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Abstract 

The main purpose of this paper is the following algebraic generaliza- 
tion of the corona theorem for the disc algebra A (D): I f  d is a greatest 
common divisor of the functions f l  . . . . .  fn  cA (D), then there exist functions 

gl,.",gnEA (D) with d-~flgl q-... q-fngn. This generalization is false for 
many algebras of holomorphic functions, e. g. in case of the Banach algebra 
H ~ Under the assumption that  a greatest common divisor d exists, also 
a description of d is given. 

1. Introduction 

Let A (/3) be the disc algebra, that  is the Banach algebra of 
continuous functions on the closed unit disc/3, which are analytic 
on the open unit disc D, under the usual pointwise operations and 
the sup-norm. 

The purely algebraic structure of A (13) and subalgebras seems 
not very much investigated in the literature. The only newer con- 
sideration we know is D~E~RICH [1]. 

The structure of the closed (and therefore maximal) ideals in 
A (/3) are well known (see HoF~rxzq [3], I o. 82ff.). Unfortunately 
this gives us not too much information about the structure of the 
finitely generated ideals. 

The only fact we can wring out is the so called baby corona 
theorem (corona theorem for the algebra A (D)), which says that  
the finitely generated ideal (fl . . . . .  fn) is the whole algebra A(/3), 
ff and only if the functions fi have no common zero on /3. For 
a more convenient discription we introduce the ideal 

W ( f l , . . . , f n ) :  = { f r  (/3): There exists a constant C > 0 

s. t. I f(z)l  <<. C E If~(z)l for all ze/3}. 
i=1 

4* 
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Now the b a b y  corona theorem can be s ta ted  in the  following 
terms:  

Theorem 1.1. For the algebra A (D) we have: 

1 w ( A  . . . .  

( f l , . . . , fn)  is clearly contained in W(fl , . . . , fn) ,  bu t  in general 
properly,  even in the  case n ----- 1. 

Al though the algebra A (13) is commonly  known as much  nicer 
than  e .g .  the  Banach  algebra H% the  following fact  aggravates  
the  theory  of  finitely generated ideals: 

Two functions may  not  have a greatest  common divisor (GCD) as 
the  example  with f l  (z) = 1 - - z  and fe (z) ---- (1 - - z ) e xp  ((z q- 1 )/(z-- 1)) 
shows. 

I f  l e W ( f i  . . . . .  % ) t h e n  1 is of course a GCD o f f1 , . . . , f n  and the 
corona theorem for A (D) says tha t  the  GCD is a linear combinat ion 
of the  f t .  We  show tha t  this result  holds whenever  the  funct ions 
f1 , . . . ,%  have a GCD. 

2. Algebraic Generalization of the Corona Theorem 
for the Disc Algebra 

L e m m a  2.1. Let k (e~ t) >10 be a continuous function on ~D and on 
p : = (e ~ t: k (e~ t) r 0} continuously differentiable. I f  

2 ~  

f l o g  k (e it) dt > - - o o ,  
0 

then it follows that 
2~ 

f (z) : = exp e t t__ z 
0 

is an outer function in A (D). 
Proof. Tha t  f is an outer  funct ion in H ~~ follows f rom 

logk (e ~ t) e L  1 (D~) and k (e t t) cont inuous on ~D (see DU~EN [2], p. 24). 
Since k is cont inuously  differentiable on P (k(e~t):/:O!), so is 
logk(d t ) .  Wi th  the  corollary in HOFFMAN [3], p. 79 it follows t ha t  
f is cont inuous on P.  Since f (e  it) tends  to  zero when e ~t tends  to  
a point  of  aD ~ P ,  f is ac tual ly  cont inuous on ~D, therefore f e A  (/3). 

L e m m a  2.2. Let f ,  g be two outer functions in H ~176 Then 
If(e~)l < Ig(e~9t a. e. on DD i f  and only i f  If(z) l < Ig(z) l on D. 
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Proof. Since one direction is clear, let If(e ~ t) ] <~ !g (d t) [ a. e. on 
0D, or in other words log If(e tt) I-- log Ig(dt)[<.O a. e.. 

Since g is outer, the function fig is in D holomorphic. The 
estimation of the modulus of fig yields 

2 n  

= - ~  e~t - -z  [log If(e it) ] - - l o g  lg (ett) I] d ~< 1. 

0 

Lemma 2.3. Suppose that the functions ,/'1 . . . .  , f n e A  (D) have a 
GCD d and a common zero zoeD. Then d is zero on zo. 

Proof. Let f t - = B t S t F t  be the canonical factorizations with 
Blaschke products Bt, singular inner parts S~, outer parts 
F ~ ( i = l , . . . , n ) .  I f  zocD, then Bl(zo)=O for all i e {1 , . . . , n }  and 
since d is a GCD, the Blaschke product B of d is the one formed 
with the common zeros of the functions Bt, therefore d(zo)= O. 

Now let zo e ~D. All we have to do is to construct an outer function 
n 

G ~ A  (D) which fulfills I G(ett) l >1 ~,lf~(ctt)] on ~D and G has the 
n t = l  

same zeros as ~ [fi l on the boundary ~D. From this by  Lemma 2.2 
4 = 1  

it follows I G(z)[ >>.lFi(z)l for every ie{1, . . .n}  in/~.  Let F = ~ G ,  
then F is also an outer function in A (D). 

We show that  F is moreover a divisor of every ft- Since f i /F  e A  (D) 
it is enough to show that  F t / F e A  (/3) and (Fi /F)(d t) =-0 on the 
singularities of Bt or St. 

I f  B~ or S~ has a singularity on etto then F~(et~o)= 0. But  
this is fulfilled by  construction if and only if (Ft/F)(etto)-~ O. 
The continuity ofFal2' in/3 follows from [Ft (z)/F (z) I <. [ G (z)/F (z) t =  
= IF(z )[ (zeD) .  Since d is a GCD, F must divide d, therefore we 
have d(zo) = O. 

Now let us construct such a function G. For short we write t 

instead of e ~t. p :=_ {t: ~ Ifi(t) l >0} is an open subset of ~D of 
t = l  

Lebesgue measure 2z, therefore we can decompose P in a (at 
most) countable number of disjoint open arcs (ae,be). Now we 
construct a function Ge on [ae, be] with the following properties: 
Ge is continuous in [ae,bt:] and continuously differentiable in 

(a~, be), Ge (ak) ---- G~ (be) = 0 and Ge (t) t> ~ [ft (t) ]. 
i = 1  
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Only small neighbourhoods of a~ and b~ are critical for such 
a construction. Therefore we construct Gg only in the neighbour- 
hood [a~,a~+e) with 0<s< �89  and choose w . l . o . g .  
a~ = 0. In  [0, e) the function 

n 

h(O):=O+ m a x  E If~(t)[ 
t e[0,0] i = 1  

is properly monotone increasing, therefore the inverse function 
h -1 (0) exists and is also properly monotone increasing. 

The above problem is equivalent to construct a continuously 
differentiable nonnegative minorant to h -1 and this is equivalent to 
construct a continuously differentiable minorant f(O) to log [h -1 (0)] 
with lira f ( O ) = - - ~ .  But this construction is obvious. 

0--*0 + 

Now let 
{G~ (0) if 0 e(a~,b~) 

k (0): =- 0 otherwise 

The hypotheses of Lemma 2.1. are fulfilled. Therefore 
2~t 

G (z) : = e x p  d ~ - -  z 

0 
n 

is an outer function in A (D) with ] G (e ~ t) ] = k (e it) >t ~ lfi (e it) [. 
i = l  

Theorem 2.4. / f  the functions f l  . . . .  , rheA(D) have a GCD d, 
then there exist functions gl . . . .  , gn cA  (D) such that 

d= ~ f~g~. 
i = 1  

Proof. From the hypothesis it follows that  the functions 

hi: =f~/d have the GCD 1. Lemma 2.3 gives ~ Ihil > 0  in D. By 
i = 1  

theorem 1.1 we have 1 z(hl, . . . ,h~) and this implies dz( f l , . . . , fn) .  

2~emark. The theorem above is a generalization of the corona 
theorem for A(/~). The analogous generalization of the corona 
theorem for H ~176 is not true. Also this is false for many subalgebras 
of A (D), e. g. for A~: = { l e a  (D) : feLip~ (~D)}. 

Corollary 2.5. The ideal (fl . . . . .  fn) is a principal ideal in A (f)) 
i f  and only i f  the functions f l  . . . . .  fn have a GCD in A (D). 

Corollary 2.6. I f  the functions f l , . . . , f n e A ( D )  have a GCD d, 
then there exists a bounded holomorphic function h on D, which is 
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bounded away from zero, such that d = h B S H  with inner part BS 
and 

2 ~  n 

l og  ~ If~ (e~91dt  �9 

0 i = 1  

Proof. By theorem 2.4 it follows (d)----(fl,...,fn), therefore 
there exist two positive constants c, C such that  

c ~ ]fl(z)l ~<[d(z)] <<.C ~ If,(z)[ for all z e D .  
i = l  i = l  

H is an outer function in H ~176 since f~ eA (D) and 

2~ n 

f log Z ]fi (e't) I dt :>-- o~. 
0 i = 1  

From the inequality above it follows 

c I g  (e't) 1 ~< ld (eit) l <C [H (el*) [ a. e. on ~D. 

Thus Lemma 2.2 implies for the outer part  F of d 

e I H (z) ] < IF (z) [ < C ]H (z) l. 

F/H is a unit in H ~176 means that  there exists a function he l l  ~~ 
invertible in H ~176 with F----hH. So we get d = B S F  = hBSH. 

Now we will give a necessary condition such that  the functions 
f l , . - . , fn  eA (D) have a GCD. I f  f is a complex valued function on 
D (resp. D), we denote by Z(f)  the zeros o f f  in b (resp. D). In  the 

later case Z (f) denotes the closure of Z (f) in D. For f r  (D) i~, # 
denote the positive singular measures of the singular inner parts 
offl  , f  and supp (/~t), supp (#) the closed supports of these measures. 

Proposition 2.7. / f  the functions f l  . . . .  ,fn eA (D) have a GCD d, 
n 

then for every ~ e S D n Z (  ~, If*l) and for every ie{1, . . . ,n} with 
i = 1  

r e Z (BdB) n 8D or r e supp (/~,--/~) it follows that 

]f,(ei')l=o( ~ lf,(e~')t) for e'~-->r 
i = 1  

Proof. Let fi = B~ S~ F~, d = BSF be the canonical f~ctorizations 
as in the proof of Lemma 2.3. Since d is a divisor of every f~, it follows 
that  every FI/F is in A (D) and. must be zero at such points where 
BdB or S~/S have a singularity (on 8D). This is the ease, exactly 
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when ~eZ(Bt/B)n~D or ~esupp(/~--/~). Hence l(Fi/F)(eig]= o(1) 
for e~t--> ~. By the above corollary it follows tha t  

?t 

L/, ( e~ ~)1 = o ( ~ i f  ~ (e ~ ~)l) for ~':~ -~ ~ .  

I f  the functions f l , . . . , fneA(D) have no common zero on ~D, 
then there exists a GCD d and it is easy to see that  d is the finite 
Blaschke product formed by the common zeros of fl , . . . , fn in the 
open unit disc D. 
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