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Abstract. Let W(k, 2) denote the least number s for which the system of equations 
~ _ i x ~ = ~ S = l y i ( 1  <~j~k) has a solution with ~S=lx~+l v e ~ = l y ~  +1. We show that for 
large k one has W(k, 2) ~< �89 k + logtog k + O(1)), and moreover that when K is large, one 
has W(k, 2) ~< �89 + 1) + 1 for at least one value k in the interval [K, K 4/3 +~]. We show also 
that the least s for which the expected asymptotic formula holds for the number of solutions of 
the above system of equations, inside a box, satisfies s ~< k2(log k + O(log log k)). 

1. Introduction 

The new efficient differencing methods recently brought into play 
within the Hardy-Littlewood method have improved substantially 
many estimates in problems of additive number theory (see, in 
particular, [7,8,9]). In this note we examine the consequences of 
such improvements in Vinogradov's mean value theorem for the 
Prouhet-Tarry-Escott problem, which surprisingly has seen little 
progress in nearly half a century. Along the way we improve the 
bound for the number of variables required to establish the asym- 
ptotic formula in Vinogradov's mean value theorem. 

In order to set the scene, when j, k and s are positive integers with 
s >i 2, consider the non-trivial solutions of the simultaneous diophan- 
fine equations 

J J J 
h = a (l~<h~<k). (1) E x l: Ex,2 . . . .  EX,s 

i=1  i : 1  i=1  
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Let P(k, s) denote the least j for which the system (1) has a solution 
x in which the sets {x~,,..., xj,}(1 ~< u-%< s) are distinct. Further, let 
W(k,s) denote the least j such that (1) has a solution x with 

�9 ~ + 1  " k + l ( u ~ v ) .  Y  lx,. y =lXiv 
The problem of estimating P(k, s) was investigated by Prouhet in 

1851, and subsequently re-discovered by Escott and Tarry (see [-14] 
for some historical notes). By using counting arguments, WRIGHT 
[12, 13] has shown that P(k, 2) ~< �89 2 + 4), and in general, 

k + 1 < e(k, s) < �89 + l) + 1. 

Meanwhile, numerical examples show that P ( k , 2 ) = k +  1 for 
2 ~< k ~< 9 (see [2, Chapter XXI, notes]), and indeed it is plausible that 
P(k ,2 )=k  + 1 for every k. Wright also considered the harder 
problem of estimating W(k, s). Later, motivated by features of 
Vinogradov's mean value theorem and diminishing ranges argu- 
ments, HuA [3] constructed an ingenious elementary method, which, 
after generalisations of WRIGHT [14] and HUA [4] ,  yields the bound 

+2)1 ) 
\Llog(1 + 1/k)J + 1 ~ k 2 logk. (2) 

(Here, [x] denotes the least integer not exceeding x). Moreover, when 
k is odd, a simple trick of HUA [3] enables one to essentially halve the 
latter bound. 

In Section 2 we employ the latest developments in Vinogradov's 
mean value theorem to obtain improved bounds for W(k, 2). 

Theorem 1. W(k, 2) ~< �89 k + loglog k + O(1)). 

The latter estimate is superior to (2), but for odd k does not 
supersede Hua's bound. However, it is possible to do rather better 
infinitely often. 

Theorem 2. For each ~ > O, there is a real number K(e) with the 
property that for each K >1. K(e), there exists a k in the interval 
[K, K 4/3 +el with 

W(k, 2) ~< �89 + 1) + 1. 

The latter theorem may be refined so that the expression K 4/3 +e is 
replaced by ((4e) 1/3 + e)K 4/3 (log K) ~/3. We note that while Theorem 2 
implies that W(k, 2)~< �89 + 1)+ 1 infinitely often, a trivial argu- 
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ment leads from Wright's bound P(k, 2) ~< l ( k 2  ~- 4) to the conclusion 
that W(k, 2) ~< �89 2 + 4) infinitely often. 

In Section 3 we turn our attention to the problem of establishing 
the asymptotic formula in Vinogradov's mean value theorem, which, 
as observed by HUA [5, w is closely related to estimating the 
number of solutions of Tarry's problem inside a box. In order to 
describe our conclusion, we must record some notation. Let Jt.k(P) 
denote the number of solutions of the system of diophantine 
equations 

t 

Z( x ~- - Y~) =0  (l~<j~<k), (3) 
i = l  

with 1 <~xi, yi<~P(1 <<. i<~ t). We write e(z) for e 2~iz, and define 
S(q, a) = S(q, a l , . . . ,  ak) by 

q 

S(q,a) = ~ e((alx + a2 x2 + ... + akxk)/q). (4) 
x = l  

We define the singular series, ~(s,  k), and singular integral , ,~(s, k), by 

~(s ,k)= ~ ~ ... ~ ~ [q-lS(q,a)l 2~, (5) 
q = l a l = l  ak--l= 1 a k = l  

(al ..... ak,q) = 1 
and 

Theorem 3. 
whenever 

fN '.f 0 ~kTk)d~ 2s 3 (s, k) = e (ill 7 + "  + dfl. (6) 
k 

There are positive numbers C and 6(k) such that 

s ~> k2(log k + 2 log log k + C), 

one has 

Js,k(X) = ~(s, k)g(s, k)X 2S-k~k+ 1//2 + O~,s(x2~-k~+ 1)/2-~)). (7) 

We note that ,~(s, k) and ~(s, k) are both positive, in view of 
a simple argument of VAUGHAN [6, w Previously, HUA (see [-5, 
Theorem 15]) had established such an asymptotic formula for 
s satisfying an inequality of strength s ~> (3 + o(1))k 2 log k. Moreover, 
WOOLEY [9, Corollary 1.4 3 has remarked that recent developments 
enable one to improve the latter bound, to the extent that 3 + o(1) 
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may be replaced by 5/3 + o(1). In each of the latter approaches (the 
second of which was modelled after VAUGHAN [6, w the 
Hardy-Littlewood dissection employed to obtain the asymptotic 
formula is essentially a cartesian product of dissections of the unit 
interval. By using a result of R. C. BAKER (see [1, Theorem 4.4]), we 
develop an improved dissection which permits greater control to be 
exercised over the size of the relevant exponential sums. Our 
treatment is otherwise similar to those of Hua and Vaughan. 

2. Tarry's Problem 

Our proofs of Theorems 1 and 2 employ a lemma which associ- 
ates estimates for Jt,k(P) with bounds for W(k, 2). In order to describe 
this lemma we require some notation. We shall say that an exponent 
At, k is permissible if for every sufficiently large real number P we have 
the bound 

Jt,k (P)  ( (  t,k p2 t  - �89 + 1) + At,k, (8) 

where here, and throughout, << and >> refer to Vinogradov's 
well-known notation. 

Lemma 1. Let t, H, K e N, and suppose that At,K+ H is a permissible 
exponent satisfying 

A , j c + u < � 8 9  (9) 

Then W(k, 2) ~< t for some k in the interval [K ,K  + H- -  1]. 

Proof. Suppose that W(k, 2 )> t  for each k e [ K , K  + H - 1 ] .  
Then each solution x,y of the equations (3) with k = K is also 
a solution of the equations (3) with k = K + H, and consequently for 
each positive P we have 

at,K + U( P) = J,,K( P) �9 (10) 

But in view of (8) and the hypothesis (9), it follows from the 
well-known lower bound, 

Jt,K(P) >> (2t)- Kp2t- K(K + 1)/2, 

(see, for example, [10, Theorem 2]), that when P is sufficiently large 
in terms of t ,K and H, we have Jt,K+H(P)<Jt,~(P). The latter 
inequality contradicts equation (10), and thus the proof of the lemma 
is completed. 
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Proof of Theorem 1. We suppose that  k is sufficiently large, and 
apply L e m m a  1 with K = k ,  H =  1 and t = ( k +  1)tk+l, where for 
each positive integer h we write 

t h = [�89 + l o g l o g h +  3)]. 

It follows from [9, Theorem 1.2] that  AT,k+ 1 is a permissible expo- 
nent, where 

2 (1 - 1 / l o g ( k  + 1)) . At,k+ 1 = ( k  + 1)210g(k + 1) 1 - k +----1 

Moreover  a simple est imation reveals that  At,k+ 1 < �89 + 1), so that  
the hypothesis  (9) of L e m m a  1 is satisfied. Then  we may  conclude 
from that  l emma that  W(k, 2) ~< (k + 1)tk+ 1, which suffices to prove 
Theorem 1. 

Proof of  Theorem 2. We suppose that  e is a small positive 
number ,  and that  K is sufficiently large in terms of e. We apply 
L e m m a  1 with 

H = [((4e) ~/3 + e)K4/B(log K) t/3 - K] 

and t = �89  + 1)+  1. It follows from [11, Corollary 1.1] that  
At, K +it is a permissible exponent ,  where 

At,~:+u = �89 + H)(K + H + 1) - t + 8t,K+H, 

and for each s and k the number  8~,k satisfies 

6s k << sk3/2 exp ( - 
k 3 ) , 1 + o(k2/s2)) / .  

A little calculation reveals that  our  choice of H ensures that  
3~,K+ u << K-~, and hence, since K is assumed to be sufficiently large in 
terms of e, that  the hypothesis  (9) of L e m m a  1 is satisfied. Then we 
may  conclude from L e m m a  1 that  W(k, 2) ~< �89 + 1) + 1 for some 
k s [ K , K  + H - 1], which suffices to prove Theorem 2. 

3. The Asymptotic Formula 

Our  proof  of Theorem 3 is a fairly s tandard  applicat ion of the 
Hardy-Li t t lewood method.  The new ingredient in our proof  is the 
following weak consequence of Theorem 4.4 of R. C. BAKER [1]. 
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Lemma 2. Let k be an integer with k >~ 4, and define a(k) by 

a(k) - ~ = 8kZ(log k + �89 log log k + 2). (1 1) 

Define also the exponential sum f(~;  Q) by 

f ( ~ ; Q ) =  ~ e(alx+. . .+~kXk) .  (12) 
i <~x<~Q 

Suppose that P is sufficiently large in terms of k, and that 
If(u; P)I >i P~-~k~. Then there exist integers q, al , . . .  ,a k such that 

l<~q<~P ilk and Iqc~j-a~l<~P ~/k-j (l~<j~<k). 

Pro@ The lemma follows immediately from the case M = 1 of 
[l, Theorem 4.4]. 

We note that the value of o-(k) in the statement of Lemma 2 could 
be improved, essentially by a factor of 2, by using the bounds of [9]. 
Such an improvement would affect only the second order terms in 
the bound for s contained in the statement of Theorem 3. 

Proof of Theorem 3. Let k be a large positive integer, and P be 
a real number sufficiently large in terms of k. We define the integers 
r 1 (k), t k and u k by 

r~(k) = [ k ( l o g k - l o g l o g k ) ]  + 1, t k= [3k log log k] + 1, 

U k = 5k 2 -t- 1, (13) 

and write 

t=k ( r l ( k  )+tk)  and s = t + u  k. (14) 

We aim to obtain an asymptotic formula for J~,k(P) by applying the 
Hardy-Littlewood method, noting that by orthogonality 

J~,k (P) = fE0,1)k I f(at; P) I 2~ dae, (15) 

where f(~;  P) is defined by (12). We first define the dissection which 
forms the basis of our application of the circle method. Write ~'* for 
the cartesian product of the intervals (p1/k-j, 1 + PI/k-J)(1 <~j <<. k). 
When q <~ p1/k, 1 <<. aj <<. q (1 ~<j ~< k) and (q, a~,..., ak) = 1, define the 
major arc 931(q, a) by 

93~(q, a)-= { ~ / / * "  ]q~j -  ajJ ~< P1/k-J(1 <~j <~ k)}. (16) 
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Notice that the 9Jr(q, a) are disjoint. Let 9J~ denote the union of the 
major arcs 92~(q, a), and define the minor arcs m by m = q/k \gJl. Thus 
from (15), 

f, lf( ;P)12 d + If( ;p)12"do . (17) 

In order to estimate the contribution of the minor arcs in (17), we 
first bound f (~;  P) when eem.  Suppose that there exists e e m  such 
that If(o~;P)l>iP 1-~(k), with o-(k) defined by (11). Then Lemma 
2 implies that there exist integers q, a l , . . . ,  ak such that 1 <~ q <~ p~tk 
and Iq~j - ajl <~ Pllk-5(1 <~j <~ k). Dividing through by the common 
factor (q, a~,. . . ,  G), we find from (16) that e e  ~.ll, contradicting the 
assumption that ~em. Thus we conclude that 

sup I f (~;  P)l ~< P~-~(k) (18) 

Next, on noting (14), we deduce from (18) that 

<~ (p1-<r(k))2ukjt,k(p). (19) 

Moreover, it follows from [9, Theorem 1.2] that A = A,,k is a permis- 
sible exponent, where 

A = 5(log k)3 ( 1 - ~ k  ( 1 -  l /k) )  tk. 

A simple estimation reveals that A < 1/logk, whence A < 2Uka(k ). 
Thus we deduce from (19) that for some positive number 6(k), we 
have 

fml f (~  ;P)12~d~ -a(k))2ukp2t-�89 1)+a  p2,-~k(k+l)-6(k) (pl 

(20) 

Next we consider the contribution from the major arcs 93l. When 
~egJt(q, a), write 

V(~; q, a) = q-  tS(q, a)I(fl), 
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where S(q, a) is defined by (4), 

I(P) = f f e<7  + + 
and flj = aj - aHq(1 <~j <~ k). Further,  define the function V(~) to be 
V(0~; q, a) when ae~ 9J~(q, a), and to be zero otherwise. By VAUGHAN 
[6, Theorem 7.2], when ~ e ~ ( q ,  a) we have 

f (~ ;  P) - q- aS(q, a)I(fl) << q(1 + [fll ]P + " "  + [fik[Pk) �9 
Thus for each ae931, 

Then 

f (~ ;  p) _ V(a0 << p2/k. 

fun lf(oe;P)]2" --[V(oe)]2Sdoe<< 

<< p,  +2/k t [f(~ + [ V(a)I2~-2da'" 
JlO,1) k 

On imitating the argument described in VAUGHAN [6 ,  w we 
therefore deduce that 

[f(o~;e)[2Sdo~= I g(ool2Sdo~+O(p2s-~(k+l)-a(~)). (21) 

A standard analysis, as outlined in VAUGHAN [6, w shows that 
the main term in (21) contributes the main term of (7) with an 
acceptable error. Thus the theorem follows on collecting together 
(17), (20) and (21). 
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