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Abstract. Numerous studies by molecular biologists concern the relationships between several 
long DNA sequences, which are listed in rows with some gaps inserted and with similar positions 
aligned vertically. This motivates our interest in estimating the number of possible arrangements 
of such sequences. We say that a k sequence alignment of size n is obtained by inserting some (or 
no) 0's into k sequences of n l's so that every sequence has the same length and so that there is no 
position which is 0 in all k sequences. We show by a combinatorial argument that for any fixed 
k > 1, the number f (k ,  n) of k alignments of length n grows like (Ck) n as n ~ o~, where ck = (21/k - 1) -k. 
A multi-dimensional saddle-point method is used to give a more precise estimate for f (k ,  n). 

1. Introduction 

Researchers in molecular  biology are determining or  reading D N A  sequences at an 
increasing rate. As of  spring 1986, over 6 x 106 letters of D N A  are known  and 
organized in a data  base, GenBank.  Biology is concerned with the inference of  
biological properties f rom these sequences. This is sometimes accomplished by 
study of the relationships between several sequences suspected of having c o m m o n  
function or  evolut ionary history. These studies are performed by listing the 
sequences in rows, one sequence per row, with the sequences arranged so that  similar 
positions of each sequence are aligned vertically. Gaps  are sometimes inserted into 
some of  the sequences to bring the letters into the desired alignment. These gaps 
greatly increase the computa t iona l  complexity of  the task. Mathemat ics  has contri- 
buted to these analyses with the invention of  efficient algorithms for sequence 
comparisons.  See W a t e r m a n  [5] for a review of  these methods.  

To give an example of these alignments we turn to a recent study by Ullrich et 
al [4] which presented some surprising and impor tan t  findings. These workers 
determined the amino acid sequence of  the h u m a n  insulin receptor precursor, a 
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protein. As is now common they found the sequence of the DNA encoding the 
protein instead of directly sequencing the protein. Once the sequence was known 
they then, by sequence comparison, found unexpected relationships with the human 
epidermal growth factor receptor and the members of the src family of oncogene 
products. Oncogenes and these proteins in particular are implicated in certain 
human cancers. Some of the sequence alignment is given below, with the human 
insulin receptor sequence first, followed by the growth factor sequence and then 
three oncogene protein sequences. The dashes represent gaps inserted into the 
sequences to achieve the alignment. 

...LGQGSFGMVYEGNARDIIKGEAETRVAYKT... 

...LGSGAFGTVYKGLWIPEGE-KVKIPVAIKE... 

...LGGGQYGEVYEGVWKKYSL ..... TVAVKT... 

,..LGQGCFGEVWMGTW--ND .... TTRVAIKT... 

...IGRGNFGEVFSGRL--RAD---NTLVAVKS... 

...LGTGAFGKVVEATAFGLGKEDAVLKVAVKM... 

It is natural to ask how many such arrangements of the sequences there are. For 
the case of two sequences, this question has been studied, beginning with Laquer 
[2]. He solved a general recursion and related the number of sequence alignments 
to the Stanton-Cowan numbers [3]. More recently Griggs et al [1] counted the 
number of alignments of two sequences of length n with matching sections of size 
at least b. In the present paper we study the number f(k, n) of alignments of k 
sequences of length n. In section 2 we show by a combinatorial argument that the 
exponential growth rate of f(k,n)is (21/~ - 1) -k. In section 3 a multi-dimensional 
saddle-point method is used to give a more precise estimate. 

2. An Exponential Growth Rate 

We make the simplifying assumption here that all sequences have the same length 
n. We count only the possible alignments with respect to their relative positions, 
ignoring the actual elements in the sequences (biologically, the nucleotide bases or 
the amino acids in the genetic sequences). 

We start with k sequences of l's, with n l's each. A k sequence alignment of size 
n is obtained by inserting some (or none) O's in each sequence so that every sequence 
has the same length, call it L, and so that there is no position which is 0 in all k 
sequences. Thus, a k sequence alignment of size n corresponds to a k x L (0, 1)- 
matrix with all row sums n and no column sums 0. The latter condition, no column 
sums 0, ensures that for given k and n the number of alignments is finite, and is 
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motivated by the biological consideration that alignments are not allowed which 
have gaps (0's) in all k sequences. We see that an alignment has length at least n 
(when every column is all l's) and at most kn (when each column has just a single 
1). We wish to study asymptotically the number of k sequence alignments of size n, 
denoted f ( k ,  n). 

We first consider how f ( k ,  n) behaves as n ~ co for fixed k. An indication of how 
quickly the number of alignments grows with the size n is given by merely counting 
the number of alignments with the maximum length, kn. In such alignments, there 
are, for each i, 1 _< i _< k, n columns with a single 1 in row i and 0's in the other rows. 
Thus, the number of such alignments is the number of ways of ordering these kn 

which equals the multinomial coefficient ( kn ~. columns, Applying Stirling's 
k n ,n , . . .~n  / 

formula, one obtains that f ( k ,  n) > which grows like (kk)" as - n, n . . . .  ,n  (2rm) (k-1)/2 

rl--+ O0. 

In this section, we describe the leading asymptotic behavior of f ( k ,  n), which 
means we find constants ck such that f ( k ,  n) grows like (Ck)" as n --+ co. The proof of 
Theorem 1 actually gives f ( k ,  n) up to a factor which is polynomial in n. Here we 
state the following weaker result. 

Theorem 1. For  f i x e d  k >_ 1 

where c, = (21/k - 1) -k. 

lim In f ( k ,  n) _ In c k 

We can now describe neatly how the base c k in the exponential term describing 

l ( n l k )  grows with k. Let d k x / ~ \ l n 2 /  

Proposition. For  all k > 1, c k < dk, and, c k ~ dk as k ~ co. 

We tabulate values of c, for selected k, to four or more places (Table 1). For 
comparison, we tabulate also the lower bound k k and the upper bound dk = 2 -1/2 
(ln 2) -~ k k. We see that d, approximates c, quite closely, even for k very small. 

P r o o f  o f  Theorem 1. Let [k] denote the set { 1, 2 . . . . .  k}. A column C in the matrix 
corresponding to a k-alignment of sequences of size n has at least one 1, so the set 
S of indices of rows of C containing 1 is a nonempty subset of [k]. We call S the 
type o f  C. A k-alignment of size n is then constructed by taking some number A s of 
columns of type S, for each Z ¢ S _~ [k], and then arbitrarily permuting these 
columns of various types, where the As  satisfy the conditions that for each row 
i ~ [k], 

{As[i~ S} = n. (2 . l )  
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Table 1 

k ~ e d~ = ~ 2  (k/l. 2) ~ 

1 1 1 1.020 
2 5.828 4 5.887 
3 56.95 27 57.33 
4 780.3 256 784.2 
5 13,755.3 3125 13810.4 
6 2.965 x 105 4.666 x 104 2.974 x 105 
7 7.554 x 106 8.235 x 105 7.575 x 106 
8 2.221 x 108 1.678 x 107 2.226 x 108 
9 7.401 X 1 0  9 3.874 x 108 7.417 x 109 

10 2.757 x 1011 1.000 x 1011 2.762 x 1011 
20 1.130 x 1029 1.049 x 1026 1.131 x 1029 

The number of k-alignments with A s columns of type S, N ¢ S c [k], for A s 
satisfying (2.1), is thus the number of permutations of these columns, the multi- 

nomial coefficient (Z  {Aslfg ¢ S ~_ [k]} "~ {As[;~ ¢ S ~_ [k]})" In this symbol, the lower row denotes 
\ 

the multiset listing all sizes As, repetitions allowed, e.g., for k = 2, n = 8, A{1 } = 

( 13 ) = (  13' ~ It follows that the total A{2 } = 5 and A{1,2 } = 3, we have 5,5,3 \5!5!3[J" 

number of alignments is given by 

( 2 { A s } )  (2.2) 
f(k,n) = 2 \  {As}] ,  

where the sum is over all possible parameters A s satisfying (2.1). 
With k and n fixed, the number of terms in this summation, i.e., the number of 

solutions to (2.1), is no more than, say (n + 1) 2~-1, because each of the 2 k - 1 
parameters A s is restricted to the range 0 < A s <_ n by (2.1). 

We will find the largest term in the sum (2.2), i.e., the largest exponential growth 
from among all the terms in the sum (2.2). The asymptotic behavior off(n,  k) is at 
most n 2~-1 times the largest such term, and this polynomial factor is dominated 
asymptotically for fixed k as n ---, ~ by the exponential. This reduces the whole 

maximum value of (Z/(As).)  " ' ' ' "  subject to (2.1). Assume problem to locating the 
\ t - - ~ ) /  

henceforth that we are at such a maximum. 
Without loss of generality, we may assume that for 0 < j < k the parameters As 

with IS[ = j are approximately equal. That  is, for n large, we may assume there exists 
some number c 9 ~ [0, 1] such that for all ISI = j, [As[ ~ ~jn. The reason is that if 
{As[fg ¢ S c [k]} is a maximum, then we can replace each size As, [SI = j, by the 

average (~  {Asl [S[ = j} )/(kj). The principle being used here is that a multinomial 

coefficient ( N ~ is increased by making the numbers tl . . . . .  t, more nearly 
\ t l , . . . , tm / 
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equal. These new parameters satisfy (2.1) easily, because each row has the same 
number of l's, by symmetry, which must be n. (We actually require all of these 

averages~{Asl]X]= j } / ( ~ )  to be integers, but only really require below that the 

As, ]S[ = j, be equal asymptotically, so that integer values of such As, nearly equal, 
can be arranged.) 

E {ajn} "], where denotes the multiset with Thus we must now maximize {ain}} 

values {cgn} repeated ( ~ )  times each, and the c9 e [0, 1] satisfy 

since for any row, say row l, there are 1 choices for S _ [k] with 1 ~ S and 

IS[ = j, and for each such S there are ajn l's in row 1 which contribute to the total 
number or l's. 

Again consider a collection of cg's and corresponding columns which maximize 

the total \ {ejn}]" For any s, 2 _< s < k such that as > 0, we take a column with 

s l's and replace it by two columns, one with one 1 and one with ( s -  1) l's 
and count the number of alignments with the new set of parameters As. This new 
value must be no more than the one before, by the optimality hypothesis. Let 

l=~(~)  
selection. Then the ratio of the number of the alignments at optimality di- 
vided by the number obtained after replacing the one column by two must be at 
least one. Most of the factorials are identical and cancel out. However, the new 
collection has one more column total (which contributes a factor ,-~ ln): one more 
column each of size 1 (contributing a factor --, aa n) and size s - 1 (contributing 
a factor ~c~_tn), and one less of size s (losing a factor ~ s n ) .  Considering where 
the factors came from, one obtains for large n: 

Conversely, i fe  1 > 0 and =~_i > 0, 2 _< s _< k, if we replace two columns with 1 
and s - 1 l's, respectively, from disjoint sets of rows, we obtain the reverse of the 
above: 

Since some value of s has ~ > 0 at optimality, (2.4) forces ~1 > 0, which then 
implies by repeated application of (2.5) that all ~j > 0. Then by simplifying and 
combining (2.4) and (2.5),  we obtain 
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Letting r denote this ratio, 1/Oq, w e  obtain: 

c 9 = rk-J~k, j = 1 , . . . ,k ,  
(2.6} 

1 ~ rkO~k . 

Since I is defined in terms of the ~fs, plugging in with (2.6} yields: 

So 

= (1 + r) k - r k. 

Thus 
2r k = (1 + r) k, (2.7> 

r = (2 */k - 1)-*. 

Next we apply the equations (2.3), (2.6), and (2.7) to obtain 

~j = 2-(k-*)/k(2*/k -- 1) j-*, j = 1 . . . . .  k, 
(2.85 

l =  2-(k-1)/k(2 l/k -- 1) -1. 

NOW insert these parameters in terms of C~k and r into ( E  {~n}'] and apply Stirling's \ 
formula n! ~ n " e - ' ~  as n --+ oo: 

j=1 

( r k = k n )  ,=akn 

k k " 

U 
j=1 

Here the powers of e all cancelled and we disregarded the factor of e °(z" =). Then the 
powers of O:kn all cancel, due to conditions on the efs, and it all reduces to a power 
of the ratio r. Then realizing that we are really looking at f ( k ,  n), taking logs, and 
dividing by n, we obtain 

Next use ~ ( k - j ) ( ~ ) r  k-j  ~ ( k -  1) r)k_ 1 = rk-J = kr((1 + -- rk-1), and plug in 
j= l  j = l  j 

(2.7) for r and (2.8} for ek, and simplify to obtain 

lnf(k,n) ,, kln(ZX/k _ 1)_1, 
n 

which proves the theorem. [] 
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P r o o f  o f  Proposit ion.  The assertion c k < d k follows by showing that for all x > 0. 

2~;~ - 1)1n 5 ___~, 

which is equivalent to 

(21/x - ) ~ - ~ -  > 21/¢2x) (x > 0) 

ln2 
Substituting u = 2x ' so that e" 71/~2x), we must show that 

l e u ( u  > (e 2 " -  1)~uu > 0) 

o r  

e 2 u -  1 > 2 u e "  ( u > O )  

It is simple to verify either by taking derivatives or by looking at the series 
expansion. 

To verify that Ck ~ dk, we look at the exponential series: 

c k = (21/k _ 1)-k 

= (e '"2/k - 1)-* 

= _ _  + ~ + o(k -3) 

= 1 + ~ + O(k -2 . 

This line is equal to 2-1/2(i + O(k-1))  which completes the proof. 

3. A More Precise Estimate for f (k ,  n) 

Recall that f ( k ,  n) is the number of 0,l matrices with no column of all O's and with 
every row sum equal to n. In the last section we used a combinatorial argument to 
show that exponential growth rate of f ( k ,  n ) i s  (21/k - 1) -k. In this section we use 
analytic approximation methods to give a more precise estimate for f ( k ,  n). We will 
prove the following result. 

Theorem 2. For  a positive integer k, let p = 21 /k  - 1 and let r = p-k = ( 2 1 / k  _ 1)-k. 
Then 

f ( k , n )  = ~ ~ ( p , ~ - ~ ' ~ k ~ ) - ' 2 ~ - ~ ' ~  ~ + 0 ( , , -~ /~ )  . 

The proof of this result, which uses the multi-dimensional saddle-point method, will 
take the rest of this section. 
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Definition 3.1. For  rl . . . . .  r k non-negative integers, define N(rl , . . . , rk )  to be the 
number of 0,1 matrices with no column of all O's and with the j th  row sum equal 
to rj. 

The reader should note that f (k ,n)  = N(n ,n  . . . . .  n). 

Proposition 3.1. With notation as above we have 

Z N(r~ . . . .  ,rk)Z~ '...z~, k = 2 - -  (1 + Zj . (3.1) 
r 1 . . . .  , r k j = l  

Proof. Let Nu(r t . . . .  , rk) be the number of k by u 0,1 matrices having no column of 
all O's and with row sums rl . . . .  , rk. It is easy to see that 

E N,(rD'" ,rk)z~' '"z~,  ~ = h (1 + z:)-- 1 
r 1 , . . .  , r  k j = I  

As N(rt , . . . , rk)  = ~ N,(r t . . . .  ,rk) we have 
u=O ( ))1 

.. ' ~=  1 -  ( l + z j ) - - I  E N(rl , ' . . ,rk)z ' l '  "Zk 
r t , . . . , r  k j = l  

= 2 -  (1 + zj) . []  
j = l  

We want an estimate for N(n, n . . . . .  n). We begin by estimating N(r l , . . . ,  rk) using 
Cauchy's Theorem and (3.1). Although Cauchy's Theorem could be applied 
directly to (3.1) it is more convenient to peel off one variable zk. For  notational 
convenience we let A(z) = A ( z l , . . .  ,Zk_t) be the polynomial 

k - 1  

A(Z) = l-I (1 + zj) 
j = l  

With this notation, the left hand side of (3.1) can be rewritten as 

1 ~o A ( z f  , (3.2) 
2 - A(z)(1 + Zk) = ~=~o (2 -- A(z)) *+fz*" 

So for fixed r we have 

E N(r~ . . . . .  rk-l,r)z~' • • • Zk-t*k ~ -- 
r l , , * ' , r k  I 

Applying Cauchy's Theorem to (3.3) we have 

A(z)" 
( 2 -  A(z)) ~+1" 

(3.3) 

1 f f A(z)" dz~ dzk_l . (3.4) N ( r l ' " " r k - x ' r )  = ~ "" ( 2 - - ~ ) r + 1  z~i+l z~,~21+1 

In (3.4), the integrals are taken around circles IZsl = pj where the & are chosen so 
that A(z)'(2 - a(z)) -('+~) is analytic in the region IzjL < Pj. 

Let p = 21/k -- 1 and choose all the pj equal to p. This choice of the pj is moti- 
vated by the fact that the integrand in (3.4) has a saddle-point at (z~ . . . . .  Zk-~) = 
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(p,p . . . . .  p). We need to verify that A(z)~(2-  A(z)) -(~+1) is analytic in the region 
Izj] < p. To see this note  that  if [zjl _< p then [1 + zjl < 2 vk so IA(z)l _< 2 (k-w~. 
Hence for (z 1 .... , Zk-1) in the region lzjl -< p we have 

12 - A(z)l _> 2 - 2 'k-')/k = p(1 + p)k-1. (3.5) 

This proves analyticity in the desired region. Setting all the rj equal to n we obtain 
the following expression for f(k, n). 

1 f f A(z). f(k,n) -(2/ri)k_ 1 "'" (2 - -  A(z)) n+l z~ +1 "" Zk_ln+l " (3 .6)  

Make  the substi tution zj = pe ~°j, j = 1, 2 . . . .  , k - 1. The range of integration on 
0j will be - n  _< 0j _< rc and we have 

dzj _ ip_,e_i.oj 
Z;+I  dOj. 

Substituting in (3 .6)  we obtain 

k-1 t n 

p-,k- l , . f_  ... f~  [ J~(x+pei°j,e-~°j'= dOl" (3 .7)  
rc l - - - - ~ = l l ( - - ~ ) l  k-1 f ( k , n ) -  (2=)k_ 1 2 -  1 + pe i°, 2 -  I-I (1 + oe '°s) 

j= l  

The integrand in (3 .7 )  takes on its largest absolute value when all the 0/s are 
0. More  generally we will show the bulk of the contr ibut ion to the integral on 
the right hand  side of (3 .7 )  occurs in a small region near (0~ . . . .  , Ok-,) = (0,..., O) 
(for n large). 

Let  a = (ln n)/x/n. Write the right hand  side of (3 .7 )  as 11 + Iz where 11 involves 
the integral over that  par t  of the region where some 0j is in the range a _< [0jl _< rc 
and 12 involves the integral over the region - 6  < 0j < 6 ( j  = 1,2 . . . . .  k - 1). We 
will show that  for n large 11 is small compared  to I a and we will compute  the 
asymptot ic  value of 12. Our  first step is to bound  the absolute value of I a . 

Note  that  

[1 + pei°[ 2 = ( l  + pcosO)z + pzsin20= 1 + 2pcosO + p z. (3 .8)  

I f 0  < ~ < rc then 1 + 2 p e o s 0  + p2 .~ 1 n t- 2peos(e) + p2 for e _< [0[ _< re. So there 
is a positive real c~ ¢ 0 satisfying 

1 + 2p cos 0 + p2 <: e-2Co0=(1 + p)2 

for e _< 10] < re. Also by compar ing the first two derivatives of 1 + 2p cos 0 + p2 and 
e -2c°2 (1 + p)2 at 0 (with respect to 0) we have there exists an e', 0 < e' < rc and a 
positive c~. ~ 0 such that  

1 + 2p cos 0 + p2 ~ e-2C~.O=(1 + p)2 

for 0 < 101 < e'. 
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which gives 

Choosing e = e' and c = min{G, G,} we obtain a positive c such that 

I1 + pe'°l 2 <_ e-2C°~(1 + p)2. 

for -TC < 0 < re. Applying this estimate to the integrand of 11 we obtain 
n 

p-(k-1), f . . .  f ~ ( 1  + pei°~)e -'°' dO1...dOk_ 1 

IIll ~ ~ J}Oy[some < 6..1J 2 - I ~ ( l + p e i ° ' ) '  2 - ~  ( l+pe ' ° ' )  

< (2rt)t-,p,+1(1 + p)(k-1)(,+,) " "'" • 
10jl-< 6 some .I 

In the range 101 -> a the function e -c°2 has maximum value e -~a2. So 

e-nc(O~+"+o~ - o ,< e-nCa2 = e-c(lnn)2 

for (01 . . . .  , Ok-l) in the region of integration in (3.10). Hence 

(2rO~-lpk"+~(1 + p)~-~ "'" ~e-"~""'~dOl'"dOk-~ 

11 = O(p-k"e-CO"n)2). 

We now estimate the integral I 2. Note that 

l n (  1-+--'°e'°-~ l n ( l q  P(e'°-1).'~ 
\ 1 + .  / =  . i + ~  / 

, . i 0  - 5- + °(1°I)3 
= In 1 + i-+-p- ] 

-+ 
2(1 + p)2 l + p  

Simplifying We obtain. 

ln(1  _+__pei°.~_ piO 
l + p  / l + p  

j002 
2(1 + p)2 

+ o(1<3). 

(3.9) 

(3.1o) 

(3.11) 

Before proceeding, it will be convenient to establish some notation. For e a positive 
integer, define p~,(O) and P=(0) by 

k-1 
p~(O) = Z o;, 

j=l 
k-1 

P~(O) = y~ to, i ~. j=l 

+ o(1013), (3.12) 
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Now note that 

k-1 k-i( +p_e,O,~e_,O, H (1 + pei°')e -iOj = (1 + p)k-i H .1 
j=l j=l 1 + p J 

=(l+o)k-lexp(k~l{ln(_l+_pe_/°?] 

In equation (3.13), substitute the right hand side of (3.12) for each ln((1 + pei°J)/ 
(1 + p)). Doing so and simplifying we obtain 

l-[ (1 + pei°')e -i°' = (1 + p)k-1 exp pl(O) 
j=l 

Also 

P o(P~(o))) 2(1 + p)2 P2(0) + 

(3.145 

k-1 
2 -  I-I (1 + pe i°') 

j=l 
k-* (1 +__p_ei°'~ 

=2-(1 +p)~-',=,H 1 +7 / 

(~J~p P O(P3(O))) (3.15) = 2 -  (1 + p)k-lexp pl(O) 2(l+p)2P2(O)+ . 

Expanding the exponential on the right hand side of (3.15) and simplifying we 
get 

k-1 
2 -  H ( l + p e  i°') 

j=l 

=(1 + p)k-lp exp pl(O)+ 

Hence 
k-1 
]7[ (1 + pei°J)e -i°j 
~=t k-~ = p-~ exp ( 
2 -  1-[ (1 + pe i°') 

j=l 

1 
2(1 + p)2 p2(0) + 

2-(k-1)/k ) 
(1 + p)~ p~(O) + o(1"3(o)) 

1 2 -(k-1)/k ) 
2(1 + p) p2(0) (1 + p)ipi(O) + O(P3(O)) . 

(3.16) 

For our purposes, the important aspect of equation (3.16) is that in the exponential 
on the right hand side, the coefficient of pl(0) is 0. Substituting (3.16) into the 
integrand of 12 we obtain 

p-kn fa 

( , n2 ~k-~)/k ) 
o ,~p~(O) + O(n)P3(O)) exp 2(1 + p) p2(O) - (1 + ) dOz ...dO~_~ 

2(k-a)/kp exp(-O(P, (0))) 
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Let F(OI,..., Ok-i) be the quadratic form 

1 2 -(k-~)/k 
F(O1 .. . . .  0k - i ) -  2(1 + ~P2(0) + ~ P I ( 0 )  2 (1 + 

= 2-(k-i)lk(p2(O ) + pi(O)2). 

In terms of this form, the last expression for 12 can be written as 

12 (27l;) k-i  2-(k-1)/k 0''" ~ exp(--nF(O))exp(O(n)P3(O) + Pl(O))dOl'"dOk-i" 

(3.17> 

Note that nP3(O)+ P~(O ) /ln 3 n\  = (9 t n~Tf) so exp(nP3(O)+ Pl(O))= 1 +O(nPa(O)+ Pl(O)). 

Hence 12 = S 1 + S 2 -~- S 3 where 

s ,  = (2~)k_ ; 2  -(k-~'/k ~ . . .  ~ e x p ( - - n F ( O ) ) a O ~ . . . a O k _ ~ ,  

and 

Note that 

S"l,0'exp'n"O" O, O , ) 

expt-=F(O))dO1...dOk_l 

. . . .  exp(-nF(O))dO1...dOk_ i + O(e-'"2"). 
oO 

duj = dOj we have Substituting uj=nll20j so 

ff~o "" f f  exp(-nF(O))dO1...dO,_l 

It is well-known that any positive definite quadratic form E(ul . . . . .  Uk-1) is con- 
gruent over R to the sum of u 2. Using this fact it is easy to see that the integral of 
exp( -E(u) )  over R k-1 is ~(k-"/~ldet(C=)l -'/z where CE is the matrix of the quadratic 
form E. In our case 

1 I + - - J ,  
CF = 2(1 + (1 + p)2 
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where J is the matrix of all l's. Recall that the (k - 1) by (k - 1) matrix XI + YJ has 
determinant X k-2(X + (k - 1) Y). So 

det(CF) = k2-(k2-1~/k. 
Thus 

S 1 = k-1/2p-kn-12-(k2-1) / (2k)  + O(p-kne-c(lnn)2).  (3.18) 
~(k-1)/2n(k-1)/2 

We now obtain bounds for $2 and $3. Observe that 

exp(-nF(O)) <_ exp 2(1 + p 

So 

X2=O(np-a"f~_ ""f~_~ oP3(O)exp( 2(ln+pi)P2(O)dO1...dOk_l). (3.19) 

By symmetry of P3(0) in the variables 01, . . . ,  Ok-x we can rewrite (3.19) as 

S2=O((k-1)np-gn f _ ~ ' " j ~  ] 0 1 [ 3 e x p ( 2 ( l % ) P 2 ( O ) d O 1 . . . d O k - 1 ) .  

(3.20) 

f Recall that e -L°2 dO = , . We use this to integrate in (3.20) with respect to 
o0 x / L  

02 .... , Ok-a. Doing so we obtain 

S2=O(n-(k-4) /2p-a"foO~exp(~Of)dO1) .  (3.21) 

Integration by parts gives 

f o  03exp ( 2 ( i n _ + p i O 2 ) d O = O ( ~ )  • 

Hence 

S 2 -= O(p -knn-k /2 ) .  (3.22) 

The derivation of a bound on $3 is similar. We have 

( f ( ,) ) S a = 0 p-k . . . .  ~ Pl(0)exp p~P2(O dO1...dOk-1 , 

= O.p-k  . . . .  o-~o 101]exp 2(1 + p 

=O(p-k"n(g-z)/2foO, exp (2 (1+. )0~)d01)  • 
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;o ( . )  It  is easy to check that  01 exp 2(1 + p) 01 do1 = O . Hence 

$3 = O( p-k"n-k/2 ). (3 .23)  

Combin ing  the est imates (3.11 ), (3.18),  ( 3.22 ) and (3.2 3 ) we obta in  

-ktl 
P-'" ~[(n.f((k_l,/2k1/2]_12_(k2_l)/2k O(1,/-1/2)) f (k ,n)  = $1 + (I, + S 2 + $3) = \n(k_l)/2jt,~. , + 

which was the s ta tement  of  the ma in  theorem of this section. 
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