ < en~/h(n) ,  
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so that (2.7) is established. The inequality (2.8) then follows as in the proof  of  
Theorem 1. �9 

We now apply the above extension of  Bernstein's inequality to prove a local 
theorem of  Bernstein type. The case /3 = 1 will then be applied to obtain a 
necessary condition for the Jackson property. In the rest of  the paper  II II will 
denote II IIo. 

Theorem 3. Let D be a Jordan domain with 1 ~ C = d D, and such that there exists 
a function g as in Theorem 2 such that if ~ is the exterior mapping function for 
D, we have 

(2.10) Ixtr ( z )  - 11 - - - Iz  - a I ' / O g ( I z  - a l )  

for fixed /3 ~ (0,2] and all z ~ E)* with. I z - 1 ] - < l .  Suppose that f is analytic in D 
and continuous on if) with E.( f )  = O(1/ n ~t3) for some a ~ (0, 1). Then, for z ~ if), 

(2.11) I f ( z ) - f (1 ) l / l z - l l~ - ,O  as z--> 1. 

Proof. Let h(n) be the function for which (2.7) holds as in Theorem 2. Let {P,} 
be a sequence of polynomials, P, of  degree - n ,  such that IIf-P, II = o ( 1 / n  =~). 
Now let Iio= P1 and let V, = P2"-P2"-', so that f=Y' .  V,. Then, for m > 1, 
we have 

I f ( z ) - f ( 1 ) l ~ l V ~ ( z ) -  V~(1)l+ ~ I V . ( z ) -  v.(1)] 
0 m + l  

<-4E(2"Uh(2"))llv.lllz-]l+2 E IIV.II, 
0 m + l  

assuming that (2.8) holds for n -< 2 m. 
Now, for n -> 1, 

II v.ll---IIP~. - f l l  + 11/'2 ~ - f l l  -< K, 2-'#3, 

so that 

I f ( z ) - f (1 ) l<-4Kdz-  ll ~ (2"t3<~-~)/h(2"))+ 2K~ ~ 2 -"~. 
0 m + l  

We now define 

n~(l--(x n n ~ ( l - - a  
era  

and note that em --' 0 as m --> co. We then consider the sequence 

8.,= l/(2mt3e,.)=( ~=o2"t3"-~))/(2"t3(2 ~o2"t~'l-~)/h(2"))) 

< (  ~=o2"t3('-~))/(2'~o(2 ~o2"t3('-~)/h(2"))) = h(2m)/(2x2"t3). 

Since h(n)/n a decreases to 0 as n~oo ,  it follows that 8 . , ~ 0  as m ~ o o .  
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Now suppose that I z - l l=8  for z ~ D ,  and choose m so that 8m+l~:8<Sra. 
Then (2.8) holds for n <- 2", and, for constants Kj independent of m, 

If(z)  - f (1)[-< K28em2mt30-c') + K32 -m~'~ 

<_ B~(K2em(2m~Sm)(l-~) + K4(2<m+~>aSm+l) -~) 

<_ 8O( K2em(1/ e,,,)~ + K4(em+l) '~) 
o t  a a 

= 8 (K2em+K4em+l)  

and the theorem is established. �9 

Corollary 2. Suppose that D is a Jordan domain with 1 ~ C = OD and that dp is 
a conformal mapping of  {Iwl > 1} onto D *  = Ext C. Suppose that ~ fails to be in 
Lip(l)  at the point w = 1 in the sense that (2.10) holds, with fl = 1. Then Jackson's 
theorem cannot hold for D. 

Proof. Let f ( z )  = 1 + (z - 1) 5 in /5 ,  for any ote (0, 1). I f  Jackson's theorem held 
then E n ( f ) =  O(1/n~).  But then, by Theorem 3, (2.11) must hold. This being 
false for the given function, the corollary is proved. �9 

3. Some Results on Local Boundary Behavior 

There are many criteria which guarantee that (2.10) holds, and that Jackson's 
theorem then fails. That D contain an angle with vertex at z = 1, of  opening 
larger than ~-, is one such criterion [ 12]. However,  our conjecture is that cb ~ Lip(l)  
on A* is necessary for Jackson's theorem and our  Theorem 3 falls short of proving 
this, because the mapping function ~b may fail to be in Lip(l)  on A*, but there 
may be no point at which (2.10) holds. An example of  this phenomenon may be 
constructed using the techniques of  [11]. However, we can strengthen our 
Theorem 3 by proving the following result, which guarantees local continuity for 
arbitrary approach to a boundary point (as in (2.2) or (2.10)) from behavior on 
a suitably thick sequence. 

Theorem 4. Suppose that C = OD is a "quasicircle and that �9 is the con formal 
mapping o f  D * =  Ext C onto {Iwl > 1}, with ~(oo) = oo and ~(1)  = 1. Suppose that 
{z*} c / ) *  is a sequence converging to 1 and that, for  some positive constant K, 

I~ '(z~*)-  11 Iz~*+l- 11 > g - ,0 .  
(3.1) Iz*-- 11 - I z * -  11 

Then there exists g monotonic and continuous with g( O ) = 0 such that, for  z ~ D* 
with I z - 11 -< 1, 

Iqt (z) - I I -  Iz - l lg( Iz  - ll). 

As in [9]-[12], it suffices to prove a corresponding result for strip mappings 
where the strip domains are the images of  D* and A* under a logarithmic 
transformation. In particular, if we assume that z = -1  ~ C, then the mapping 
w = T ( z ) = L o g ( ( z + l ) / ( z - 1 ) )  will take D* onto a strip domain S which is 



Jackson and Bernstein Theorems in the Plane 313 

b o u n d e d  by two Jordan  arcs, which we will call C1 and C2, each with - c o  and 
+oo as endpoints :  each C i can be pa rame t r i zed  as ui (x )+ ivj(x), x ~ ( -co,  oo), 
with uj(x)-->• as x-->• The  fact that  the original curve C is a quasicircle 
implies  the existence of  a posit ive cons tant  M with the following propert ies .  

(3.2) Suppose  that  w = u + iv r S and tha t  u ' -  u -> M. Let cry, be the Ahlfors  
crosscut  o f  S at u'  (see p. 349 of  [10]). Then  cru, separates  w f rom +oo. 

(3.3) Suppose  that  w = u + i v ~ ( J  and tha t  u - u ' > - M .  Then w is in the 
c o m p o n e n t  of  S-o-~ ,  with +co as a b o u n d a r y  point .  

(3.4) I f  0(t)  is the length o f  or,, then  0( t )  < 2~" for  all t. 

For  the p roofs  o f  these propert ies ,  see [10]. 

Theorem 5. Let "~ = {z = x + iy: lyl< ~'/2} and let S be a simply connected strip 
domain in the w = u + iv plane, which is bounded by two Jordan arcs C~ and C2, 
each with -oo and +oo as endpoints. Further, let S have the properties (3.2), (3.3), 
and (3.4). Let F be a conformal mapping o f  S onto �9 with F(+oo)= +oo and 
F ( - o o )  = -oo,  extended to a homeomorphism o f  (S with Y,. Let K be a constant and 

let {w~ = un + ivn} c ~ be such that u, --> oo and, fo r  zn = x~ + iy~ = F ( w , ) .  

(3.5) u~+l - un - (xn - u~) + K --> +co. 

Then for  Re F ( w ) = x ( w ) ,  w e  S, 

(3.6) x ( w ) - u - - > + o o  as w=u+iv - ->+oo .  

Proof.  Given  w = u + iv, let un be the largest  o f  the Un for  which u - un --- 2 M  + 2r 
Let u '  = u~ + M and u" = u - M. Then  

u " -  u' = (u - M )  - (u~ + M )  = (u,+l - Un) + (U -- Un+I)--2M 

so that  

(3.7) 2~r -< u " -  u' < Un+~ -- Un + 27r. 

We define _xu~ = min{x(w):  w ~ cru,,} and  gu, = max{x(w) :  w ~ cru,}. By (3.2) and 
(3.3), x,  <gu,  and x_u,,<x. Further,  by (3.4) and  (3.7) 

i u,, d t / O ( t ) >  1, 
u" 

so that  we may  app ly  the Ahlfors  distort ion theo rem (see p. 349 o f [10] )  to see that  

x ( w ) - u  =x~ - u ~  + ( x - x n ) - ( u - u ~ )  

>--Xn--U~ +(_X~,,--~u,)--(U"--U')+(U"--U)+(U~--U')  

I/ >--xn -u ,+  ( ( r  d t - 2 c r - 2 M  

- Un - -  ( � 8 9  U ' )  - -  2 r  - -  2 M  

- u ~  - ( � 8 9  - -  U ~ )  - - 3 Z r  - -  2 M  

- un --(�89 - Un) - 3 r r -  2 M  - K /2--> OO 

>--- X n 

>-x~ 

as n-~ oo. The  last inequalit ies fol lowed f rom (3.7) and  (3.5). 
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Remark. The above method may be applied to infer that the quotient 
I~(z)  - 1 ] / l z -  1] ~ is bounded or converges to 0 for an unrestricted approach of  
z to 1 in L)* from hypotheses about the approach  on "relatively thick" sequences. 
We have proved only the result of  immediate  interest. For any fl ~ (0, 2], the 
above method can be used to prove the following corollary, which applies to the 
conformal mapping of either the exterior or interior of  C onto the exterior or 
interior o f  the circle. We state it for the case at hand. 

Corollary 3. Suppose that C = 8 D is a quasicircle and that ~ maps D* = ext C 
on to  A* = {twl > 1}. Suppose that there is an arc y c ~ *  with one endpoint at z = 1, 
such that as z--~ 1 along y, q t ( z ) ~  1, and the quotient ] g ' ( z ) -  1 ] / ] z -  1]-* 0 (or is 
bounded), then for an unrestricted approach of  z to 1 in D*, the quotient--)O (or 
is bounded). 

We now use the method of  strip mappings to construct a domain with smooth 
boundary  and of  bounded boundary rotation, symmetric with respect to the real 
axis, for which the conformal mapping �9 from A* onto D* is locally Lip(l)  at 
each w~OA* except w = 1, and, at w = 1, the difference quotient grows at a 
prespecified slow rate. In the following we will write a ( x ) ~  b(x) to mean that 
the quotient a ( x ) / b ( x ) ~  1 as x ~ O .  

Theorem 6. Fix a positive integer k and let L( x ) = lOgk(X) = 
log(log(" �9 �9 (log(x))" �9 �9 )), the k-fold iterated logarithm. Then there exists a domain 
D, symmetric with respect to the real axis and with smooth boundary and of  bounded 
boundary rotation, for which the conformal mapping function qb: A*-~ D* is locally 
Lip(l)  at all w~dA,  except for w= 1, and such that 

(3.8) lw- ll/[~(w) - 11 ~ L(I/lw- 11). 

Consequently, i f  P. is a polynomial of  degree n such that ]l 1:}. 1[ -< 1, then for some 
constant A, depending only on L, and for n >- L-l(1)  

(3.9) [[P'II -< AnL(n) .  

Proof. We define a strip S = {u + iv: -co  < u < oo, ~_(u) < v < ~+(u)}, where 
~p+(u) = ~' /2 for u - 0 ,  tp+(u) = (~'/2)(1 + ( d / d u ) L ( u ) )  for u -> L-l(1)  = u~, and 
~+(u) is defined for 0 <  u < ul so that 9+ is C 2 on ( - ~ ,  co) and 

~ o ( r  du = K1 <oo. 

Define ~p_(u)=-~p+(u),  and O(u)= r 1 6 2  Next let 

2 = {x + iy: -co  < x < co, [y[ < ~'/2} 

and let F ( w ) = z ( w )  map S conformally onto Y with F ( •  F ( •  and 
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F(0)  = 0. Let F - ~ ( z )  = w(z ) .  Then, by a theorem of  Warschawski [16], there exists 
a cons tan t / (2  such that for w = u + iv, as u ~ +oo, 

L u - x ( w ) =  ( ( O ( t ) - ~ ' ) / O ( t ) )  d t + K 2 + o ( 1 )  
1 

= (~L'(O/O(t ) )  d t + K ~ + o ( 1 )  
! 

= L(u) + o(L(u)) .  

On account of  the slow growth of L, we then have, for z = x + iy, 

(3.10) u(z )  - x = L ( x )  + o ( L ( x ) ) .  

We now let z(~) = Log((~ + 1)/(~" - 1 ) ) and  to(w) = (1 + e-W)/(1 - e-W), so that 
the mapping  to(w(z(~))) maps A* conformally onto a domain D* with the 
properties stated above. Further, (3.10) implies that 

I(~ r - 1)/(to - 1)1--- L(1/I~" - 11). 

Changing r to w and to to z = O(w), we obtain (3.8). To prove (3.9) we observe 
that z = 1 is the worst point for the behavior  of  �9 = qb -~, so that if we consider 
any Zo~OA and Wo=~(Zo), we then know that, for some constant K3, 

I( '~(z)- Wo)/(z- zo)l-< K3L(1/Iz- Zol). 
We may then assume that Zo = Wo = 1 and refer to the proof  of  Theorem 1. For 
any polynomial  P, of degree n->L-~(1),  with IIP.II-<l on D, we have, for 
I I - z l = p = l / n L ( n ) ,  

IP,(z)l ~ (1 + K 3 p L ( 1 / p ) n / n )  n 

- (1 + K 3 L ( n L ( n ) ) / ( L ( n ) n ) ) "  

--< exp(K4), 

since L ( n L ( n ) ) / L ( n ) - - > l  as n->oo. The p roof  of  Theorem 1 then 
yields (3.9). �9 

No importance attaches to the special form of  the functions L ( n )  in Theorem 
6, beyond the fact that they can be of  "arbitrari ly" slow growth. What is important 
in Theorem 7 in the next section are the relations (4.6) and (4.7); any function 
L ( z )  with real coefficients for which these hold will suffice for our purposes. 

4. Lower Bounds for Derivatives of Polynomials 

We shall now consider the domain D constructed above for which (3.8) holds 
and estimate f ' ( 1 ) ,  for fn the Faber polynomials  for D. Note that the mapping 
function ~ ( w )  of  A* onto D* is real for w real. Thus (3.8) holds without the 
absolute value signs, for w real. Since D is of  bounded boundary rotation, the 
Faber polynomials  for D are uniformly bounded on D [1, Theorem B]. 
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Theorem 7. Let D be the domain constructed above, for  which 

(4.1) (w - 1)/(d~(w) - 1) = p(w)  ~ 1Ogk(1/(W -- 1)) 

= L ( 1 / ( w - 1 ) )  as w--)l +. 

Then there exists a sequence {n(j)} such that for  the Faber polynomials 

(4.2) f~(j)(1) -> n ( j ) L ( n ( j ) ) / 2 .  

Further, there exists a constant K > 0 such that i f  0 < 1 - x <- r / ( n ( j  ) L(  n ( j  ) ) ), then 

(4.3) f,(j)(1 ) - f , u ) ( x )  >- ( 1 - x )  n ( j )  L(n  ( j ) ) /4 .  

Proof. We first write 

p(w)- a.w-" 
0 

so that 

(4.4) 1 / ( r  k ,w-" ,  
1 

where k. = ao+ a~ +-  �9 �9 + a._~. Differentiating the left and fight sides of  (4.4), 
we obtain 

~'(w)/(~(w) - 1) 5 = E (n  + 1)k~+lw -(~§ 
n=O 

Now the Faber  polynomial of  degree n for D is given for z s D by 

f.(z) = (1/2~-0 1 (w"~, '(w)/(~(w)-z)) dw 
wl=R>l 

so that 

(4.5) 
r 

f ' ( 1 ) = ( 1 / 2 z H )  | (w"C,'(w)/(~(w)-l)  2) dw 
JI w[=R 

-(I/27ri) ~ (j+l)~+1 w-(J+Z)wn dw  
j=0 dlwl=R 

n k  n . 

This is true for any bounded simply connected domain. 
Because of  the symmetry of D, all of  the k.  are real, and ~ (w)  is real when w 
is real. Thus, summing over the nonnegative k , ,  with w > 1, 

1 / (~ (w)  - 1) --< Y' k ,w-" .  

Fix an integer N,-> L-~(1), Then, for the sums involving the nonnegative k, ,  

1 / ( q b ( w ) - l ) - ~ '  k ,w  - " <  - ~' k ,w-" .  
n < N  L r l~ '~N L 



Jackson and Bemstein Theorems in the Plane 317 

If  every k. in the sum on the fight were <L(n)/2,  then 

1 / ( q b ( w ) - l ) -  ~' k,w -~<(�89 ~ L(n)w -~. 
n < N  L N L 

N o w  

(4.6) 
N 

L ( n ) ~ N L ( N )  as N-~ co, 
NL 

so that by a classical theorem of Pfingsheim [13], 

(4.7) ~ L(n)w -n ~ L ( 1 / ( w -  1 ) ) / ( w -  1). 
NL 

But this leads to a contradiction to (4.1). By this argument there must in fact 
exist a subsequence {kn(j)} of {kn) for which kn(j)>-(�89 With (4.5) this 
yields (4.2). 

Because of the symmetry of D, each f '( j)(x) is real, for real x. Thus, for x < 1, 
applying Bernstein's inequality (3.9) for D twice, 

]f~(j)(1 ) - f'ti)(X)] <-- (1 - x)IIfXr II 

-< (1 -x)A2(n(j)L(n(j)))2llfn(j)][2. 

As remarked above, the Faber polynomials for D are uniformly bounded on D, 
so we may choose K, independent of j, for which A2IIfo(,II~-< 1/(4K). If (1-x)---- 
K/(n(j)L(n(j))),  we then have 

[f'(j)(1) - f ' ( j ) (x) ] - -  n(j)L(n(j)) /4 

from which we see that 

f'(2)(x) >- n(j) L( n(j) )/ 4 

and (4.3) follows by integration. �9 

Theorem 8. Let D be a domain as constructed above, with L(x)= logk(x), for 
positive integer k. Then, for any a ~ (0, 1), there exists f analytic in D and continuous 
in if) with E~(f) = O(1/n ~) but for which f is not in Lip(a).  

Proof. Fix any a e (0, 1) and let {n(j)}, j = 1, 2, 3 , . . . ,  be the sequence from 
Theorem 7 for which (4.3) holds. Without loss of generality we may assume that, 
for a fixed M > 1, (n (j  + 1 ) /n (j)) > M. The constant M will be chosen later. Define 

f ( z ) =  ~ (fn(j)(z))/n(j) ~. 
j=O 

For each N -  1, let o = o(N) be such that n(o) <-- N <- n(o + 1). Then let 

uo(z) = ~ f~(~)(z)/n(j) ~. 
j=o 

The polynomial uo is of degree at most N, so that 

Ilf  - u~ <- ~ IIf,(j)l[/ n(j)~ <- K J  n( o + l )~ < K~/ g ~, 
j=u+l  
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for an appropriate constant K1, so that E N ( f ) =  O ( I / N ~ ) .  Now, to show t h a t f  
is not in Lip(a) ,  we choose x~(j) for which 

(4.8) 1 -x~( j )=  8.(j)= K / ( n ( j ) L ( n ( j ) ) )  

for K as in Theorem 7. Then, noting that, for 0 <  1 - x <  1 - 8.(j) and r<_j, (4.3) 
implies that f~(,)(1) -f~(,)(x) > 0, we see that 

J 
u.( j ) (1)-  u.(j)(x.(j)) = T. (f~(.)(1) - f . ( . ) ( x . ( j ) ) ) / n ( r )  ~ 

r ~ O  

>- (f .( j)(  ] ) - f.(~)( x.(j)) ) / n ( j )~  

> (1 - x . ( j ) ) n ( j ) L ( n ( j ) ) / ( 4 n ( j )  ~) 

= K / 4 n ( j ) " ,  

by (4.8). Next, observe that 

I(f(1) - u.(j)(1)) - ( f (x . ( i ) )  - u.(j)(x.<j)))l--- 2 l l f -  u~<j) ll 
<-- 2 K ~ / n ( j +  1) ~ -- 2 K t / ( M " n ( j ) ~ ) .  

Now choose M to be such that 2 K ~ / M "  -< K/8, so that 

I f ( l )  - f (x . ( j ) ) l  >- K/(Sn(j)"). 
But 8~(j)= K / ( n ( j ) L ( n ( j ) ) ) ,  hence 1 / n ( j ) "  = ( 8 . ( j ) L ( n ( j ) ) / K )  ~ and thus 

I f ( l ) - f ( x . ( i ) ) l / l l  - x.(j)l ~ >- K(i-") L( n ( j )  ) " /  8 ~ oo, 

as n-~ oo, and Theorem 8 is proved. �9 
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