On a Family of Line-Critical Graphs ${ }^{1}$

By
Michael D. Plummer, Ann Arbor, Mich., USA

With 1 Figure
(Received December 20, 1965)

1. Introduction

A set of points M of a graph G is a point-cover if each line of G is incident with at least one point of M. A minimum cover, abbreviated m . c., for G is a point cover with a minimum number of points. The point covering number of $G, \alpha(G)$, is the number of points in any minimum cover of G. If x is a line in G, we denote by $G-x$ the graph obtained by deleting x. A line x is said to be critical (with respect to point-cover) if $\alpha(G-x)<\alpha(G)$. Ore [4] mentions such critical lines and in [3], we consider the case where the graph involved is a tree. In particular, if each line of the graph G is critical, G is said to be line-critical. It is obvious that all odd cycles are line-critical graphs as are all complete graphs. Erdös and Gallai [2] obtain a bound on the number of lines in such a graph in terms of the point covering number. A structural characterization of this family of graphs is, however, presently unknown. In an earlier paper [1], we show that if two adjacent lines of a graph are both critical, then they must lie on a common odd cycle. Hence, in particular, a line-critical graph is a block in which every pair of adjacent lines lie on a common odd cycle.

In this paper we shall develop an infinite family of line-critical graphs. This family includes all graphs known by the author to be line-critical and in particular it includes all those line-critical graphs with fewer than eight points.

[^0]
2. Additional Terminology

A graph G consists of a finite set of points $V(G)$ together with a collection of lines $E(G)$ each of which is an unordered pair of points. If x is the line containing points u and v, then we write $s=u v$. If two points (lines) are joined by a line (point), we say that the points (lines) are adjacent. If a point and a line meet, we say they are incident. The degree of a point $v, d(v)$, is the number of lines incident with it. If $d(v)=0$, we say v is an isolated point. A path joining points u and v is an alternating sequence of distinct points and lines beginning with u and ending with v so that each line is incident with the point before it and the point after it.

A cycle is a path containing more than one line together with an additional line joining the first and last points of the path. The length of a path or a cycle is the number of lines in it and a cycle is said to be even (odd) if its length is even (odd). A graph G is said to be connected if every two distinct points in G are joined by a path. A point v is a cutpoint of a connected graph G if the graph obtained from G by deleting v is disconnected. A subgraph of G is a block of G if B is a maximal connected subgraph of G having no cutpoints. Finally, let $|A|$ denote the number of elements in the set A.

3. The Construction

Let v_{0} be a point of a connected graph G with $d\left(v_{0}\right)>1$. For any $p \geqslant 3$, let $K_{p}-x$ denote the complete graph on p points with any one line x deleted, where $x=u_{1} u_{2}$. We construct a new graph as follows. Split G at v_{0} forming two new points v_{1} and v_{2}, retaining all lines from G and adding no new lines. Furthermore, we make the restriction that neither v_{1} nor v_{2} is an isolated point in the new graph. Beyond this, however, no restriction is made on how the set of lines incident with v_{0} is divided between v_{1} and v_{2}. There are of course $2^{d\left(v_{0}\right)}-2$ graphs obtainable from G in this fashion, some of which may be isomorphic. If $d\left(v_{1}\right)=m$ and $d\left(v_{2}\right)=n$, we denote any of the graphs obtained above by $S\left(G, v_{0} ; m, n\right)$. Next, we attach $K_{p}-x$ to $S\left(G, v_{0}\right.$; m, n) by identifying u_{1} with v_{1} and u_{2} with v_{2}. The resulting graph is denoted by $S\left(p ; G, v_{0} ; m, n\right)$. We illustrate this construction in Figure 1.

Fig. 1

We now proceed to show that if one performs the above construction, a resulting graph $S\left(p ; G, v_{0} ; m, n\right)$ is line-critical if and only if G is line-critical.

Theorem 1. If v is a point incident with a critical line of a graph G, then G has minimum covers M_{1}, M_{2} such that $v \in M_{1}-M_{2}$.

Proof. Let M_{x} be an m.c. for $G-x$ and suppose $x=u v$ is a critical line of G. Now since x is critical, neither u nor v is in M_{x}. Let $M_{1}=M_{x} \cup\{v\}$ and $M_{2}=M_{x} \cup\{u\}$. Then M_{1} and M_{2} each cover G and since $\left|M_{1}\right|=$ $=\left|M_{x}\right|+1=\alpha(G)=\left|M_{2}\right|$, each is a minimum cover. This completes the proof.

Our next theorem relates the point covering numbers of G and of $S\left(p ; G, v_{0} ; m, n\right)$.

Theorem 2. If v_{0} is a point of graph G and $d\left(v_{0}\right)>1$ and if $p \geqslant 3$, then $\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]=\alpha(G)+p-2$.

Proof. Suppose G has an m.c. M which contains v_{0}. Let W be any m.c. for K_{p} which includes u_{1} and u_{2}. Then $\left[M-\left\{v_{0}\right\}\right]$ u W covers $S\left(p ; G, v_{0} ; m, n\right)$ and thus $\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right] \leqslant\left|M-\left\{v_{0}\right\}\right|+|W|=$ $=|M|-1+(p-1)=\alpha(G)+p-2$.

Now suppose G has an m.c. \boldsymbol{M}^{\prime} which does not contain v_{0}. Let $W^{\prime}=V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}$. Clearly, W^{\prime} is the m.c. for $K_{p}-x$. Hence $M^{\prime} \cup W^{\prime}$ covers $S\left(p ; G, v_{0} ; m, n\right)$ and we have

$$
\begin{aligned}
\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right] \leqslant\left|M^{\prime} \cup W^{\prime}\right| & =\left|M^{\prime}\right|+\left|W^{\prime}\right|= \\
& =\alpha(G)+\alpha\left(K_{p}-x\right)=\alpha(G)+p-2 .
\end{aligned}
$$

Thus in either case, one obtains the inequality:
(1) $\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right] \leqslant \alpha(G)+p-2$.

Now let M be an m.c. for $S\left(p ; G, v_{0} ; m, n\right)$. We have three cases to consider.
(i) Suppose $\left\{u_{1}, u_{2}\right\} \cap M=\phi$. Then all points of K_{p} other than u_{1} and u_{2} are in M. Also, if $u_{1} w_{i}, i=1, \ldots, m$ are the lines of G incident with u_{1} and if $u_{2} w_{i}, i=m+1, \ldots, m+n$, are those lines incident with u_{2}, then $\left\{w_{1}, \ldots, w_{m}, w_{m+1}, \ldots, w_{m+n}\right\} \subset M$. Hence $M-\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right]$ covers G. Hence $\alpha(G) \leqslant \mid M-\left[V\left(K_{p}\right)-\right.$ $\left.-\left\{u_{1}, u_{2}\right\}\right]\left|=|M|-(p-2)=\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]-p+2, \quad\right.$ and thus $\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right] \geqslant \alpha(G)+p-2$.
(ii) Next suppose $\left\{u_{1}, u_{2}\right\} \in M$. Then clearly $M \cap\left[V(G)-\left\{v_{0}\right\}\right]$ is an m.c. for $G-v_{0}$. Also in this case, $\left|M \cap V\left(K_{p}-x\right)\right|=p-1$. Thus $\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]=|M|=\left|M \cap V\left(K_{p}-x\right)\right|+\left|M \cap V\left(G-v_{0}\right)\right|=$ $=p-1+\alpha\left(G-v_{0}\right) \geqslant p-2+\alpha(G)$ and thus

$$
\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right] \geqslant \alpha(G)+p-2 .
$$

(iii) Finally, suppose $u_{1} \in M, u_{2} \notin M$. Now every point of $K_{p}-x$, except u_{2}, is in M, since all such points are adjacent to u_{2}. Let w be a point of $K_{p}-x, w \neq u_{1}$. Then $w \in M$ and $M_{0}=[M-\{w\}] \cup\left\{u_{2}\right\}$ covers $S\left(p ; G, v_{0} ; m, n\right)$. Since $\left|M_{0}\right|=|M|, M_{0}$ is a minimum cover for $S\left(p ; G, v_{0} ; m, n\right)$ and $u_{1}, u_{2} \in M_{0}$. Hence by (ii), we again obtain $\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right] \geqslant \alpha(G)+p-2$. Thus all three cases give rise to the inequality:
(2) $\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right] \geqslant \alpha(G)+p-2$.

This, together with inequality (1) yields $\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]=$ $\alpha(G)+p-2$ and the theorem is proved.

We are now prepared to prove the main theorem concerning this construction.

Theorem 3. If v_{0} is a point of degree at least 2 of a graph G and if $p \geqslant 3$, then G is line-critical if and only if $S\left(p ; G, v_{0} ; m, n\right)$ is line-critical.

Proof. Suppose that G is a line-critical graph. Let $x=u_{1} u_{2}$ be the line deleted from K_{p}. Let y be any line of $S\left(p ; G, v_{0} ; m, n\right)$. We shall consider four cases.
(i) Suppose y is a line of G incident with v_{0}. Let M_{y} be an m.c. for $G-y$. In this proof we shall denote the set of lines in G incident with v_{0} by $v_{0} w_{i}, i=1, \ldots, r$. Hence we may assume without loss of generality in this case that $y=v_{0} w_{1}$. Then $v_{0}, w_{1} \notin M_{y}$ and hence $w_{2}, \ldots, w_{r} \in M_{y}$. Then $M_{y} \cup\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right]$ covers $S\left(p ; G, v_{0} ; m, n\right)-y$. Thus

$$
\begin{gathered}
\alpha\left[S\left(p ; G, v_{0} ; m, n\right)-y\right] \leqslant\left|M_{y} \cup\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right]\right|= \\
=\left|M_{y}\right|+\left|V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right|=\alpha(G-y)+p-2= \\
=\alpha(G)+p-3=\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]-1
\end{gathered}
$$

by Theorem 2. Hence y is critical in $S\left(p ; G, v_{0} ; m, n\right)$.
(ii) Suppose y is a line of G which is not incident with v_{0}. Again let M_{y} be an m.c. for $G-y$. If $v_{0} \notin M_{y}$, then $\left\{w_{2}, \ldots, w_{r}\right\} \subset M_{y}$ and $M_{y} \cup\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right]$ again covers $S\left(p ; G, v_{0} ; m, n\right)-y$ and as in case (i) y is critical in $S\left(p ; G, v_{0} ; m, n\right)$. If $v_{0} \in M_{y}$, then $\left[M_{y}-\left\{v_{0}\right\}\right] \cup W$ covers $S\left(p ; G, v_{0} ; m, n\right)-y$, where W is any m.c. for K_{p} which contains u_{1} and u_{2}. Thus $a\left[S\left(p ; G, v_{0} ; m, n\right)-y\right] \leqslant\left|M_{y}-\left\{v_{0}\right\}\right|+|W|=$ $=\left|M_{y}\right|-1+p-1=\alpha(G-y)+p-2=\alpha(G)+p-3=$ $=\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]-1$ by Theorem 2 and hence again y is critical in $S\left(p ; G, v_{0} ; m, n\right)$.
(iii) In this case we assume that y is a line in $K_{p}-x$ incident with u_{1} or u_{2}. Without loss of generality, let $y=u_{1} w_{0}$. Let z be any line of $G, z=v_{0} w_{k}$, incident with v_{0} in G and with u_{2} in $S\left(p ; G, v_{0} ; m, n\right)$. Now z is critical in G, hence there is an m.c. M_{z} for $G-z$, such that $v_{0}, w_{k} \in M_{z}$, and $w_{j} \in M_{z}$ for $j \neq k$. Let $M_{0}=M_{z} \cup\left[V\left(K_{p}\right)-\left\{u_{1}, w_{0}\right\}\right]$. Then M_{0} covers $S\left(p ; G, v_{0} ; m, n\right)-y$. Hence
$\alpha\left[S\left(p ; G, v_{0} ; m, n\right)-y\right] \leqslant\left|M_{0}\right|=\left|M_{z}\right|+\left|V\left(K_{p}\right)-\left\{u_{1}, w_{0}\right\}\right|=$ $\alpha(G-z)+p-2=\alpha(G)+p-3=\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]-1$ and y is critical in $S\left(p, G, v_{0} ; m, n\right)$ again using Theorem 2.
(iv) Finally let us suppose that $y=v_{3} v_{4}$ is a line in $K_{p}-x$ incident with neither u_{1} nor u_{2}. By Theorem 1, there is an m.c. M for G which contains v_{0}. Let $W^{\prime}=V\left(K_{p}\right)-\left\{v_{3}, v_{4}\right\}$. Then W^{\prime} contains u_{1} and u_{2} and hence it covers $\left(K_{p}-x\right)-y$. Hence $\left[M-\left\{v_{0}\right\}\right] \cup W^{\prime}$ covers $S\left(p ; G, v_{0} ; m, n\right)-y$. Thus $\alpha\left[S\left(p ; G, v_{0} ; m, n\right)-y\right] \leqslant\left|M-\left\{v_{0}\right\}\right|+$ $+\left|W^{\prime}\right|=|M|-1+(p-2)=\alpha(G)+p-3=\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]-1$ by Theorem 2 and hence y is critical in $S\left(p ; G, v_{0} ; m, n\right)$.

Now assume that $S\left(p ; G, v_{0} ; m, n\right)$ is line-critical.

First suppose that y is a line in G incident with v_{0}. Thus y is incident with u_{1} or u_{2} in $S\left(p ; G, v_{0} ; m, n\right)$, say u_{1}. Now y is critical in $S\left(p ; G, v_{0} ; m, n\right)$ and hence there is an m.c. M^{\prime} for $S\left(p ; G, v_{0} ; m, n\right)-y$ with $u_{1} \oplus M^{\prime}$ and with $\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right] \subset M^{\prime}$. Now $M^{\prime}-\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right]$ covers $G-y$. Hence,

$$
\begin{aligned}
& \alpha(G-y) \leqslant\left|M^{\prime}-\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right]\right|=\left|M^{\prime}\right|-(p-2) \\
& =\alpha\left[S\left(p ; G, v_{0} ; m, n\right)-y\right]-p+2=\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]-p+1 \\
& \leqslant \alpha(G)+p-2-p+1=\alpha(G)-1 \text { by Theorem } 2 \text { and thus } y
\end{aligned}
$$ is critical in G.

Finally, suppose y is a line in G which is not incident with v_{0}. Let M^{\prime} be an m.c. for $S\left(p ; G, v_{0} ; m, n\right)-y$. If $\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right] \subset M^{\prime}$, then y is critical in G as before. If $\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right] \not \ddagger M^{\prime}$, then let w be a point in $\left[V\left(K_{p}\right)-\left\{u_{1}, u_{2}\right\}\right]-M^{\prime}$. But w_{1} and u_{1} are adjacent as are w and u_{2}. Hence $u_{1}, u_{2} \in M^{\prime}$. Thus $\left|M^{\prime} \cap V\left(K_{p}\right)\right|=p-1$. Now $\left[M^{\prime}-V\left(K_{p}\right)\right] \cup\left\{v_{0}\right\}$ covers $G-y$. Hence

$$
\begin{aligned}
& \alpha(G-y) \leqslant\left|\left[M^{\prime}-V\left(K_{p}\right)\right] \cup\left\{v_{0}\right\}\right|=\left|M^{\prime}-V\left(K_{p}\right)\right|+1 \\
& =\left|M^{\prime}\right|-(p-1)+1=\alpha\left[S\left(p ; G, v_{0} ; m, n\right)-y\right]-p+2 \\
& =\alpha\left[S\left(p ; G, v_{0} ; m, n\right)\right]-p+1 \leqslant \alpha(G)-1 \text { again by Theorem } 2 .
\end{aligned}
$$

Thus y is critical in G and the theorem is proved.

4. Data on line-critical graphs

In Table 1 below, p denotes the number of points and q the number of lines of the corresponding graph.

Table 1. The line-critical graphs with fewer than eight points

p	θ	$\alpha(\sigma)$		6
2	1	1	k_{3}	
3	3	2	k_{3}	
4	6	3	K_{4}	

5

One may obtain each of the graphs in Table 1 by starting with a complete graph and performing a sequence of constructions of the type

Table 2. A family of line-critical graphs with eight points
p
described in Section 3. Hence this construction yields all the linecritical graphs with fewer than eight points. The large number of graphs with eight points has discouraged a direct search for those which are line-critical. In Table 2, however, we present all those line-critical graphs with eight points obtainable by starting with a complete graph and performing a sequence of constructions as in Section 3.

References

[1] L. W. Beineke, F. Harary, and M. D. Plummer: On the critical lines of a graph, Pacific J. Math., to appear.
[2] P. Erdös and T. Gallai: On the minimal number of vertices representing the edges of a graph, Magyar Tud. Akad. Mat. Kutató Int. Közl., 6 (1961), 89-96.
[3] F. Harary and M. D. Plummer: On the critical points and lines of a tree, Magyar Tud. Akad. Mat. Kutató Int. Közl., to appear.
[4] O. Ore: Theory of Graphs, Amer. Math. Soc. Colloq. Pub. vol. 38, Providence, 1962.

The University of Michigan

[^0]: ${ }^{1}$ Work supported in part by the U. S. Air Force Office of Scientific Research under Grant AF-AFOSR-754-65.

