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Abstract. Upper bounds for the number of variables necessary to imply the 
existence of an m-dimensional linear variety on the intersection of r cubic hypersur- 
faces over local and global fields are given. 

R. BRAUER [5] demonstrated that if a field F has the property that 
there exists an integer valued function re(d) such that every addi- 

tive equation ~ ai Xd = O, ai~ 1:;, has a nontrivial zero defined over F, 
1 

then there exists a function q~e(dl, . . . ,  dr; m) such that every projec- 
tive variety V c p n which is the common zero set of r forms in 
n + 1 variables of degrees d l , . . . ,  dr with coefficients in F necessarily 
contains a projective m-dimensional linear F space provided 
n >f OF (d l , . . . ,  dr; m), and the conclusion fails for smaller n. Since it is 
easily demonstrated that 7Q~ (d) = 7p (d) exists for the p-adic field ~p, 
and indeed 7p (d) ~< d 2 + 1 for all p and d (see [7]), it follows that 
(bp (dl . . . .  , d,.; m) = cb~p (all, . . . ,  dr; m) exists. The argument as present- 
ed by R. Brauer did not provide estimates for q)p(dl , . . . ,dr;m) and 
simple minded calculations suggested by his argument would provide 
upper bounds on q~p of excessively high exponential order. Over the 
last 40 years considerable effort has been expended on obtaining 
bounds for q~p when m = 0. We mention only a few of the results 
that have been obtained. Let q~p ( d l , . . .  , dr) = ~p(d l , . . . ,  dr; 0). Then 
qbp(2) = 4 (MEYER [16]); ~p(3)  = 9 (LEWIS [14]); qbp(2, 2) = 8 (DEM- 
YANOV [9], BIRCH, LEWIS and MURI'HY [3]); q~p (4) >/ 20 (TERJANIAN 
[21]); qgp(dl,. . . ,  dr) = d 2 + . . .  + d 2 provided p is sufficiently large 
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compared to the d; (Ax and KOCI-IEN [2]); for each prime p and each 
e > 0 there exist infinitely many d for which q~p (d) > e al-~ (ARcmPov 
and KARACUBA [1], LEWIS and MONTGOMERY [15], BROWNAWELL [6]), 
~p (6/) ~ e d2 (SCHMIDT [17]). In the last year David Leep and Wolfgang 
Schmidt have shown q s p ( 2 , . . . , 2 ) ~ < 2 r 2 + 2 r - 4  (LEEP [12]); 
q)p (3, . . . ,  3) ~ 50,000 r 3 (SCHMIDT [18J). Very little investigation has 
occured for the situation where m > 0. 

B. J. BIRCH [4] refined Brauer's argument and obtained an analo- 
I ,  , 

gous result for varieties defined by forms of odd degree over Q. Spe- 
cifically, Birch showed one can define a function Pc, (dj . . . .  , dr; m)  = 
= F ( d l  . . . .  , d r ;m)  with all arguments di odd with the properties 
ascribed to qs. Little is known regarding the size of F and what is 
known concerns cubic hypersurfaces; specifically: 9 ~</"(3;0) ~< 15 
(DAVENPORT [8]); / '  (3~ 0) ----- 9 if the hypersurface is nonsingular 
(HEATH-BROWN [10]); and F(3 , . . . ,  3;0) ~< (10 r) 5 (SCHMIDT [19]). For 
odd di SCHMIDT [20] has shown a basis x(~ x (m) can be chosen for 
the linear space which have integer coordinates of small absolute 
value, say ~< N, provided n exceeds a function of all, �9 �9 dr, N and the 
coefficients of the forms. The function provided by the proof would be 
astronomical in size. 

It is our purpose here to draw attention to the case m > 0 and to 
give bounds for q~p(3, . . . ,3;m)= 2p(r,m) and for F ( 3 , . . . , 3 ; m ) =  
= A (r, m), when m > 0. Except for one use of a result of Schmidt our 
methods are elementary and on the whole our results are disappoint- 
ingly weak. 

Proposition 1. 
{42+2m / f r  = 1, 

q~p(2,...,2;m)~< r 2 + 2 r - 4 + ( r + l ) m  / f r > l .  

Proof.  The proof is by induction on rn for fixed r. When r ~> 1 and 
m = 0 the conclusion is Theorem 2.8 of LEEP [12]. For m > 0, the 
conclusion follows from Corollary 2.4 of [12]. 

Proposition 2. 
{9 3 i f m = O ,  

q>e(3;m)~< m ~ + l l m + 5  / fm~>l .  

P r o o f  Again the proof is by induction on m. If m = 0, the 
conclusion holds (LEwiS [14]). Let W (m) denote the function on the 
right hand side of the inequality. Suppose the proposition holds for 
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some integer m. L e t f b e  a cubic form in n + 1 variables over Qe with 
n >~ v~ (m + 1). Since ~; is mono ton ic  it follows that  the zero set V o f f  
contains an m-dimensional  Qp-linear projective space JP/. After a 
change of  variable we may  assume 

Then 
~ / =  {toeo + . . .  + tmemlt~pQm}. 

f ( t o e  o + . . .  + tree m + t ( O . . . 0 , y m + l , . .  ' ,Yn))  = 

m ~ 
= ~ t i t j tL i j (Y)  + t i t2Qi(y )  + t3C(y) ,  

i,j=0 i=0 

where the Lij, Qi, C are respectively linear, quadrat ic  and cubic forms. 
By Proposi t ion 1 there is a 9-dimensional  Qp-projective linear space 
Jff on Loo = . . .  = Lmm = Qo . . . . .  Qm = 0 provided 

n - ( m + l )  2 > ~ 2 ( m + 1 )  2 + 2 ( m + l ) - 4 + 9 ( m + 2 ) ;  

i.e., provided 

n>t3(m+ 1) 2 + l l ( m +  1 ) + 5 = w ( m + l ) .  

It follows that  C vanishes on a point  a in Y and hence {toeo + 
+ . . .  + tree m + ta} is a (m + 1)-dimensional Qp-linear projective 
space o n f  = 0. 

Theorem 1. There exist  constants Co, C1, C2 such that 

~C0 r3 i f  m = O, 

2p(r,m) ~< ~ C l r E m  2 + C2r4 m i f  m >~ 1. 

Proof.  The assertion for m = 0 is a theorem of  SCHMIDT [18].  For  
m ~> 1, the assertion follows by induct ion on m, as above, except this 
t ime we need find a projective Qp-linear space of  dimension ~> Co r 3 o n  

the intersection of  (m + 1)2r linear forms and (m + 1)r quadrat ic  
forms. 

We next prove a theorem that  provides upper  bound  estimates for 
F(3,  m) = q~ (3; m). Actually we prove a result for any field Fwi th  the 
proper ty  that  q~r(3;0) exists. One cannot  argue as in Proposi t ion 2 
since q~V(3;0) may  be defined while ~ F ( 2 ; 0 )  may not ;  as is the case 
when F = Q. The a rgument  we use is based on an idea of  BIRCH [4]. 

Theorem 2. Le t  F be a f i e ld  with the proper ty  that there is a constant 
20 = 20 (F) such that every cubic projective hypersurface defined over F 
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and lying in P" contains a point defined over F provided n >~ ,t 0. Then 

with e = ~ (5 + , we have 

q~f(3;rn) <~n(rn + 1) ~, 

where A is a constant that depends only on 2o. 

Note: In the case of  the rational field, DAVENPORT [8] has shown 
2o (Q) ~< 15. Hence Theorem 2 provides an upper bound for F(3;m).  

Proof. It will be convenient to work affinely rather than projec- 
tively. Let C (x) be a cubic form in N variables defined over F. Let 
T(x, y, z) be a trilinear form on F u with T(x, x, x) = C(x). Here T 
need not be symmetric and indeed is not  if the characteristic o fF i s  2 or 
3. Let O(u + 1) = ~ F ( 3 ; U )  and suppose O(u) < oo for 1 ~< u < m. 
Clearly 0 (u) is monotonic  increasing. Let t be a fixed positive integer 
less than m. Let 

s = a ( t )  + 3 ( m -  t)2 + 1, 

A = O ( m - - t ) + 3 s  2 + s .  

Suppose that N > A. Let W be an arbitrary, but fixed, F-linear 
subspace of F N of  dimension s. Let a~, . . . ,  as be a basis for W. Since 
N > A, the 3 s 2 linear equations 

T(ai, aj, x) = T(ai, x, aj) = T(x, ai, aj) = 0, 1 ~< i , j  <<, s ,  

have a F-linear space of  solutions U such that U ~ W = {0} and 
dim U > O (m - t). By the definition of  6 (m - t) the form C vanishes 
identically on a F-linear subspace U1 of  U with dim/_71 = m - t. Let 
b t , . . . ,  bm-~ be a basis for U~. By the definition of  s, the 3 (m - 0 2 linear 
equations 

T(bg, bj, x) = T(be, x, bj) = T(x, b;, bj) = 0, 1 ~< i , j  <~ m - t,  

have a F-linear subspace of  solutions W1 lying in W with 
dim W~ > a (t). By the definition of  6 (t), the form C vanishes on a F- 
linear subspace W2 of  W~ with dim W2 = t. Since W2n U1 c Wn U =  {0} 
we have V ' =  WE+ U~ is of  dimension m. Our construction is such 
that C vanishes identically on V'. 

Thus we have shown, if for some t in 1 ~< t < m,  

N ~ > d ( m - t ) + 3 { O ( t ) + 3 ( m - 0  2 +  1} 2 + 6 ( t ) + 3 ( m - t )  2 + 2 ,  

then C = 0 contains a F-linear space of  dimension m. It follows that 
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O(m)<~b(m-t)+ 3{O(t)+ 3 ( m - t ) 2 + 2 }  2, 1 < , t<m.  

Let  m = q t + u where  0 ~< u < t. Then  we have  

~(m) ~ ~(m -- 2 t )  + 3 { 6 ( 0  + 3 (m - 02 + 2} 2 + 

+ 3 {~(t) + 3 (m  - -  2 0 2  + 2} 2 

and,  by  induct ion,  since ~ (u) ~< O (t) we ob ta in  

[m/tl 
O ( m ) ~ d ( t ) + 3  ~ { d ( t ) + 3 j 2 t  2+2} 2 , l ~ < t < m ;  

j - I  
whence  

_ G (m, t) U (m, t) 
~ ( m ) ~ 3  m O ( t ) 2 + - - 0 ( t ) + - - ,  l < < . t < m ,  

t t t 
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(m) 
Wi th  ~ (m) - 

m ~ 

m 
6(m) ~< C - -  {O(t) 2 + m26( t )  + m4},  1 ~< t < m.  (1) 

t 

- -  for  m > 1 we ob ta in  

~7(m) < 2 C  (O(t) 2 q- m 4) (2) 
t 

for  l ~ < t < m .  Taking  t =  l we get 

~7(m) ~ m  5-~ . 

Subst i tu t ing  ~7 (t) ,~ t 5-~ into (2) we find that  

~ ( m )  ~ m t - ~ t 9  + m 5 - ~ t  -1 

W i t h  t = [m 2/5] this becomes  

(m) ~ m (23/5)-~ = m (2/~)-(2/5) . (3) 

W e  m a y  suppose  tha t  C >~ 1 in (2). Pu t  

~7" (m) = max  (100 C 2, ~7 (1 ) , . . . ,  rj (m - 1)), 

t = t(m) = [8 CmZ/~/~7* (m)]. 

W h e n  m is large, we have 2 ~< t < m by  (3). W e  insert  t = t (m) into (2) 
to ob ta in  

where  G and U are cubic  and quint ic  forms,  respectively,  with  
coefficients independen t  o f  m, t. Thus ,  there  exists an absolu te  
cons tan t  C >~ 1 such that ,  
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r/(m) ~< 2 C (r/* (m) 2 m l -~ (8 C m 2/~/rj* (m)) 2~- 1 _~_ 

+ 2mS-~-(2/~')~7*(m)/8 C) < r/* (m)((8 C ) 2 ~ *  (m) 2-2~ + �89 

But r/* (m) ~> (10 C) 2, 
> (10C) 2~ > 2 (8C)  2~. 

Therefore 

so  that ~ * ( m )  2~-2 > r l* (m)  6 > ( 1 0 C )  1~ > 

(m) < ~* (m) 

and ~* (m + 1) = ~* (m). Thus for large m the function ~* (m) is 
constant,  and ~7 (m) is bounded.  Thus  6 (m),~ m ~ for m ~> 1, and 

(m) ~< A (m + 1) ~ for m t> 0. 

Our  original version of  Theorem 2 contained an addit ional factor 
(log m) ~. The improved version given here is due to the referee. 

To compute  an upper  bound  for AF (r, m) = q~F (3 , . . . ,  3 ; m), where 
2o = q~F(3; 0) exists, one can proceed as in the p roo f  of  Theorem 2. I f  
Av(r, m) is the number  of  variables needed for r cubic forms over F t o  
contain a c o m m o n  m-dimensional  F-linear space of zeros, we find that  
for a n y t i n l ~ < t < m ,  

[M/t] 
AF(r,m) <~ AF(r,t) + 3r ~ {Ay(r,t) + 3rj2t  2 + 2}2; 

1 

whence, for 1 ~< t < m, we have 

r m  
AF(r,m ) <. C - - { A F ( r  , t) 2 + rm2A~(r ,  t) + r2m4}. 

t 

To proceed further one mus t  know something regarding the size o f  
Av(r, 1). 

In case the field is the rational field, we know from [19] that  
A• (r; 1) ~< ar 5 for some absolute constant  a. In that  case with t = 1, 
we obtain 

A~(r;m) <<. A r l l m  + Br3m S (4) 

where A, B are absolute constants.  We have been unable to improve on 
this by elementary methods.  

Wolfgang Schmidt  outl ined for us orally the following result, 
which we include with his permission. 

Theorem 3 (W. Schmidt). A• (r, m) ~ rm 2. 

Schmidt 's  a rgument  is as follows. Let C1 (x) , . . . ,  Cr (x) be r cubic 
forms over ff~ in r + 1 variables. Then the map  
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f ( x )  = (Cl (x) , . . . ,  C~ (x)) 

is a cont inuous map  of  the r-dimensional sphere into Nr  It follows 
from the B o r s u k - - U l a m  Theorem ~ that there exists a point  a on the 
sphere (hence a # 0) such t ha t f ( a )  = f ( -  a). S incef i s  an odd degree 
map,  we have f ( a )  = 0. Thus An (r, 0) = r. 

The real manifold M of  common zeros of  r cubic forms in n 
variables meets every r + 1 dimensional real manifold and hence 
dim M >i n - r. 

Let C~, . . . ,  C~ be r cubic forms in n + 1 variables with real 
coefficients. Let T~(x,y, z) be the symmetric trilinear forms on ~,+1 
such that T~ (x, x, x) = C~ (x). Let Xl . . . .  , Xzm be (n + 1)-tuples with 
distinct variables and form the cubic forms T, (xi, xj, xk) = T~jk, with 

/ 2 m + 2 \  
1 ~ <~ r, 1 ~ i , j ,k ~ 2m. Therearerk 3 ) o f t h e f o r m s  T, ijkand 

hence the real manifold Y of  common zeros of  the T~qk in N 2re(n+1) is 

m 3 of  dimension /> 2m(n + 1) - r . A vector y in R2~(n+l) 

determine 2 m vectors in R n+ 1 by the association y = (y~, . . . ,  Yz~)- The 
set a# of  vectors y in R 2m~ + 1) such that the rank of  {y~,. . . ,  Y2m} is at 
most  m is a real manifold of  dimension A = m (n + 1) + m2; indeed ~# 
is the union of  linear R manifolds of  dimension at most  A. Hence, if 

2 m ( n + l ) - r  > m ( n + l ) + m  2 there are points a =  

= ( a l , .  � 9  am) on ~- not  on ~ .  Thus if n > m + ~ r (m + 1) (2 m + 1) 
there exist m + 1 linear independent points b0 , . . . ,  bm in R ~ + ~ such that 
T~(bi,bj, bk) = 0, 1 < v < r, 0 < i , j ,k < m; whence C(t0b0 + . . .  + 
+ tmbm) is identically zero. Thus AR(r,m) < 2rm 2 if rn >~ 5 and 
Aa(r,m) < 5rm 2 i f m  >/ 1. 

An adaptat ion of  this method for the field Q would yield 
A e (r, m) ~ r 5 m 14 which is better than the bound  obtained above if r is 
very large compared to m. 

Since we have shown A% (r,m) ~ r4rn 2 and Aa(r,m) ~ rm 2, it is 
disappointing to have to settle for A e (r, m) ~< A r 11 m + B r 3 m 5 resp. 
A~(r,m) ~ rSm 14. 

1 An algebraic proof of this theorem for polynomial mappings of odd degree has 
been given by KNEBUSCtt [11]. 
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If one were to make full use of  the local information it would 
appear some recourse to the Hardy---Littlewood method or adelic 
methods will be needed. To date we have been unsuccessful in 
adopting such methods to determining linear manifolds on algebraic 
varieties. 

It is easily seen that the proof  of Theorem 3 can be adapted to give 

Theorem 4 (W. Schmidt). Let AR (r, d; m) be the least number such 
that the zero set o f  any r forms of  odd degree d with real coefficients in 
s > Aa (r, d; m) variables contains an m-dimensional linear projective 
real space. Then A R (r, d;m) < C(d)rm d-l, where C(d) is a constant 
that depends on d. 
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