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Abstract

The main purpose of this paper is the following algebraic generaliza-
tion of the corona theorem for the disc algebra A4 (D): If d is a greatest
common divisor of the funetions f;,....fn €A (D), then there exist functions

G1s--gn€A (D) with d=f1g,+ ... +fngn. This generalization is false for
many algebras of holomorphic functions, e. g. in case of the Banach algebra
H®*, Under the assumption that a greatest common divisor d exists, also
a description of d is given.

1. Introduction

Let 4 (D) be the disc algebra, that is the Banach algebra of
continuous functions on the closed unit disc D, which are analytic
on the open unit disc D, under the usual pointwise operations and
the sup-norm.

The purely algebraic structure of 4 (D) and subalgebras seems
not very much investigated in the literature. The only newer con-
sideration we know is DreTricH [1].

The structure of the closed (and therefore maximal) ideals in
A (D) are well known (see HorrMax [3], p. 82ff.). Unfortunately
this gives us not too much information about the structure of the
finitely generated ideals.

The only fact we can wring out is the so called baby corona
theorem (corona theorem for the algebra A (D)), which says that
the finitely generated ideal (fi,....fs) is the whole algebra A (D),
if and only if the functions f; have no common zero on D. For
a more convenient discription we introduce the ideal

W(fi,....fn): = {fec A (D): There exists a constant ¢ >0
st [f(2)| <C Y |fi ()] for all ze D}

t=1
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Now the baby corona theorem can be stated in the following
terms:

Theorem 1.1. For the algebra A (D) we have:

le(fl, . fn <>leW fl,...,f

(fis..-.fn) is clearly contained in W(fi,...,fs), but in general
properly, even in the case n=1.

Although the algebra A (D) is commonly known as much nicer
than e. g. the Banach algebra H®, the following fact aggravates
the theory of finitely generated ideals:

Two functions may not have a greatest common divisor (GCD) as
the example with fi (z) =1—z and fa(2) = (1 —2)exp ((z+ 1)/(z—1))
shows.

If 1eW(f1,....fa) then 1 is of course a GCD of fi,...,f, and the
corona theorem for A (D) says that the GCD is a linear combination
of the f;. We show that thig result holds whenever the functions
fi,....fa have a GCD.

2. Algebraic Generalization of the Corona Theorem
for the Dise Algebra

Lemma 2.1. Let k(e?) 20 be a continuous function on ¢D and on
P:={ett: k(ett)+ 0} continuously differentiable. If
2n
flogk(e“)dt >—00,
0

then it follows that
2x

f2): ——exp{ 7tfZ“—!hzlogk(e”)dt}

0

is am outer function in A (D).

Proof. That f is an outer function in H® follows from
logk (¢?t) e L1 (D) and k (ei*) continuous on ¢D (see DUREN [2], p. 24).
Since k is continuously differentiable on P (k(ei*)#0!), so is
logk(eft). With the corollary in Horrmax [3], p. 79 it follows that
f is continuous on P. Since f(ei?) tends to zero when et tends to
a point of 8D \ P, f is actually continuous on 2D, therefore fe 4 (D).

Lemma 2.2, Let f, g be two outer functions in H®. Then
|f(eit)| <|g(et?)]| a. e. on @D if and only if |f(2)|<|g(z)| on D.
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Proof. Since one direction is clear, let |f(e??)]| <|g(e??)| a. e. on
oD, or in other words log|f(e’t)|—log|g(e??)| <0 a. e..

Since ¢ is outer, the function flg is in D holomorphic. The
estimation of the modulus of f/g yields

1) =|exp {éin f e”“[Iogif(eft)l—«logig(e“mdt}
0

R <l.
L g(2)

eft—z

Lemma 2.3. Suppose that the functions fi,....fneA (D) have a
GCD d and a common zero zocD. Then d is zero on 2.

Proof. Let f;= B;S;F; be the canonical factorizations with
Blaschke products B;, singular inner parts §;, outer parts
Fie=1,...,n). If zpeD, then B;(z)=0 for all ie{l,...,n} and
since d is a GCD, the Blaschke product B of d is the one formed
with the common zeros of the functions B;, therefore d(zo)==0.

Now let zgc0D. All we have to do is to construct an outer function
GeA(D) which fulfills | G(eit)| > Y |fi(ef?)| on 8D and G has the

n =1
same zeros as » |f;| on the boundary 0D. From this by Lemma 2.2
i=1 —
it follows | G(z)| > | F;(2)| for every ie{l,...n} in D. Let F =G,
then F is also an outer function in A4 (D).

We show that F is moreover a divisor of every f;. Since f;/F e A (D)
it is enough to show that F;/FeA (D) and (F;/F)(e't)=0 on the
singularities of B; or ;.

If B; or §; has a singularity on ei% then F;(eft)=0. But
this is fulfilled by construction if and only if (F/F) (eit)= 0.
The continuity of F;/F in D follows from | F; (2)/F (2) | <| G (2)/F (2) | =
=|F(2)| (zeD). Since d is a GOD, F must divide d, therefore we
have d(z) = 0.

Now let us construct such a function @. For short we write ¢

n
instead of eft. P:={t:} |fi(t)] >0} is an open subset of oD of
i=1
Lebesgue measure 27, therefore we can decompose P in a (at
most) countable number of disjoint open arcs (ax,b;). Now we
construct a function Gy on [ag,b;] with the following properties:

Gy is continuous in [ag,b;] and continuously differentiable in

(i, bi), Gl () = G (by) = 0 and Gx(8)> 3 Ifi(t) -
iz
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Only small neighbourhoods of a; and by are critical for such
a construction. Therefore we construct Gy only in the neighbour-
hood [ag,ar+¢) with 0 <e<i|az—bz| and choose w.l o.g.
ar=0. In [0,¢) the function

n
h(0): =6+ max Y |fi(0)]
te[0,6] i=1

is properly monotone increasing, therefore the inverse function
h~1(0) exists and is also properly monotone increasing.

The above problem is equivalent to construct a continuously
differentiable nonnegative minorant to A-1 and this is equivalent to
construct a continuously differentiable minorant f(6) to log[A~1(6)]

with lim f(6) =-—co. But this construction is obvious.
60+
Now let

. G]g (0) ifﬂe(ak,bk)
k0):= { 0 otherwise
The hypotheses of Lemma, 2.1. are fulfilled. Therefore
2

G (2): =exp {if e”—i—zlogk(e“)dt}

27 | ett—z
0

is an outer function in A (D) with |G (eit)|=k(ei?t) > |fi(et?)].
i=1
Theorem 2.4. If the functions fi,....fa€A (D) have a GCD d,
then there exist functions gy, ...,gne A (D) such that

d == Z fi gi.
i=1
Proof. From the hypothesis it follows that the functions
hi: =fi/d have the GCD 1. Lemma 2.3 gives Z |hi| >0 in D. By

theorem 1.1 we have 1€(hy,...,h,) and this iinc:plies del(fi,....fn)-

Remark. The theorem above is a generalization of the corona
theorem for A (D). The analogous generalization of the corona
theorem for H® is not true. Also this is false for many subalgebras
of A(D), e. g. for Ay:={fe A(D): feLip.(6D)}.

Corollary 2.5. The ideal (fi,....fa) ts & principal ideal in A(D)
if and only if the functions fi,....fn have a GOD in A (D).

Corollary 2.6. If the functions fi,....fnc A (D) have o GCD d,
then there exists a bounded holomorphic function kb on D, which is
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bounded away from zero, such that d=hBSH with inner part BS

and
etttz
H(z)-——exp{ f l gzm e”)[dt}

Proof. By theorem 2.4 it follows (d)=(fi,....fa), therefore
there exist two positive constants ¢, C such that

czm 21<1d()|<C Y Ifi ()| for all zeD.

i=1
H is an outer function in H®, since ficd (D) and

2m

flog Z |fi(ett)|dt >—o0.

t=1

From the inequality above it follows
c|Hett)| <|d(ett)| <C|H (eft)}| a. e. on 8D,
Thus Lemma 2.2 implies for the outer part F of d
c|H()|<|F(2)|<C|H()].

F/H is a unit in H® means that there exists a function hAcH®
invertible in H* with F =hH. So we get d =BSF =hBSH.

Now we will give a necessary condition such that the functions
fi,.-sfan€A (D) have a GCD. If f is a complex valued function on
D (resp. D), we denote by Z(f) the zeros of f in D (resp. D). In the

later case Z(f) denotes the closure of Z (f)in D. For f;,fe A (D) ui,pu
denote the positive singular measures of the singular inner parts
of fi,f and supp (u:), supp (¢) the closed supports of these measures.

Proposition 2.7. If the functiom fis-sfucd (D) have a GCD d,
then for every Ze@DnZ(Z |[fi]) and for every i1e{l,...,n} with
teZ(Bi/B)néD or Cesupp (Mr“,u ) it follows that

| fi(ef%) | ——‘o(éllfz(e“)l) for ett>(.

Proof. Let f; = B;8;F;, d=BSF be the canonical factorizations
as in the proof of Lemma 2.3. Since d is a divisor of every f;, it follows
that every F;/F is in A (D) and must be zero at such points where
B;/B or 8i/8 have a singularity (on D). This is the case, exactly
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when (e Z(B;/B) N oD or [ esupp (u;— p). Hence | (F3/F) (e*t)|=0(1)
for ¢'t—Z. By the above corollary it follows that

el =03 Ifite)) for et

If the functions f1,...,fuc4 (D) have no common zero on 8D,
then there exists a GCD d and it is easy to see that d is the finite
Blaschke product formed by the common zeros of fi,...,fs in the
open unit dise D.

References

[1] DeTrIicH, W. E.: Prime ideals in uniform algebras. Proc. Amer.
Math. Soe. 42, 171—17 (1974).

[2] Durex, P. L.: Theory of H? Spaces. New York: Academic Press
1970. MR 42, # 3552.

[8] Horrmanw, K.: Banach Spaces of Analytic Functions. Englewood
Cliffs, N. J.: Prentice Hall. 1962. MR 24, 7# A 2844,

Dr. M. voNn RENTELN

University of Michigan

Department of Mathematics

Ann Arbor, MI 48104, U.S.A.

and

Mathematisches Institut der Universitét
Arndtstraie 2

D-6300 GieBen, Federal Republic of Germany



