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Abstract. Let Sd be a d-dimensional simplex in Rd , and let H be an affine hyperplane
of Rd . We say that H is a medial hyperplane of Sd if the distance between H and any
vertex of Sd is the same constant. The intersection of Sd and a medial hyperplane is called
a medial section of Sd . In this paper we give a simple formula for the (d − 1)-volume of
any medial section of Sd in terms of the lengths of the edges of Sd . This extends the result
of Yetter [5] from the three-dimensional case to arbitrary dimension. We also show that
a generalization of the obtained formula measures the volume of the intersection of some
analogously chosen “medial” affine subspace of Rd and the simplex.

1. Introduction

In a recent paper by Yetter [5] a simple formula is given for the area of a parallelo-
gram whose vertices are the midpoints of four edges of a tetrahedron. There the area is
expressed in terms of the lengths of the edges of the tetrahedron. Note that the paral-
lelogram considered there can be always obtained as the intersection of the tetrahedron
and a plane parallel to two opposite edges of the tetrahedron and lying at equal distance
from them.

In this paper we consider a natural generalization of this problem. Let Sd be a
d-dimensional simplex, Sd ⊂ Rd , and let H be an affine hyperplane of Rd given so
that the distance between H and any vertex of Sd is the same constant. We say that such
a hyperplane H is a medial hyperplane of Sd . Let us define the medial section of Sd

with respect to H as the (d − 1)-dimensional convex body Sd ∩ H . Then the analogous
question is whether there exists a “simple” formula for the (d − 1)-dimensional volume
of the medial section Sd ∩ H in terms of the lengths of the edges of Sd .
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The answer to this question is affirmative and it turns out that the square of the volume
of a medial section is a polynomial of the squares of the edge lengths of the simplex Sd .
For the sake of nicer formularization, instead of the volume we express the square of the
volume in the following.

Theorem 1. Let Sd be a simplex inRd with vertices v1, . . . , vd+1, and let H be a medial
hyperplane of Sd separating {v1, . . . , vm} from {vm+1, . . . , vd+1}. Then

Vol2d−1(Sd ∩ H) = 1

(−8)d−1((m − 1)!)2((d − m)!)2
det M (m)

d+3, (1)

where M (m)
d+3 is a symmetric (d + 3)× (d + 3) matrix with block form

M (m)
d+3 =

(
O2 I (m)d+1

I (m)Td+1 Ad+1

)
in which O2 is a 2× 2 zero-matrix, I (m)d+1 is a 2× (d + 1) matrix of form

I (m)d+1 =
(

1 · · · 1
0 · · · 0︸ ︷︷ ︸

m

0 · · · 0
1 · · · 1︸ ︷︷ ︸

d+1−m

)
(2)

with m consecutive 1’s and (d+1−m) consecutive 0’s in the first row, and m consecutive
0’s and (d + 1−m) consecutive 1’s in the second row, and Ad+1 = {a2

i, j } is a (d + 1)×
(d + 1) matrix with entries a2

i, j , where ai, j measures the distance between vi and vj .

Note that for d = 3 and m = 2 formula (1) of Theorem 1 gives the square of the area
of a medial parallelogram P of the tetrahedron S3. However, one needs to write out the
determinant in (1) and to do some algebraic simplification to get

Area2(P) = 1
64 (a

2
1,2a2

3,4 − (a2
1,4 − a2

4,2 + a2
2,3 − a2

3,1)
2),

which is the formula of Yetter [5].
Recall the well-known formula

Vol2(Sd) = (−1)d+1

2d(d!)2
det Md+2, (3)

where Md+2 is the (d + 2)× (d + 2) matrix with block form

Md+2 =
(

0 1d+1

1T
d+1 Ad+1

)
(see [1] and [4]), in which 1d+1 is the row matrix of length d + 1 with all entries equal
to 1, and Ad+1 is the same matrix as in Theorem 1. The determinant in (3) is the so-
called Cayley–Menger determinant. The volume formula (3) has various applications in
geometry, see [2] and [3] for some examples.

Since (1) and (3) are similar formulas for squares of certain volumes, and both contain
analogous determinant factors, one may suspect that there is a common generalization
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of these formulas that still expresses the square of the l-volume of the intersection of
Sd and an analogously chosen “medial” l-dimensional affine subspace of Rd , for any
0 ≤ l ≤ d . In the following we describe such a generalization which includes both (1)
and (3) as special cases.

Let P = {V1, V2, . . . , Vk} be a k-partition of the vertex set vert(Sd), for which

Vi = {vni−1+1, vni−1+2, . . . , vni }
holds for every 1 ≤ i ≤ k, with 0 = n0 < n1 < · · · < nk = d + 1. Let mi = ni − ni−1.
Clearly, each Vi has cardinality mi . This means that

P = {{v1, . . . , vm1}, {vm1+1, . . . , vm1+m2}, . . . , {vd+2−mk , . . . , vd+1}
}
.

That is, P is a collection of k disjoint nonempty subsets of vert(P) each containing
consecutively labeled vertices. Let Pi = aff(Vi ) for every 1 ≤ i ≤ k, where aff( )
stands for the affine hull. Let H ′ = 1

k

∑k
i=1 Pi . In other words, H ′ is the Minkowski

sum (or set theoretical sum) of the Pi ’s rescaled by a homothety with factor 1/k (for
an exact definition of Minkowski sums, see Section 2.1). Since each Pi is an affine
subspace of Rd of dimension mi − 1, therefore H ′ is an affine subspace of dimension∑k

i=1(mi − 1) = d + 1− k. The following holds.

Theorem 2. Let P be a k-partition of the vertices of a d-dimensional simplex Sd as
described previously (1 ≤ k ≤ d + 1). Using the notation above, we have

Vol2d+1−k(Sd ∩ H ′) = (−1)d+1

(2k2)d+1−k
∏k

i=1

(
(mi − 1)!

)2 det MP , (4)

where MP is a symmetric (d + k + 1)× (d + k + 1) matrix with block form

MP =
(

Ok IP
I T
P Ad+1

)
in which Ok is a k × k zero-matrix, IP = {gi, j } is a k × (d + 1) zero–one matrix with
entries

gi, j =
{

1, if ni−1 + 1 ≤ j ≤ ni ,

0, otherwise,

and Ad+1 is the same (d + 1)× (d + 1) matrix as described in Theorem 1.

Note that in Theorem 2 the entries of IP are defined so that we have gi, j = 1 if and
only if vj ∈ Vi . Therefore IP is the characteristic matrix of the k-partition P of vert(Sd).
It is also clear that IP is a generalization of the matrix I (m)d+1 of Theorem 1. For example,
for k = 3 we have

IP =
( 1 · · · 1

0 · · · 0
0 · · · 0︸ ︷︷ ︸

m1

0 · · · 0
1 · · · 1
0 · · · 0︸ ︷︷ ︸

m2

0 · · · 0
0 · · · 0
1 · · · 1︸ ︷︷ ︸

m3

)
,

which is analogous to (2).
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Observe that H ′ of Theorem 2 is a generalization of H of Theorem 1 since the latter
can be written as

H = 1
2

(
aff(v1, v2, . . . , vm)+ aff(vm+1, . . . , vd+1)

)
.

Therefore one may call H ′ a medial (d + 1− k)-dimensional affine subspace of Sd , and
Sd ∩ H ′ may be called a medial (d + 1− k)-section of Sd .

We remark that Theorem 1 is a special case of Theorem 2 with k = 2 and m1 = m,
while (3) is a special case of Theorem 2 with k = 1. However, we prove only Theorem 1
in detail, and for the proof of Theorem 2 just a sketch is given, since the latter goes the
same way as the proof of Theorem 1. Only the more extensive notation needed there
would make a detailed proof of Theorem 2 more lengthy and complicated.

2. Proofs

2.1. Notation

If K is an l-dimensional convex subset in Rd for some l, 0 ≤ l ≤ d, then we denote its
l-dimensional volume by Voll(K ). For l = d we use the notation Vol(K ).

If U, V ⊆ Rd , then let U + V = {u + v ∈ Rd | u ∈ U, v ∈ V }, that is, U + V is
the Minkowski sum of U and V . For v ∈ Rd we simply write U + v instead of U + {v}.
For U ⊆ Rd and α ∈ R, let αU be the set {αu | u ∈ U }. If a, b ∈ Rd , then both [a, b]
and ab denote the segment with endpoints a and b. We denote by o the orgin of Rd .

Throughout the paper conv( ) and aff( ) stand for the convex hull and the affine hull,
respectively. For a convex polyhedron P we use the notation vert(P) for its vertex set.
For u ∈ Rd we denote its Euclidean norm by ‖u‖. If U is a linear subspace of Rd , then
U⊥ is the orthogonal complement of U in Rd .

We denote by 1l , −1l and 0l the row matrices of length l with all entries equal to 1,
−1 and 0, respectively. If M is a matrix, then we use the notation MT for the matrix
transposed to M .

2.2. Proof of Theorem 1

Throughout this part we assume that the conditions of Theorem 1 hold. Our goal is to
prove (1). Let C1 = conv(v1, . . . , vm) and C2 = conv(vm+1, . . . , vd+1). Then C1 is an
(m−1)-dimensional simplex and C2 is a (d−m)-dimensional simplex. Let C ′1 = C1−vm

and C ′2 = C2−vd+1. Since Sd = conv(C1∪C2) and H = 1
2

(
aff(C1)+aff(C2)

)
, therefore

Sd ∩ H = 1
2 (C1 + C2). This means that Sd ∩ H is a translate of 1

2 (C
′
1 + C ′2).

On the other hand, D1 =
∑m−1

i=1 [o, vi − vm] and D2 =
∑d

i=m+1[o, vi − vd+1] are
paralleletopes, and their Minkowski sum D = D1 + D2 is also a paralleletope. Let

v′i =
{
vi − vm, if 1 ≤ i ≤ m − 1,

vi+1 − vd+1, if m ≤ i ≤ d − 1.
(5)
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Let

C ′ = conv(o, {v′i | 1 ≤ i ≤ d − 1}).
Then C ′ is a (d − 1)-dimensional simplex.

We have

Volm−1(D1) = (m − 1)! Volm−1(C
′
1),

Vold−m(D2) = (d − m)! Vold−m(C
′
2),

Vold−1(D) = (d − 1)! Vold−1(C
′),

and

Vold−1(D) = Volm−1(D1)α Vold−m(D2),

Vold−1(C
′
1 + C ′2) = Volm−1(C

′
1)α Vold−m (C

′
2),

for some constant α > 0, since the affine hulls of D1 and D2 are the same as the affine
hulls of C ′1 and C ′2, respectively, so αVold−m(D2) is the (d − m)-volume of the parallel
projection of D2 to aff(D1)

⊥ and αVold−m(C ′2) is the (d − m)-volume of the parallel
projection of C ′2 to aff(C1)

⊥, if α is chosen appropriately.
From these equalities follows

Vold−1(Sd ∩ H) = 1

2d−1
Vold−1(C

′
1 + C ′2) =

Volm−1(C ′1) Vold−m(C ′2) Vold−1(D)

2d−1 Volm−1(D1) Vold−m(D2)

= (d − 1)! Vold−1(C ′)
2d−1(m − 1)! (d − m)!

.

Applying (3) for the factor Vold−1(C ′) in the previous expression we get

Vol2d−1(Sd ∩ H) = (−1)d det Nd+1

8d−1((m − 1)!)2((d − m)!)2
, (6)

where Nd+1 is a (d + 1)× (d + 1) matrix with block form

Nd+1 =
(

0 1d

1T
d Bd

)
with Bd = {b2

i, j }di, j=1, where bi, j is the distance between v′i−1 and v′j−1, for 1 ≤ i, j ≤ d
(with the notation v′0 = o). It is clear that to complete the proof of Theorem 1 we only
need to show that

det M (m)
d+3 = − det Nd+1.

To prove this, we need the following.

Lemma 3. Let T be a tetrahedron in R3 with vertices p1, p2, p3 and p4. Let h be the
length of the segment connecting the midpoints of the two opposite edges p1 p2 and p3 p4

of T . If si, j denotes the distance between the vertices pi and pj of T , 1 ≤ i, j ≤ 4, then
we have

h2 = 1
4 (s

3
1,3 + s2

3,2 + s2
2,4 + s2

4,1 − s2
1,2 − s2

3,4). (7)
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Proof. Let c be the baricenter of T , that is, c = 1
4 (p1 + p2 + p3 + p4). Let T ′ be the

centrally reflected image of T with center c. Denote by p′i that vertex of T ′ which is
the centrally reflected image of pi , for any 1 ≤ i ≤ 4. Since c is clearly the midpoint
of any segment connecting the midpoints of two opposite edges of T ′, therefore for
any two opposite edges pi pj and pk pl of T it holds that the segment p′i p′j intersects
pk pl in a point which is the midpoint of both segments, and consequently p′i pk p′j pl is a
parallelogram. This means that

Q = conv(p1, p2, p3, p4, p′1, p′2, p′3, p′4)

is a parallelepiped, and vert(Q) = vert(T )∪ vert(T ′). Let e2, e3 and e4 be the lengths of
the edges p1 p′2, p1 p′3 and p1 p′4 of Q, respectively. We recall the well-known fact that the
sum of the squares of the four sides af any parallelogram equals the sum of the squares
of the two diagonals of that parallelogram. Using this fact for the three faces p1 p′2 p4 p′3,
p1 p′2 p3 p′4 and p1 p′3 p2 p′4 of Q we get

2(e2
2 + e2

3) = s2
3,2 + s2

4,4,

2(e2
2 + e2

4) = s2
1,3 + s2

2,4,

2(e2
3 + e2

4) = s2
1,2 + s2

3,4.

Summing up the first two equations, and subtracting the third one from the sum, we
obtain

4e2
2 = s2

1,3 + s2
3,2 + s2

2,4 + s2
4,1 − s2

1,2 − s2
3,4. (8)

Finally, observe that h = e2. Thus, after dividing both sides of (8) by 4, and replacing
e2 with h, we get (7).

We now continue the proof of Theorem 1. By (5) we have the following block form
for Bd :

Bd =
 0 w1 w2

wT
1 X Y

wT
2 Y T Z

 ,
where w1 and w2 are row matrices of lengths m − 1 and d − m, respectively, of form

w1 = (a2
1,m, a2

2,m, . . . , a2
m−1,m),

w2 = (a2
m+1,d+1, a2

m+2,d+1, . . . , a2
d,d+1),

and X = {xi, j }, Y = {yi, j } and Z = {zi, j } are matrices of dimensions (m−1)× (m−1),
(m − 1)× (d − m) and (d − m)× (d − m), respectively, with entries

xi, j = a2
i, j for 1 ≤ i, j ≤ m − 1,

yi, j = b2
i+1,m+ j for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ d − m,

zi, j = a2
m+i,m+ j for 1 ≤ i, j ≤ d − m.
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Since

yi, j = b2
i+1,m+ j = 4

∥∥∥∥vi + vd+1

2
− vm+ j + vm

2

∥∥∥∥2

,

thus by Lemma 3 we have

yi, j = a2
i,m+ j + a2

m+ j,d+1 + a2
m,d+1 + a2

i,m − a2
i,d+1 − a2

m,m+ j . (9)

It is evident that det Nd+1 = det M̂ , where M̂ is a (d+3)× (d+3)matrix with block
form

M̂ =



1 0 0 0 0m−1 0d−m

0 1 1 0 0m−1 w2

1 0 0 1 1m−1 1d−m

0 0 1 0 w1 w2

0T
m−1 0T

m−1 1T
m−1 wT

1 X Y

wT
2 0T

d−m 1T
d−m wT

2 Y T Z


. (10)

We will use row and column operations to alter M̂ until we get M (m)
d+3. Namely, we

will multiply some rows and columns by −1, we will add some multiples of rows to
other rows and some multiples of columns to other columns, and furthermore, we will
reposition some rows and columns. Clearly, the determinant of such a newly obtained
matrix will be ± det M̂ , and the sign will depend on the parity of the total change of
indices of the rows and columns repositioned, and on the number of rows and columns
multiplied by −1.

In the following we give a list of 16 row and column operations which transform
M̂ into M (m)

d+3. At each step, denote by Ri and Ci the i th row and column of the actual
matrix, respectively. By the actual matrix we mean that matrix which is obtained from
M̂ as the result of those steps already made. Note that this means that in different steps
Ri and Ci may stand for different rows and columns for some i . We use arrow notation,
e.g. Ci → Ci −C1 in Step 1 means that a new i th column is obtained after applying this
step by subtracting the 1st column from the i th column of the actual matrix. Here is the
list of the row and column operations:

Step 1. Ci → Ci − C1 for 4 ≤ i ≤ m + 3.
Step 2. Ri → Ri − R2 for 4 ≤ i ≤ m + 3.
Step 3. Ci → Ci − C4 for m + 4 ≤ i ≤ d + 3.
Step 4. Ri → Ri − R4 for m + 4 ≤ i ≤ d + 3.
Step 5. C4 is shifted to between Cm+3 and Cm+4.
Step 6. R4 is shifted to between Rm+3 and Rm+4.
Step 7. C1 is shifted to be the last column.
Step 8. R2 is shifted to be the last row.
Step 9. C1 →−C1 + C2.

Step 10. R1 →−R1 + R2.
Step 11. Ci → a2

m,i−2C1 + Ci for m + 3 ≤ i ≤ d + 2.
Step 12. Ri → a2

m,i−2 R1 + Ri for m + 3 ≤ i ≤ d + 2.
Step 13. Ci → (a2

i−2,d+1 − a2
m,d+1)C2 + Ci for 3 ≤ i ≤ m + 1.
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Step 14. Ri → (a2
i−2,d+1 − a2

m,d+1)R2 + Ri for 3 ≤ i ≤ m + 1.
Step 15. Cd+3 → a2

m,d+1C1 + Cd+3.
Step 16. Rd+3 → a2

m,d+1 R1 + Rd+3.

Now we describe how the matrix M̂ is affected by the row and column operations of
the steps above.

After Steps 1 and 2 we get the following matrix M̂1 with block form

M̂1 =



1 0 0 −1 −1m−1 0d−m

0 1 1 0 0m−1 w2

1 0 0 0 0m−1 1d−m

0 −1 0 0 w1 0d−m

0T
m−1 −1T

m−1 0T
m−1 wT

1 X Y1

wT
2 0T

d−m 1T
d−m 0T

d−m Y T
1 Z


,

in which Y1 is a submatrix with entries defined similarly to (9) except that the second
term of the right side of (9) is dropped out.

After Steps 3 and 4 we get

M̂2 =



1 0 0 −1 −1m−1 1d−m

0 1 1 0 0m−1 w2

1 0 0 0 0m−1 1d−m

0 −1 0 0 w1 0d−m

0T
m−1 −1T

m−1 0T
m−1 wT

1 X Y2

wT
2 1T

d−m 1T
d−m 0T

d−m Y T
2 Z


,

in which Y2 is a submatrix with entries defined similarly to (9) except that the second
and the fourth terms of the right side of (9) are dropped out.

After Steps 5 through 8 we get

M̂3 =



0 0 −1m−1 −1 1d−m 1
0 0 0m−1 0 1d−m 1

−1T
m−1 0T

m−1 X wT
1 Y2 0T

m−1

−1 0 w1 0 0d−m 0

1T
d−m 1T

d−m Y T
2 0T

d−m Z wT
2

1 1 0m−1 0 w2 0


,

in which some rows and columns are repositioned in such a way that the total change of
indices of repositioned rows and columns is (m − 1)+ (m − 1)+ (d + 2)+ (d + 1) =
2m + 2d + 1, which is an odd number. Therefore det M̂3 = − det M̂2.
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After Steps 9 and 10 we get

M̂4 =



0 0 1m−1 1 0d−m 0
0 0 0m−1 0 1d−m 1

1T
m−1 0T

m−1 X wT
1 Y2 0T

m−1

1 0 w1 0 0d−m 0

0T
d−m 1T

d−m Y T
2 0T

d−m Z wT
2

0 1 0m−1 0 w2 0


.

By Steps 11 through 14, Y2 is modified so that after Step 14 it has the desired form
Y2 = {a2

i,m+ j }. However, in the last column and in the last row of the actual matrix some
undesired terms remain, which are canceled out by Steps 15 and 16. After these last
steps we get the matrix M (m)

d+3. Since the sign of the determinant did not change except
Steps 5 through 10, and obviously we have det M̂3 = det M̂4, therefore it holds that

det Nd+1 = det M̂ = det M̂2 = − det M̂3 = − det M̂4 = − det M (m)
d+3.

This completes the proof of Theorem 1.

2.3. Proof of Theorem 2

We only give an outline of the proof since the more general settings of Theorem 2 would
make a detailed proof lengthy and complicated. Apart from this, a proof analogous to
the proof of Theorem 1 can be given. We now indicate the main steps of such a proof,
pointing out how they are analogous to the corresponding ones of Theorem 1.

For the given k-partition P = {V1, V2, . . . , Vk}, one can define Cj = conv(Vj ) for
1 ≤ j ≤ k, and C ′j = Cj −vnj . Let C ′ = conv(

⋃k
j=1 vert(C ′j )). Then C ′ is a (d+1− k)-

dimensional simplex inRd . Analogously to the proof of Theorem 1, using corresponding
paralleletopes to each C ′j and to C ′, Vold+1−k(Sd ∩ H ′) can be expressed as a multiple of
Vold+1−k(C ′) with a coefficient depending only on d, k and mi ’s (1 ≤ i ≤ k). Applying
(3) for Vold+1−k(C ′), a formula analogous to (6) can be found, by which the proof is
reduced to the justification of det MP = (−1)k−1 det Nd+3−k , where Nd+3−k is a certain
(d + 3− k)× (d + 3− k) matrix, having block form

Nd+3−k =
 0 1 1d+1−k

1 0 z

1T
d+1−k zT U

 ,
where z is a row matrix of block form z = (w1, w2, . . . , wk), with the notation

wi = (a2
ni−mi+1,ni

, a2
ni−mi+2,ni

, . . . , a2
ni−1,ni

), 1 ≤ i ≤ k.

Analogously to (10), Nd+3−k can be expanded with 2k−2 new rows and columns so that
its determinant remains unchanged. The expanded matrix can be written in the following



352 I. Talata

block form:

M̂P =
 Ik−1 Ok−1 Ok−1,d+3−k

Ok−1 Ik−1 V

V T Od+3−k,k−1 Nd+3−k

 ,
where V is the (k − 1)× (d + 3− k)-dimensional matrix whose i th row has block form

(0ni−i+2, wi+1, 0d+4+i−k−ni+1), 1 ≤ i ≤ k − 1.

We also used the notation Ir and Or,s for unit square matrices and zero matrices, respec-
tively, whose dimensions are shown in their indices. Next, the entries of the submatrix
U of Nd+3−k can be calculated by Lemma 3, having forms similar to (9). Finally, one
can use row and column operations to get MP from M̂P . By counting the parity of
the total change of indices during the row and column operations one can establish
det Nd+3−k = (−1)k−1 det MP .

3. Concluding Remarks

It is worth mentioning that a medial section Sd∩H ′ of Theorem 2 may belong to classes of
objects of really different shapes, depending on the choice of d, k and mi ’s (1 ≤ i ≤ k).
As extremal cases, for k = 1 and k = d+ 1 we get Sd itself and its baricenter as a single
point, respectively. Also, certain segments, triangles and parallelograms can be obtained
as medial sections. In general, every medial section can be obtained as the Minkowski
sum of certain simplices whose vertices form a partition of the vertices of some d-
dimensional simplex. We mention two nonplanar examples: for d = 4, k = 2, m1 = 3
and m2 = 2, the medial section is a three-dimensional (possibly skew) cylinder with a
triangular base, while for d = 5, k = 2 and m1 = m2 = 3 we get a four-dimensional
convex polytope with six facets of (possibly skew) cylinders with triangular bases.

The question arises whether there is a volume formula for other, not necessarily medial
sections of Sd , obtained as the intersection of Sd and some affine subspace of Rd . The
answer is positive if the affine subspace is parallel to a medial affine subspace of Sd and
it intersects the interior of Sd . In fact, then the affine subspace can be written in a form
Ĥ = ∑k

i=1 αi aff(Vi ) for some positive coefficients αi , 1 ≤ i ≤ k, with
∑k

i=1 αi = 1.
Thus

Vold+1−k(Sd ∩ Ĥ) =
(

k∏
i=1

α
mi−1
i

)
Vold+1−k(Sd ∩ H ′),

and the explicit formula can be found by substituting (4) into the right side. However, it
is not clear at all if there is a formula of similar kind for the volumes of intersections of
Sd and generally positioned affine subspaces. We pose this question in the following.

Problem. Let Sd be a d-dimensional simplex vith vertices {v1, v2, . . . , vd+1} in Rd ,
and let H̃ be an arbitrary l-dimensional affine subspace ofRd for some l, 1 ≤ l ≤ d−1,
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given so that H̃ intersects the interior of Sd . Let H̃∗ be the l-dimensional affine subspace
of Rd+1 defined as

H̃∗ =
{
(α1, α2, . . . , αd+1) ∈ Rd+1 |

d+1∑
i=1

αivi ∈ H̃ ,
d+1∑
i=1

αi = 1

}
,

which encodes the position of H̃ relative to Sd in an affine invariant way.
Is there an algebraic formula expressing Voll(Sd ∩ H̃) in terms of the lengths of the

edges of Sd and some parameters of H̃∗?
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