
O n  the  P r o b l e m  of  R e c o n s t r u c t i n g  a T o u r n a m e n t  

f r o m  S u b t o u r n a m e n t s  1 

By 

Frank Harary and Ed Palmer, Ann Arbor, Mich., USA 

With 7 Figures 
(Received November 9, 1965) 

Introduetion 

No one has ever specified an elegant complete set of invariants for 
a graph and indeed it is evidently an extraordinarily difficult task. 
I t  has been verified tha t  none of the usual invariants of graphs such 
as the number of points and lines, connectivity, chromatic number, 
degree sequence or group of automorphisms place much of a restriction 
on the graph. In fact, Izbicki [6] has shown how to construct an infinite 
number of regular graphs having the same group, chromatic number 
and degree of regularity. Since such properties as these seem to fall 
far short of determining a graph, it is natural to ask the question: For 
a given graph G and a given set S of subgraphs of G, does the set S 
determine G ? A specialization of this question is becoming quite a 
well known conjecture in graph theory: 

Ulam's Conjecture [8]. I f  G and H are two graphs with p points 
v~ and u~ respectively (p >~ 3) such tha t  for all i, G --  v~ is isomorphic 
with H -- ui, then G and H are themselves isomorphic. 

Consider a graph G with points vl, �9 �9 vp. The graph G -- v~ obtained 
from G on removing point v i is denoted Gi; it consists of aU the points 
of G except v~ and all the lines of G except those incident with % Kelly 
[7] solved Ulam's problem for trees. Harary [2] reformulated it as a 
problem of reconstructing G from its subgraphs G~ and derived several 
of the invariants of G from the set G~. 

1 Work supported in part by the U. S. Air Force Office of Scientific Research 
under grant AF-AFOSR-754-65. 
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The conjecture is, of course, not true for p = 2 but  K e l l y  has verified 
by  exhaustion tha t  it holds for all graphs with p points, 3 <~ p ~< 6. 

We have also verified the conjecture for p := 7. 

In  the rest  of this article we assume tha t  p >/3.  

We will use constructive methods to show tha t  the conjecture holds 
for all tournaments  which are not strong and have p ~> 5 points. We 

also show tha t  the "line version" of the conjecture holds for all tourna- 

ments. The concluding section provides a method for obtaining infor- 

mation about  a graph from its subgraphs, in particular for obtaining 
the score sequence of a tournament  from its subtournaments.  Definitions 
which do not appear  here be found in [1, 3, 4, 5]. 

Line Version for Tournaments 

By definition, a tournament  is an oriented complete graph. The 
score si of point v i is the outdegree of v s. In  Figure 1, all the tournaments  
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Fig. 1 

with p ~ 4 points are shown with the score marked at  each point. 
I t  is customary to order the points v i so the scores satisfy s 1 ~ s~ ~ . . .  ~ %. 

Theorem 1. Let  T be a tournament  with p points whose lines are 

X l , . . . ,  %. Let  T - - x  i for i - - - - 1 , . . . ,  q be the subgraphs obtained 
from T by  deleting the line x/. Then T can be reconstructed from the 
T - -  x~. 

Proo]. Clearly T has a receiver if and only if some T -  x i has a 
point v with id v ~ p - -  1. I f  T does not have a receiver, then s~ >~ 1 
and we can choose T - -  x i with a point u such tha t  od u ---- s~ - -  1. 
Let  v be the other point of T - -  x~ with total  degree p - -  2. Then T 
is obtained by  adding the directed line uv to T - -  x i. I f  T does have 
a receiver, choose T - -  xi with no points w such tha t  id w ----p - -  1. 
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Then T - -  x~ was obtained from T by deleting a line which is incident 
with the receiver. Let  v be a point of T - -  x~ with id v = io - -  2 and 
od v = 0. Let  u be the other point of T - -  x i with total  degree p --  2. 
Without  loss of generality we can assume that  v was the receiver of 
T and so T is obtained by  adding the directed line uv  to T - -  x~. 

Point Version for Tournaments 

Again consider a tournament  T with points v l , . . . ,  vp. Let  T i = T - -  v~; 
i = 1 . . . . .  p be the tournaments obtained by deleting v~ from T. 
I t  is clear tha t  a digraph D is a tournament  if and only if D - -  v is a 
tournament  for each point v of D. We consider the following problem: 
I f  the collection { T~} of subtournaments is given, can T be reconstructed 
and if so, how ? 

If  lo = 3, T is either a cyclic triple or a transitive triple and the 
collection (Ti} is the same in both eases. Hence T is not determined 
by  the T~. 

I f  p = 4, there are four tournaments (see Figure 1 above) and only 
two of them can be reconstructed. One is strong, (see Figure 1 a), has 
score sequence (1, 1, 2, 2) and~{T~} has exactly two cyclic triples. One 
is transitive, (Figure l b ) ,  has score sequence (0, 1, 2, 3) and of course 
{T~} has no cyclic triples. The other two have score sequences (0, 2, 2, 2) 
and (1, 1, !, 3) and each collection {T~} has exactly one cyclic triple. 
Hence in the latter two cases T is not determined by the T i. 

The next  theorem is not quite in the literature [4, 5] and will be 
useful in determining whether a tournament  T is strong, given the T~. 

Theorem 2. A tournament  T with at least four points is strong if 
and only if it has neither a transmitter  nor a receiver and for some 
point v, T --  v is strong. 

Proo/ .  Suppose T is strong. Clearly T does not have a transmitter 
or a receiver. By Theorem 7 of [4], T has a cycle of length p - -  1, say 
Z = v l v  2 . . .  v p _ l v  1. Therefore T ~ =  T - - v v  contains Z and by  
Corollary 7 a of [4] it is therefore strong. 

Conversely, suppose T v = T - - v  v is strong. Let  a complete cycle of Tp 
be Z = vl v~ . . .  vp_ 1 vi. I f  vp is neither a transmitter  nor a receiver, 
vp is adjacent to some point of Z and adjacent from another. Hence 
by  the same reasoning as in case (1) of Theorem 7 in [4], T has a complete 
cycle and hence is strong. 
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The strong tournament  T on three points is, of course, a cyclic 
triple. Each of the three subtournaments T~ has a transmitter .  Tha t  

this is not the ease for strong tournaments  with more than  three points 
is shown by  the next  theorem. 

Theorem 3. I f  T is a strong tournament  with at  least four points, 
then a t  most  two of the subtournaments T~ have transmitters.  

Proo]. Let  T be a strong tournament  with p i> 4 points and suppose 
v 1 is a t ransmit ter  in T 2 -----/' - -  v s. Then the score of v 1 in T is a t  least 

p - -  2. Since T is strong the score of Vl is exactly p - -  2. I f  T has two 
subtournaments T~ with transmitters,  there must  be two points v I and 
v 2 with score ~o - -  2 and we can assume tha t  v~ is adjacent to Vl. 

Since v2 has score p - -  2, there is another point v s which is adjacent 
to v~ and adjacent from v 1. The other p - -  3 points, v~ with i ~> 4, are 

adjacent  from both v I and v2 (see Figure 2). Hence for i >~ 4 the score 

\ 

Fig. 2 

of  vi is less than  p - -  2 and therefore none of these v~ can be a t ransmit ter  
in any  subtournament  T - -  v. Further  no Ti with i >~ 4 has a trans- 

mitter.  As in Figure 2, T2 and T 8 have transmitters  Vl and v~ respectively. 
The only other possibility is tha t  va is a t ransmit ter  in I'1- But  since T 
is strong, v 8 must  be adjacent from some vi with i ~> 4. So the score 
of v 8 is less than  p - -  2 and :T1 does not have a transmitter.  

Theorem 4. A tournament  T with a t  least five points has a trans- 
mit ter  if and only if at  least four of the T~ have a transmitter.  

Proo]. Assume tha t  v I is a t ransmit ter  of T. Then for i ~> 2, v 1 is 
also a t ransmit ter  in T~. Since T has at  least five points, there are at  
least four such T i. 

In  the converse at  least four of the T~, say T1, :T2, Ta, T4, have a 

t ransmit ter  by  hypothesis. Suppose T does not have a transmitter.  
~onatshefte  filr ~a themat ik ,  Bd. 7111. 2 



18 F. Harary and E. Palmer 

Let  S be the strong component of T which is the transmitter of T*, 
the condensation of T. Then S contains at least three points. So ff v 
is any point which is no t  in S then T --  v cannot have a transmitter. 
But  then the four points vl, v2, v3, v4 such tha t  T i has a transmitter 
for i = 1 to 4 must all be in S. Therefore S has at least four points. 
Further  the transmitters of the T~ are also in S. Thus S - -  v i has a trans- 
mitter for each i. Since S is itself a strong tournament,  this contradicts 
Theorem 3. Hence T has a transmitter.  

Corollary ga. When p >~ 5, T has a transmitter  if and only if at 
least p - -  1 of the T i have a transmitter. 

Note tha t  Theorem 4 does not  hold for tournaments with four points 
because the tournament  of Figure 1 d has a transmitter  but  only three 
of its subtournaments T i have one. Further  the theorem does not 
hold if we only require tha t  three of the T i have transmitters. I f  S, 
the strong component of T which is the transmitter of T* is a cyclic 
triple, then three of the T~ have transmitters but  T does not. 

I f  G and H are two graphs with no points in common, the new 
graph G -]- H is obtained by joining each point of G with each point 
of H by  a line. When these additional lines are all to be directed from 
G to H we indicate :this b y  writing G + -+ H. 

Fig. 3 

Let  Kp be the complete graph on p points and K~ 
with p points and no lines. 

Here are some examples: 

its complement 

Theorem 5. I f  T is a tournament with at least five points such that  
one of the T~, say T1 = T - -  vx, does not have a transmitter and at  
least four of the T~ do have a transmitter, then T = v 1 A- ~ T1. 

Proo/. By Theorem 4, T has a transmitter, say v. Then T -  u 
has a transmitter  whenever u # v. Hence v = v~ and T = v~ A- -+ T1. 
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Theorem 6. I f  T is a tournament  with a t  least five points and each 

T i has a transmitter ,  then T can be reconstructed from the T i. 

Proo]. We shall show tha t  there is a largest integer m with 2 ~ m ~< T 
such tha t  for suitable labeling of the Ti the following conditions hold: 

(1) each T~ has points of score p - -  2, . . . ,  T - -  m. 

(2) T1 . . . . .  T m do not have a point of score p - - ( m - t - 1 )  but  
Tm+l . . . .  , Tp do have such a point. 

(3) T 1, . . . ,  Tm are all isomorphic and T = v 1 -f- -+ T 1. 
By  Theorem 4, T has a 

transmitter,  say v 1. Since each 
T~ has a transmitter ,  T must  
have a point, say v2, of score 

p - -  2 (see Figure 4). 
Now there are two possi- 

bilities: 

Case 1. None o f  the other 

points v i with i ~> 3 has score 
p - - 3 .  

Fig, 4 Case 2. Some point, say va, 
has score p - -  3. 

In  Case 1, T~ and T~ do not have points of score p - -  3 but  for 
each i ~ 3, T i does (namely v~). Each T i has a point of score T - -  2. 
Clearly T 1 and T~ are isomorphic, T ~ Vl ~- --> T1, and m ----- 2. 

In  Case 2, m ~ 3 and again there are two possibilities. I f  none of 
the vi with i ~ 4 has score p - -  4, then T1, T 2 and Ta do not have 

points of score p - -  4 but  for i ~ 4 each T i does (namely %). Each 
T i has points of score p - -  2 and p - -  3. Clearly T1, T 2 and T a are 
isomorphic, T-----v 1 ~- --~ T 1 and m ~ 3. Otherwise some point, say 
v4, has score p - -  4 and m ~ 4. Continuing in this way we obtain (1), 
(2) and (3) and hence T can be reconstructed. Note tha t  if m - ~  p, 
T is the transitive tournament on p points. 

Every  concept in directed graph theory has a "converse concept".  
For example the outdegree and indegree of a point are converse con- 
cepts of each other. A valuable principle mentioned in [5] is tha t  of 
directional duality:  For each theorem about digraphs, there is a cor- 
responding theorem which is obtained by  replacing each concept b y  
its converse. 

2 ~ 
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Each of Theorems 3, 4, and 5 has a directional dual. The dual theo- 
rems are obtained by replacing the word transmitter by receiver. 

Theorem 7. I f  T is a tournament with at least five points and T 
is not strong, then T can be reconstructed from the T e 

Proo/. Using Theorem 4 and its dual, we can tell from the T~ whether 
or not T has a transmitter or a receiver. Then using Theorem 2 we 
can tell from the T~ whether or not T is strong. I f  T is not strong and 
has a transmitter or a receiver, T can he reconstructed by Theorems 5 
or 6 or their directional duals. 

Assume T is not strong and has neither a transmitter nor a receiver. 
Thus T must contain at least six points. Let the components of T be 

S ,  . . . .  , S,  with $1 the transmitter and S~ the receiver in T*. The 
number of points in the component S t is denoted by I S~ I" Since T 
does not have a transmitter, I $1 I ~  3 and since T does not have a 
receiver, I S, I >/8. For each i = 1 . . . . .  p let Sl  . . . . .  be the com- 

ponents  of T~ = T --  v~ with S~ and S~ the transmitter and receiver 
respectively of T~*. 

Choose the notation so that  IS11 l ~ I S~il and I S~I  ~ I S~I for 
all i. Then $1 and $1 ~ are isomorphic, and $2 and S~ 2 are isomorphic. 
I f  I S~ ~ I -5 I S~ ~ I = P. Then T ~ S~ ~ -5 -~ S~ ~. Otherwise the number 
of components of T is greater than two. 

I f  I S~ I >~ 4, then by Theorem 7 of [4] there is a cycle of length 
I $1 I - -  1 in S,. Therefore there is a point v in S 1 such tha t  s 1 --  v 
is a strong tournament. Then we can choose T 8 - - - - T -  v~ with 
] S~ ] = I S~ I - -  1. Now delete all of the points of S, 3 from T~ to obtain 

rj.- 

I 

l~g.  5 

p- Jpo/nts 

v is a point of $1, then T -  v has a transmitter. Choose 
so tha t  T 3 has a transmitter. Let u be the transmitter of 
be the point of T~ which is adjacent to every point of 
{see Figure 5). 

T8 --  $1 ~, a subtournament 
of T 3. I t  is clear that  

T ---- $I + -~ (T3 - -  813). 

Similarly T can be recon- 
structed if I $2 1 ~> 4. 

i f  I s l l  = Iz l = 
then both $1 and S~ are 
cyclic triples. Therefore if 

T~ = T -- v8 

T 3 and let v 
T a except u 
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Then T is obtained by adding a point va to Ta with v3 adjacent 
from v and v 8 adjacent to all other points of T a (see Figure 6). 

~Fig. 6 

Remarks on Ordinary Graphs 

We now turn to ordinary graphs and prove a theorem which enables 
us to obtain much information about a graph G from its subgraphs 
G i. The following theorem is a generalization of a result which appears 
in [2, p. 48]. Note that  it holds for any graph, i.e. connected or un- 
connected, with multiple lines or with loops, directed or undirected, etc. 

Theorem 8. Let G be a graph with p ~ 2 points and H be a connected 
subgraph with n ~ p points. Le t / z  =/~(H,  G) be the number of sub- 
graphs of G which are isomorphic to H. Let #i = /z (H,  G~). Then 

P 
X/z~ 

i=1 

[~ p -- n 

Proo]. Obviously P.i z # --  (the number of subgraphs of G which 
are isomorphic to H and contain v~). Summing over all the Gi, we obtain 

P 
X#~ = p #  -- u # .  

i = l  

Corollary 8a. Let T be a tournament with points vl, . . . ,  vp (p ~ 3) 
and T~ ---- T --  vl, where the number of transitive triples in T is b ----- b(T) 
and the number in T~ is b i ---- b(Ti). Then 

2; b~ 
b - -  

p - - 3 "  

Corollary 8b. Let G be a connected graph with e-----e(G) triangles 
and p ~ 3 points. Let each G~ have e i ~- e(Gi) triangles. Then 

z~, e i 
e - -  

p - - 3 "  
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Given the collection of subgraphs Gi the following properties of G 
can be determined using Theorem 8. 

(1) The cycle type (ca, c4, . . . ,  c~), where c k -= the number of cycles 
of length k, provided p :> n. 

(2) The clique, type (/2,/a, . - .  ,/~), where h ---- the numbe r of complete 
k-subgraphs, provided p > n. 

(3) The degree sequence (dl, d2 . . . .  , dp), where d~ ~< di+ 1 and 
d~ ---- deg v~. 

(4) The score sequence (sl, s ~ , . . . ,  %) for tournaments, where 
s~ <~ si+ 1, s~ = od v~ a n d p - - l > % .  

We outline computation of the degree sequence of a graph G. Let 
H =- Ks and let q~ be the number of lines in G~. Now we can apply 
Theorem 8 to obtain q -  ( X q i ) / ( p -  2), the number of lines of G. 
But  since d~ = q -  q~, for suitable relabeling we have the degree se- 
quence (di, . . . ,  d v) with di ~< d~+l. 

To compute the score sequence of a tournament, let T have sub- 
tournaments T~ as defined earlier. Theorem 4 gives a necessary and 
sufficient condition for T to have a transmitter in terms of the T~. 
Therefore when p ~> 5, we can tell from the subtournaments T i whether 
or not T has a point of score p --  1. I f  not, then we can choose a point v 
in some T~ such that  the score of v is greater than of equal to the score 
of any point of any T~. Therefore the score of v is % and % < p -- 1. 

Let nk be the number of points in T of score k. Since the number 
of points in the subgraph K1 + -+ K,p is less than p, we have 

n 9 ~- #(K 1 + --> ~7,p, T), 

n s p n _  1 --~ #(K 1 -~ -+ ~:9_ 1, T) -- (s~ --  1) n 9. 

In general: 
Sp 

n h =  # ( K l  ~- ~ Kk, T) - -  Z (D n,. 
r = k + l  

In particnlar, when T is strong, sp ~ p --  2 so we can always com- 
pute score sequence of T from the Ti. 

We conclude by observing that  the score sequence and the number 
of cyclic triples in a strong tournament do not determine the tournament. 
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I n  Figure 7 the  two tournament s  T 1 and T 2 on five points  are different 

bu t  each has score sequence (1, 2, 2, 2, 3) and each has four cyclic triples. 
Clearly Tx has a pa th  of  length two f rom the point  of  min imum score 

to  the  point  of  m a x i m u m  score and T~ does not.  

2 2 

7 J J 7 

Fig. 7 

I t  is evidently much  more difficult to  reconstruct  the strong tour-  
naments,  bu t  we believe tha t  the conjecture will still be valid. 
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