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Absiract

Let H (o) denote the class of regular functions f(z} normalized so that
f(0)=0 and f’(0) = 1 and satisfying in the unit disc & the condition

Re{(1—a)f" (&) + « (1 +2f" (2)[f" (2))} > O

for fixed o. It is known that H (0) is a particular class NW of close-to-convex
univalent functions. The authors show the following results: Theorem 1. Let
f()eH (2). Then f(z)e NW if o< 0 and zeH. Theorem 2. Let f(z)eNW.
Then f(z)eH(a) in |z|=r<ry where i) rq=(1+V2a)-¥2, 23>0, and
y I—a—Va(a—1)

i) rg= — =g * < 0. All results are sharp. Theorem 3. If
f(z) =2+ a2zt +ag2d +...isin H () and if u is an arbitrary complex number,
then

[1+allazg—pa|<(2/3)max (1,14 2a—3/2p (1 + o)|].

1. Introduction. We consider functions f(z) which are regular
in the unit disc E: |z] <1 and normalized so that f{0)=0 and
f(0)=1, and we let

I(af@)=(1—a)f @) + a1+ " @I @), (1)

where « is real number. We denote by H («) the class of functions
satisfying Re{I («,f(z))} >0, for fixed « and for all zeH. It is
known that H(0) is a particular class NW of close-to-convex
univalent functions as demonstrated by K. Nosmiro [2] and
S. WARsCHAWSKI [4].

In section 2 we show that every feH («) is in NW for « <0.
We are unable to determine the univalency of H («) if « > 0. However,
in section 3 we obtain the radius of the largest disc ry such that if
feNW and zeckE, then feH(x) for |2|<ry. In section 4 some
estimates for the coefficients of functions in H(«) are obtained.
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2. The univalency of H(x). We show the following theorem
about the univalency of the class H (a).

Theorem 1. Let f(z) e H (o). Then f(2) is univalent with Re {f’ (z)} >
>0,26l, if <0 (i. e. feNW).
Proof. Let
J'e)=p). (2)

To prove Theorem 1 we need to show that if feH («), « <0, then
Re{p(a)} >0 in E. The case a=0 is trivial. If a <0, then we
assume that Re{p(z)} * 0 in E. Hence, since by (2), p(0)=1, then
there exists a first 79, and 0p so that Re{p(z)} >0 for |z|<ro
and

Re {p (20)} = Re {p (roei®s)} = 0 (3)

where 0 <<y < 1. The condition in (3) implies that dargp(z)/06 =0
at z =roet®. Consequently, since

5 T [P [0 )
5Fgwgp(z)_Im{%lxljo(z)}—lm{“p(z)}“Re{ p(2) }’

then Re{zp'(2)[p(2)} =0 (4)

at z=rpe?%. We use (1), (2), (3) and (4) to get

2P’ (2
Re {I (Ot,f(Z()))} = Re {(1 ——O()p (Zo) + (1 -+ (Z(z( )0) )} =0 . (5)
0
Thus if « << 0, then (5) shows that f¢H (x) which is a contradiction.
This completes the proof of Theorem 1.

3. The radius ro. Let P denote the class of regular functions
p(2), p(0) = 1, with positive real part, Re{p(z)} >0, zcE. If feNW,
then there is a p(z)e P such that f’(z) = p(z). By substitution (1)
becomes I («,f(2)) =@a(p,2p") = (1—a)p(2) + & (1 +-2p'(2)/p (2)). Let

Qu(r) = milfll |mm< lRe {(1—w)p@) +a(l+2p' @)pE)}.  (6)
pe zl=r
Hence, the problem of finding the largest r«, for fixed «, such that
for each feNW and for each z, |z| <ry we have Re{l (a,f(z))} >0
is equivalent to finding the smallest positive root of Qu(r)=0,
where @ (r) is given by (6). To find ., we make use of a theorem due
to V. A. Zmorovic [5].
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Theorem A (Zmorovic). Let ¥(w, W)= M (w)+ N (w) W, where
M (w) and N (1) ave defined and are finite in the half plane Re {w} > 0.
We set
w == Ay (14 Zl)f{i ——21) - Ag (1 4 Zg)f{lmﬁg) .
W=~42u/l—un2+ 2/l —n)?,

where zy and 2z are poinis on the circumference jz|l=r <1, 2>0
(k=1,2), h+2ie=1. Then the function ¥(w, W) can be put in
the form

W (w, W) = M () + § (w2 — 1) N (16) + 4 (02— 02) N (w) 24,
where (14 zp)/(1—zp)=a+ gexpiyp{b==12),
w=a-+goexpiyo (0<oo<p), |a|=]z|=7,
a=(1+7)[(1—12), o=2r/(1—1%), expiyp=1iexp[}(pr+ )]

Also for a fixed w in the circle jw—a| < g, the angle 2v in the above
formula can take oll values from [0,2x], and hence

min Re {¥ (w, W)= ¥y (w) =

=Re {M (w) + ;@2 —1) N (w)}—}|N )| {(e*—a3) - o
This minsmum is reached when
exp[i (29 + arg N (w))] = —1. (®)
We shall need the following result:
Lemma 1. Let
min RBe {¥{w, W)il= Y{w) = )

= Re {{1 — o) w + a + («/2) (w—1)[w} — (| }/2) ((e*—eD)/lw ]},

where Re{w} > 0. Then the min ¥y (w) in the circle lw—a]l=0g5<p
is reached 1) on the diameter if a 20 and r<(0,1), and ii) on the dia~
meter if <0 and re(0,7), where

. ( 14+ ((a—2))72 )1/2
- 1—30 4 (o (a—2))172
Proof: (i) For a>0. Let w=a -+ &-+in, RB2=|wli==(0-+ &2+

-+ 52, where @, g, and go are defined in Theorem A. Then from (9)
we get

(10)

2 e R e @

E¥hs
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The above yields
dyo(Em)on=na R42[2(a+ &) + (0*—E—n?) R + 2 B?].

The expression in the square brackets is positive; consequently for
each fixed &, the nonnegative minimum of y,(£,7) is achieved at
n==0. It follows that the minimum in the circle £&2--%2 <2 is also
reached on the diamenter %= 0.

(ii) For o < 0. Let w= R exptg. Then (9) becomes
yo (w)=L(R, ¢) =[(1—u/2) R—(«/2) B-*—|a|a]cosp+a+
+ (la|/2) (B + B-1).

From (11) one can conclude only that the minimum of L(R,¢p)
on any arcR = constant inside the circle |[w—a|<p is reached
either when ¢ =0 or at the end points of this arc which are located
on the circumference g==go. But by setting o=g in (9) we get

L(B,p)=[(1—a/2)R—a/2 R ]cosg+a, (12)
where
RB?—2aRcosp+4+1=0, Rela—p,a+ o]. (13)

Eliminating ¢ between (12) and (13) we get
L(R)=(1/2a)[B? + 1]— («/4a) [BR+ B~ 1P +a.  (14)

We now show the minimum of L(R) cannot be zero in
[a—g,a+ o] if r <# where 7 is given by (10). Consequently, the
minimum of %, (w) may vanish on the diameter ¢ =0, if r<#,
which is our lemma. With o? = g2 - 1, (14) yields

La—eg)=a—¢+a(l—a)
and L{ag-tp)y=a-+p+a(l—a).

Since « << 0,2 >1and a—p >0, then L(a—p) >0and L({a -+ p) >0.
On the other hand, from (14) we obtain

dL(R)/dR = Rja— («/2a) [R + R-1][1— R?] =0

if R= [af(a—2)]t. However, d2 L(R)/dR2 >0 at R=[of(ax—2)].
This shows that the minimum of the continuous function L (R), if it
is not attended at an end point, it must be attended in {(@—p,a + p)
at R = [a/(a— 2)]t. Direct computations show



Expressions in the Theory of the Univalent Functions 261

_1[4 0 22]/& Voc—Q /oc]
*ZE [dea—2a+2+ czc——2—_oc o e o—2

m%ﬁ[4aaw2m+2+ (2—«) a—i§+]/oc(a——2)]

= (1/4a)[4ae—2a+ 2+ 2/ a{a—2) ]
Hence L{[e/(« — 2)])} > 0 provided

a << (oc—~1-Vcc(oc——2))/2tx .
Since @ = (1 4 #2)/(1—12), then the above condition is equivalent
to (10). Thus L(R) >0 in [a—p,2 - o] provided r < # and ¥ is as
given by (10). This completes the proof of Lemma 1.
The following theorem describes rq.

Theorem 2. Let f(z) be in the class of normalized reqular functions
with Re{f'(2)} >0 for zeE. Then feH (a) in |2|=1r <ry where

i) o= (14+V2a)t, >0,
ii) 1o = |/ (1 —a—Va(e—1D)/(1—a), «<0.
All results are sharp.

Proof: In (3) it is shown that the minimum in (6) is attained
by a function of the form

14 ze-1i0 3 1+ ze 10

.P Z zﬂ, s
(%) 11-—-28“'391 2 1——ze= 10y

(15)

where 0, 0; are arbitrary real constants in [0,2x] and where 41,10
are nonnegative numbers satisfying 11 + o= 1. We may, therefore,
apply (7) to (6) with p(z)=w(z), M(w)=(1—a)w(z)+«, and
N(wy=ufw(z) to get
min Re { (w, W)} = po(w) = (9"
=Re {(1 —)w + « + (@/2) (w?—1/w)} — (Ja]/2) (& — 5| w ).
Note that (9') is (9) of Lemma 2. Let w= Rexpig. Then (9)
becomes
Yo (w)=L(R,q) = i)
=[(t—(«/2)) B—(/2) B~1—|a|a]cos ¢ + « + (o |/2) (B -+ B-1).
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(i) Let o >0. By Lemma 1, part (i) the minimum of y,(w) in
the circle |w—a|<p is reached on the diameter of this circle
@ ="0. In view of this, put ¢ =10 in (11)

L(R,0)=L(R)=R—aa+«.

The minimum of L(R) is at the end of the diameter R=a—og.
If we set

Qe(r)=L(a—p)=a—p—aata
with @ = (1 -} r2)/(1 —#2), then the least positive root of @y (r)=0is

7o == 1/(1 4 Vﬂ) this completes our proof of part (i) of the present
theorem.

(i) Let « << 0. Again Lemma 1, part (ii) shows that the minimum
of yo(w) is on the diameter ¢ =0 for r <#, and 7 is given by (10).
However, direct calculations show that ro <7 if 74 is given by part
(ii) of Theorem 2. Therefore, if we set ¢ =10 in (11’), a <0 we get

I(R)=L(R,0)=(l—a)RBR—aR1+ua(l+a), Releg—p,a+ g].
Then it follows that

di{R)/dR =(1—a)+aR-2=0
for R2= af(a— 1), or B= mz Ry. It is clear that Ro=
= ‘/oc/(oc————l)< 1<a-+p but Ry is not necessarily greater than

a—p. Hence the minimum is either attained at Ro=)«/(a—1)
or at Ri=a-—p. For the latter case, we find

HB)=(1—a)(e—g)—a(@—e)t+a(l+a)

does not vanish for real . The other alternative is

Q. (r) =1 (Ro) = 2Vt (a— 1) + (1 + )

whose smallest positive zero is rq= V(l —o— Vot (e — H)/(1—a).
Our proof of the theorem is now complete.

We now determine the extremal functions fy(z). We remark
that as a consequence of (8) the minimum of (9’) is reached when
the point w(|w—a|< ) is fixed, and the chord passing through
it and through the points a + pexpyy (k=1,2) is perpendicular to
the vector exp (¢/2), where w = Rexpip. Taking this into account,
as well as the fact that the minimum of y,(w) is realized at an end
point of the diameter when « >0, we conclude that p(z) of (15)
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should be taken in the form p(z) = (1 + 2)/(1 —z). Hence for « >0,
the extremal funetion is
foz)=—In(1—2)—2

which realizes part (i) of Theorem 2 at z=-—r. For « <0, the
minimum is reached at a point of the diameter {(not an end point)
and thus p(z) should in this case be taken in the form

1 1-}ze 10 1 14zei®
T2 1—ze%0 ' 2 {—zei®’

P (%)

where 6 is given by the relation

Ry=Voj(a—1) =Re{p(2)} = (1—2) (1 —2rycos 6 +r2)-1 (16)
and ry is given by (ii) of the Theorem 2. This shows
fo(z) = —[e®In (1 —2ze~10) - g~ 0In (1 —zei®) -1 2].

4. A coefficient inequality for functions vn H (o). In this section
we obtain some coefficient properties for functions in H (). We show
the following theorem.

Theorem 3. If f(z)=2+4 Y asz" is in H(a) and if u is an
n=2

arbitrary complex number, then
|1 4a|las—pa}| <3max[f, |1+ 20—Sp(l+a)]. (17)
Proof: If f(z)eH(a), then there exists a regular function

w(z)= 3 cy2" such that |w(z)| <1 in E and

n=1
(1—a)f @) +a(l+2f" @ @)= 1 +w@E)(1—w(@). (18)
Now by expanding (18) and equating coefficients we have
a = o1 (19)
and 3(1+a)as—4aai=2(co-+cd). (20)
We may assume az%—1. From (19) and (20) we get
lag—uag| = (2/3 |1+ al)ea— (1 + 20 —3 u (L + a))c?|. (21)

A result due to Kroor and Merkus [1] shows that |[ca—wver| <
<max[1,]»|] for arbitrary complex number ». We apply this result
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to the right hand side of (21) with v=142a—3u(14«) to
obtain (17). This completes Theorem 3.
Remarks. 1) For a=1, (17) reduces to

|las—pag| <max [}, |u—1[]

which is a result of Kroagn and MErRkES [1].
ii) For a==0, (17) reduces to

las—paf| <max [}, |u—3}].
Corollary. If f(z)eH («), then
las| <1 (22)

2 if —1<a<0
and 14 oallasl < i " (23)
311+ 2a]if [14+2a]>1.

Proof: The inequalities in (22) and (23) follow directly from
(19) and (21), respectively.
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