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L Introduetion

SideTtlES paper .deals with the Tavior (:oof.fi(:ient:s? of functions that are reglflar .in—
o € unit circle ' and have only one smgularlty on €. Much of its motivation
mes from the following lemma of Gaier [3, pp. 327, 328]:
If for some a > O the function f(z) == X a, 2" is regular and bounded in the disc
*al <1 + a, then a, = O(n"'"?).
Unit“:f' shall apply the term Garzr region to any open region. “'}}i(xh contains the
e 8¢ |z | < I and whose boundary does not meet the unit circle C except at
= L In particular, if a Gaer region is onc of the cireular dises in the lemma
we shall call it a Gaier disc.
In §2, we show that Garer’s lemma cannot be improved, in the sense that the
X zann'ot be replaced by o, and we state our Theorem 2, of which GAlER’s lemma is
Pecial case. Three seetions are devoted to the proof of this theorem,
Wh'ile Theorem 2 provides bounds for individual Tayror coefficients of functions
Sums?fmg certain .restrictions ina G'AIER'diSC, Theorem 3 .(§. 6) gives a bound on the
this 1 the moduli of coefficients in certain blocks of coefficients. On the one hand,
of FE0}1nd cannot be deduced from Theorem 2; on'the other hand, certain results
ER show that the bound is the best possible.
5 7 uses the technique of § 6 to obtain a theorem on the series X'n | a, |2; § 8 deals
of > then Conver{gence of 2'a, and with.thc uniform convergence on the unit ci.rcle
oth % 2%; and § 9 is devoted to a partial analogue of Theorem 2 for Gairr regions
O than Gaier dises.
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Since GAIER’S lemma is proved by means of the equation
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where I'is a suitable contour, it is reasonably regarded as a generalization of Cavcny’s
inequality |e, | < M on the Tayror coefficients of a bounded function. Since
CaucuY’s inequality can be sharpened (for large ») to the relation a, = o(1) by
GurzmER’s relation

2atrt =, [116 a0,

the question arises whether GAlER’s lemma can be improved in the same way. If
the hypotheses are slightly strengthened, this is indeed the case: in a private communi-
cation, Garer has pointed out that if f(z) is continuous in the closure of a Gaier dise,
then a, = o(n™""%). But GurzMER’s proof of his theorém [5] is based on the relation
¢0s (@4 %) = —cos &; and the customary modern proof of his theorem relies
heavily on the fact that the set of functions {2"} (n=0, 1, 2, ...) form an orthogonal
set on €. In the case of Galer’s lemma, the trigonometric relation cannot be used,
and the functions {z"} do not form an orthogonal set on Gaigr’s contour; therefore
the following result should not come as a surprise.

Theorem 1. There exists a function f(z) = X a, 2", regular and bounded in o
GAIER disc, for which lim sup(|a,| n"'?) > 0.

To prove this theorem, we show first that for any fixed number 5(0 <b <1)
the function

(o]

9= 2, (-1

is bounded in the dlSC |z—b] <1-- b provided the sequence of positive integers

m; increases fast enough.

We denote by €, the circle [z —b|=1-—b, and we choose a sequence {¢;}
with ¢; > C and 2'¢; < co. The integers m, and m, can be chosen arbitrarily. There
then exists an open arc 4, on C,, containing the point z = 1, and such that

| 2™ —2™ | < g,
on 4, We choose m, and m, large cnough so that
2™ <]z™ < g
on the complement of 4, relative to C,. The arc 4, has an open subarc 4,, con-
taining z = 1, such that
[2™—2™ | < g
on 4,. We choose m, and mg large enough so that
|z |™ < |2™ < e

on the complement of A,. If the construction is continued in this manner, then

J J
P2 (2 - 2Met1) | <242 D
=0 j=0
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M Oy and consequently g(z) is bounded inside of C,.
We turn now to the function

oo

- j +1 mj =
10=9(1") = 2 T = Sar
- Jj=0 n=0
Yo o fagt cnough, f(z) is bounded in the Garer dise |z -+ 1/2] < 3/2. Also,
a slight computation shows that if m; - oo fast enough, then

[a, [~ (:7zn)_l‘l2

for n [m;/2), 5=10,1,2, ... . This proves the theorem.
The following theorem differs from Garer’s lemma in that it replaces the bounded-
hegs of () by the boundedness of (1—2)* #(2), where & is a real constant.

Theorem 2, fet j(z) = Za, 2" be regular in some GAER disc [z +a| <1+ a,
and let ; e o real number such that (1—z)" {(z) is bounded in this disc. Then

a, = O(n*~7) if k=1,
a, = O(log n) if k=1,
a, = O(n(kal)/z) 'Lf <1,

{ 7 thig estimate, the O cannot generally be replaced by o; the replacement is permissible
Y k<1 ang (12 {(z) approaches a limit whenever z ~ 1 from the interior of the

AIER g,

3 The case k- 1

Here the estimate is well known. It can be obtained from Cavcay’s formula

bf integration along the eircle |z | = 1 —1/n, That the O cannot be replaced by

° 18 seen from the example f(z) = (1 —=2)~% It is noteworthy that, in the case k > 1,

¢ hypothesis that (1—=Y f(2) is regular in a Gaien disc and continuous on ﬂ%e

Sosurg of this dise does not yield a better estimate on a, than does the hypothesis
that (1 —2)* #(2) is regular and bounded in the unit disc.

4. The eage k=1

Again, integration along the eirele | z | = 1 — 1jn gives the estimate a, = O (logn).
For Precise discussion of the situation where (1—2) f(2) is merely assumed to be
"gular and bounded in the unit dise, the reader is referred to Nrver {7]. Here we
Shaly only show that

1) q, = o(log ») if {1—=) j(2) is regular and bounded in the unit disc and ap-
Proaches limit as z — 1 from the interior of the unit disc;

i) Tegularity and boundedness of (1—z) f(z) in a Gaer dise does not imply

& g, o(log n).
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To prove the first of these propositions, suppose that (1—=z) f(z) 1s regular and
bounded in |z | <1, and that lim (1 —2z) f(z) = 4. Then
Zz -1

A z
i(z) = o+ P(z)

z 11—z

where @(2) is bounded in (2| <1 and @(2) -~ 0 as z —1 in the unit dise. The
TayrLor coefficients of A/(1—z) are all equal to 4 and cause no trouble. Let

D(z) _ i bn 2
n=u

11—z
Then
“)n»[g; :(p(z)l dz| ,
2n P ST
I"n i
where I', is the contour |z | = 1 — 1/n. Since the value of [z |**! on I, approaches

1/e as n — oo, it suffices to prove that

Pl2)] [dz|
"n

and geometrical considerations reduce the problem to the task of showing that,

with z = (1—1/n)e?,
a .
/ ]/q@jiz_)i— ’n___, = o(log n).

Now, if 0 < @, = 7w and M, = max | @(z) | for z = (L—1/n) ¢, —O0, < O < O,

then
€ O

n
|D(z) a0 40 e o ,

YO +ur T 2]”"./]/(“)2+7L*2_2M"]0g(n0"+ Vn2Or4-1)
~ O 0

<2M log(14206,) <2 M, log{(14-2nn).
On the other hand,

2n—H,

1(D(z) dO de
/lfgijrn_zgzM/ o =2 Mlog (/6,),
n 9’1
where M is a bound for | @(2) |in |z | < 1. H we choose &, = 1/log n, then M, -0,
and it follows that b, = o(log »).

To prove that regularity and boundedness of (1—=z) f(z) in a Gaigr disc does
not. imply that a, = o(log n), we use the polynomials

z z 4 z

1 n—1t n n+t . Z2nw1
| T Ty e

Pn (z) =

" w1
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Prigg (2, pp. 74—76] proved that on the unit circle ¢ these polynomials have a
ound which is independent of ». We believe that the following new proof of this
PToposition is of interest because of its simple and elementary character.
Atz = e'® the sum of the 2 » middle terms of P, (z) has modulus

g

b

roop—j  2j—1 ) L YO
ﬁaJ%z,L WLAJj:QMQL
» ] >

IA

~.

Also, by Apyi’s summation, the sum of the first » — » terms is

n n—j 1 n—r—1 n:‘l 1 n—j_Tl A
z A | Z Z 2
. S Zz ~— Iy 3
12;1 J r+1 h;) PR A e

and, for g | © | < &, this has modulus less than 2 nf(r+-1) [ @ . The modulus
of the last % — » terms has the same bound, and therefore

4z

[P (e) | =27 |0|+ (r+1)i0

or 0 < |©| < 2 The choice » = min(n, [=/] @ |]) then gives the desired result.
We now write
Qn(2) = 2" P,(")

n? 2n? zn“ LEN o P 2nt 2n*
2 -

== _,}_7,;“1_}_._.-—{— i ———' .- 9 T e T 3

13

and we form the funetion
F(z) == 3 Qn,(2) -
i

We assume that the sequence {n;} is chosen in such a way that 22} <af , for
"=1,2, ... Since the TAYLOR scries of F(z) has infinitely many terms with co-
e.fﬁcient one, ¥(z) is not bounded in | z | < 1. However, it follows from considerations
Smilar 40 those in § 2 that F(z) is bounded in the disc |z —1/4 | < 3/4, provided
M o0 fast enough,

Let
¢(2) ::F(z :Iz_ l) = Z b, 2" .

_Then G(z) is bounded in the Gaier disc |z + 1/2 | < 3/2. On the other hand, it
8 easily vorifiq that, if n; — oo fast enough,
[n;°2]
Z b =} logn; — O(niy,

j-0
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where the sccond term on the right-hand side is obtained by a slight modification
of Problem 145 of Pérya and Szecd [10, vol. I, pp. 66 and 230). It follows that, if

(z:)wl_2 ﬁaz

then (1—=z) f(2) is bounded in a Gaier dise, while ¢,/log » remains greater than a
positive constant for n = [n}/2].

5. The ease k < 1

In proving that a, = O(n* %), we shall essentially follow Garer and estimate a,
by Cavcny’s formala, with the contour of integration composed of the arc

]1: 2:(1+C @2) ul; —né@gn,

where ¢; is a positive constant small enough so that the curve I" lies in the GAleR
disc |z+4@a| <1+ a, except for the point z=1. (A moment’s consideration
shows that this path of integration is permissible even when 0 < k < 1.) Then

I I R X
2”1“"1_/zn“ dzf:CZ/(pk(1+clq;2)n (1 ! 1+01®2)d¢
! 0
n]/c,n

(1@ f— du,
2ym = Cﬂ(cln)( ])/2/
0

=7
=% | @1 + o, 00 Wk wtfn)”
4]

Now, when « = 0 and p is a positive integer,

[ I R

any choice of p greater than (1—%)/2 shows that the last integral has a bound inde-
pendent of #, and it follows that a, = O(n*~1/%),

1f the function (1-—z)" /(z) is not only hounded in a Garer dise but is continuous

in the closure of a GAIgr dise, then
A (D(z

2) = +
/@) (12 —2)

where @(z) is bounded in the Gaier dise and ¢(z) — 0, as z — 1. The contribution
to a, from the »-th TavL0R coefficient of the first function on the right is O(n*~?) =
o(n*~Y/%) The contribution from the second term on the right ean be treated much

as in the discussion of the case & = 1 (see § 4); we>omit the details.

We will now show that for every k < 1 there exists a funetion /(z) = 2Xa, 2"
such that (1—=z)* f(2) is regular and bounded in the Gaer disc |z -+ 1/2 | < 3/2,
and such that Jim sup (] a, | 2" ~0%) > 0.
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For any fixed %, we choose an integer % such that » + & > 0. We begin with
the function

G(Z) - Z g(zs p_[) 3
=
Where {p;} is an Inereasing sequence of positive integers and

g(zp) = pF P (L—2).
We choose g positive constant ¢, small enough so that the curve
K: z2=(1—c¢d?)e", —a=<d=n
encloses the disc |z — 1/4 | < 3/4. On K,
= (L, DB o7 B,
Also on ]{, I 2 [ ( Cq ) =e
ey (1 — D% P |
_ { [ (1 — e, DPJ 4 4(1 —c, P sin2 7T }"2 .
th 2 < P{l—=) for 0 =< @« =< 1, the first term in the braces is not greater
(e, p @22, and it follows that |1—2° | < ¢ |p®P|. Therefore, for z on K,
|12 g(zp) | S ¢ | p @ [*TF o720 P,
ang g .

d Suklce h + & > 0, this has an upper bound independent of p and @. Moreover,
th\z) 9(z,p) -0, a5z~ 1 along K ; and on any closed are of K that does not pass
thro}lgh z =1, the function (1 —=2)* g(2,p) can be made arbitrarily small by choosing

¢ Integer 4 sufficiently large. It follows that we can apply the method used in the

?sm‘)f of Theorem 1 to choose the sequence {p;} in such a way that (1—z)* G(z)
T®8ular and bounded in the interior of K.

Flnally, we consider the function

> 1 =) +1
frem

=1

Since 1 __

F .
rom oyy discussion of G(2) it follows that (1—2)* f(2) is regular and bounded in
® Garr dise |+ 1/2 | < 3/2. Tt remains only to examine the coefficients a,.

h
pk2“21" W '3 s 22)2 _*_Ap ko—2p? 2272 h Ap 2pt 47
i ;0( 1) </1)2 P 2 =p'2 1—ZrL 2p° - 2r| °
4
3k product in the last expression is of the form
ip

,
H(l—m)’

r=1

anq ; .
nd it logarithm approaches — A%2/4 as p — 0.
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it follows that the coefficient of 2°° in g (; f ! , p> is asymptotically equal to

pFapt) z (1) ( i) oI

is a transcendental number, the sum in the last expression is different

Since ¢!
from zero. Now let » = p. Because the contributions to e, from the terms ¢ (Z f ! , p,-)

are zero for j < i and o(pf ") for j > 4, provided p; — oo fast cnough, it follows that,
as n — oo through the values p?,

an Nﬂp:(—l — ﬂn(k—l)/:l,

where § is a constant different from zero. This concludes the proof of Theorem 2.

6. On bloeks of terms from the series X |a;|
We now turn our attention from individual coefficients to sums of the form

2n
AS'” S Z l a»j [ .
j=n
If f(z) satisties the conditions of Theorem 2, then
S, = 0(n¥) it b>1,
L=0(mlogn) if k=1,
8, = 0(n*V) it k<1,

For the case k > 1, this estimate cannot be improved, as is shown by the example
f(z) = (1 —2)"* The following theorem improves the estimate for the remaining
values of k.

Theorem 3. I} {(z) satisfies the condition of Theorem 2, then

8, = 0(n*) if k>1/2,
8, = 0(}nlogn) if k=1/2,
8, = O(nM2+1'%) if k<1/2;

if k == 1/2 the O in this estimate cannot be replaced by o.
In the proof we will need the following auxiliary result.

Lemma. Let f(2) = X a; 2 be regular in |z | <1, and let m be a non-negative
integer such that

/lf(M)(z)‘2]dzl<n°‘, n=23 ...,
Fy

where I, is the circle |z | =1 —1/n. Then

(a~-2m+1)/2
S, <cn* )

where ¢ depends only on m and on .
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By Gurzyer’s relation (see § 2), the hypothesis of the lemma implies that (with
Z == (]vﬁl/n) e"(")

2n n

R0 Gmt g (1)) T =, [ e <

1 25~ 2m / I‘;n»‘.Zm
<1A~ ) ~>_:(1u ) > >0,

n n

But for F= 2,

where ¢ 18 independent of n; also, for § > m,

iG--1) .. f—m+1) > )",
Where ¢, > g, Therefore, the last inequality implies that

2n on
Sy = Z P |2 Y T < gy m® T I
j-n i n
and the lemma follows,
We now begin with the proof of the theorem for the case k > 1/2. Here we will
S our lemma with m = 0. To estimate | f(z) | at the point z = (1 —1/n) ¢, wo

APDly Cavcuy’s formula, with the circular contour | { —z|==1/2n. On this con-

tour, {1 ¢ | > ¢, (| @] +»n~1); therelore, | f{z) | < ¢5(] @]+ »~1)"%; and con-
Stquently

f”(Z) 12dz ] < 2¢q [(@_{,n~1)~2k 10 < cqnt .
fn a

ghe d.esired estimate now follows from the lemma. That the O cannot be replaced
¥ 0 is seen at onee from the example f(z) = (1-—z2) "

The case k = 1/2 is treated in the same way. The only difference is this, that

n

f[f(z) [2ldz| < 2¢ [(@«Hrl)”'dQ < ¢ lognm.
iy 0

A slight modification in the computations in the proof of the lemma gives the estimate
Jrmm——— S ‘

= O(l/ n log n‘) .

{ Wek point out that in the case where k 2= 1/2, we have only used the fact that

(‘\Z) f(z) is bounded in the unit circle, rather than in a Garer disc.

For k< 1/2, we apply our lemma, with the integer m chosen in such a way that

ci:n]+ k —1/2 > 0. To estimate | f™(2) | at the point z = (1—1/n)¢®, we use the
cle

L—a)=1/2n it | @) <V,
and the (‘J‘Fcle ‘ k / l

[e—2j=c® iIa*<|O]=m;
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here ¢y denotes a positive constant small enough so that (1-—)* #(¢) is regular and
bounded inside of the curve { = (L ¢, @) e'?, —a <P < .
We observe that in either case the relations
(| O +nY) <|1—C| <e(|B|+nD)
hold on the circle associated with the point z = (1--1/n) ¢'® It follows that, for
{@|<n ',
| ™ (z) | <enn™(| O]+ nh)~k,

and
=112

l f(m) )2 e < C1s nzm k--1/2 .
—n— 19

Similarly, for n " '? < |@ | =z,
™) | < 019 0727 (1O | + 127 ;
since (@] <|O|-+n1<2]|6|, this leads to the estimates
/™) | < eyl @],

IS TR
/ +f [f(m) Iz a6 < 615 n2m+k»—-l/2 ,
—n n—1/2

and it follows from the lemma that S, = O (n*2*+1/1),
FriEr [1] (see also PErron [8] and [9, § 5]) has shown that if f(z) = X'a, 2" =
(1—2)"* ==Y then as n — oo, while % is a fixed real number,

_ ”1 . k/2~3/4j . ./“”~<Nk7 *_737> 0(_7177 }
a, Vas n lsm [2 Jn 5 NEdR: v |-
Consequently, the O in the estimate above cannot be replaced by o.
The following result is an immediate consequence of Theorem 3.

Theorem 4. If f(z) = X a, 2" satisfies the condition of Theorem 2, with k < —1/2,
then X'\ a, | < .
Again, Fe1ER’s example shows that the theorem becomes false for k£ = —1/2.

7. On the series > j|a;[*
7

If /(z) satisfies the hypothesis of Theorem 2, with & < — 1, then the conclusion
of Theorem 2 implies that > j| ;|2 < co. Again this resalt can be improved by the

J
method of the preceding section.

Theorem b. If f(z) = X a, 2" satisfies the hypothesis of Theorem 2, with b < —1/2,
then Y jla;|? < 0.
b
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It suffices to deal with the case — 1 < k < — 1/2, s0 that we may apply the pro-
cedure of § 6, with m = 1. The theorem then follows from the inequalitics

2n 2n

PNAL” PEat ) e Ps g n? / [ [ dz ]
i=n J=n i‘n

and the fact that the integral in the last member is less than c, n* 772,

Itr=__1 /2 the conclusion need not hold, as is easily seen from Fritr's example.

‘ ) -
8. Convergence and uniform convergence on the unit cirele

Theorem 6. I f(z) = Xa; satisfies the condition of Theorem 2, with k <0,
then X a; converges,

We apply Theorem 2 to the function

where 8= ay+a; + 4+ a;. Since ( l_z)k*-lg(z) is bounded in a Gargr dise,
$a = 0(n"®), and the proof is complete.
It follows from a theorem of Gaier (3, Zusatz, p. 331] that merc continuity of

f(z) in the closure of a Garer dise does not imply convergence of X'a;. This is also
seen from the following example:
Let

F(z)= ibiQni ),

where the @Q,,(2) are the functions constracted in § 4. If the sequence {n;} is chosen
asin§ 4, and if b;,—0, then ZbiQni (2) converges uniformly in the dise |z —1/4| =< 3/4
and thus F(z) is continuous in this disc. Hence the funetion f (2)=F (@;1) is con-
binwous in the dise |z 4+ 1/2 | < 8/2. Since, for n = [/2],

| a1 > b flogn,

J=0

where ¢ > (), the partial sums of the series X'a; arc not cven bounded if b, —0
slowly enough.

) We turn now to the problem of uniform convergence. If k < 1 and (1 —=z)* f(z)
18 regular and hounded in a Gaier disc, the Tavror series X a, 2" of f(z) converges
“Il_lformly on every arc of the unit circle that does not contain the peint z ==1;
this follows from Theorem 2 in conjunction with a well-known theorem of M. Riesz
[12] (sce Lanpau (6, p. 73]). On the other hand, we know from Theorem 6 that the

AYLOR serics converges at the point z = 1if k¥ < 0, and from Theorem 4 that the
Archiv der Mathematik. V. *
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Tayror series converges uniformly on the entire unit circle if & < —1/2. The
question remains as to whether this last statement can be extended to the case
& < 0. The answer is in the affirmative.

Theorem 7. If f(z) = Za, 2" satisfies the condition of Theorem 2, with k <0,
then X a, 2" converges uniformly on |z | = 1.

By the preceding remarks, it suffices to assume that — 1/2 < 4 < 0 and to prove
uniform convergence of X a, ¢ for 0 < |« | < n/4. For the sake of convenience,
we shall restrict ourselves to the interval 0 < o < sr/4; the proof for the interval
—afd <« < 0 ig analogous.

As at the beginning of § 5, let I"be the curve z = (1-f-¢, ®?) e, —a <D < m;
and let z, = ¢, 0 < & < /4. We note first that for’ any z on I,

|z —zy | = | (14¢; D?) 4P — e | = (P2 | @—al),

where ¢, > 0. Hence we obtain, for positive integral » and p,

| nip I 1 2N 1= ()P,
! Z a'zo ‘zfﬁnb 1) "Tz' 1- -2z dz
lj=n+1 { .

t

<! / Jo / o :
nfoiztttiz—g, J U+ (@ + @—a))
/

;4

Let the parts of the last integral that correspond to the intervals —n = @ < «/2,
a2 S P <2, and 2a < @ < he denoted by I, 1, and Iy, respectively.

In I, we use the estimate @+ |@ —a|Z=a —@ = | D] ; in J; we use the
estimate @2+ | P —a | = D —a = D/2. Trom these and from the method used
in §5 we get the inequality

I

21, R tag ke
Il—qtlag‘/ (0 + vty < miT.

.4

In I,, we usc the estimate @2 4 | @ — o | = a?/4 -|- | @ —a | and obtain

2

(2a)” .
(eyayt | MO —a

I,

A

The integral in the last member can be evaluated directly and is cqual to

log +]0g~— Yo eloga < cpat.
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Thus
gy (mat)H4 kit

a—~k,‘2
e Cg M
Lo, nays <08

1y <G71-{—clna2/4: G2 ™

Enﬂte that 0 < —k/4 < 1/8, and that therefore ¢ **/(14-¢, t/4) < M (k,c;) for
> 0),

The preceding estimates lead to the inequality

n-

S

L )
a2 = eg(I+ T+ 1) < egnb?,
1

J=n-

and the proof is o mplete.

9. Functions regular in GarEr regions
' We shall call a Gaier region (see § 1) a GAIER regicn of order p(p > 0) if it con-
tains the interior of the curve

2(D) = (1 +-c|@ ) o, —n<® <,

for some positive value of c.

Theovem 8. Let f(z) = 2 a, 2" be regular in some GAIER region of order p (p=1),
and let k be a real number (k < 1) such that (1—2)F {(z) is bounded in this region. Then

ap = O(n(k—l)/p) .
The proof proceeds as in § 5. We choose an appropriate curve
r. 2= (1+c | D]P)e™, AL P n,

and we use the fact that
27{ a — f(Z) d < . 7;]\ - 1 C’lpd)prvl l
o] ./z"“ © =2 oy T e |7
I {

)
<e¢ | 4 o oy nk=IP
O (1 + ¢, @)
0

We note that if (1—=2)* f(2) is continuous in the elosurc of a GAIER region of
order p, the O in the statement of Theorem 8 can be replaced by o. Moreover, for
functions continuous in the closure of a GaIER region of erder 1, our result reduces
%0 a theorem of M. Riksz [11] (see also LANDAU [6, p. 64]). For a similar result

closely related to Rizsz’s theorem, sce Garer [4, Theorems 1 and 2].
4%
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