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Summary. The steady laminar boundary layer flow on a thin and isothermal moving cylinder in a viscous 
compressible fluid at rest is studied in this paper. The fluid considered is a model fluid in which ~ ~ T -1 
and # ~ T ~. The transformed non-similar boundary layer equations are solved numerically using a very 
efficient numerical method for some values of c~ and wall enthalpy 9~ parameters. The skin friction coeffi- 
cient and Nusselt number are calculated for Pr - 0.7 and some values ofw and 9~- 

1 Introduction 

The study of  compressible boundary layer flow over a moving wall is of  interest in many bran- 

ches of  engineering such as, for example, in missile aerodynamics, shock generated boundary 

layers, aircraft response to atmospheric gusts, etc. The attenuation of  a travelling shock has 

become important  due to safety and noise considerations in high-speed ground transportation 

systems. 

Boundary layer flows over a moving surface are of  great importance in view of  their rele- 

vance to a wide variety of  technical applications, particularly in the manufacture of  fibres in 

glass and polymer industries. The investigation of  drying and heat transfer in such situations 

belongs to a separate class of  problems in boundary layer theory distinguishing itself from the 
study of  flows over static surfaces. 

Sakiadis [1] was probably the first who has studied the boundary layer flow on a moving 

cylindrical surface in a viscous incompressible fluid at rest. Subsequently, several investigators 

[2] [11] have worked on this problem under different conditions. However, very little work 

[12], [13] has been done on the boundary  layer flow over a surface moving in a viscous com- 
pressible fluid at rest. 

In this paper an attempt is made to investigate the effect of  heat transfer on the compres- 

sible boundary  layer in axial flow on a long thin circular cylinder which moves parallel to its 

axis in a fluid at rest. Owing to extreme complexity of  the full compressible boundary layer 
equations a mathematical model is adopted which can be justified to a certain extent on physi- 
cal grounds. In short, the assumption is made that the effects of  compressibility are confined 

to the boundary  layer and the main stream remains incompressible. This could be realized in 
practice by releasing a stream of small Mach number past a very hot body. The fluid con- 
sidered is a model fluid in which 0 ~ T 1 and # ~ T ~, where ~), T, # and ~ are, respectively, 
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viscosity and index in the power-law variation of viscosity. Under  these assumptions,  the 
governing differential equations are t ransformed into a form amenable to numerical solution. 

These equations are non-similar and they are solved using a very efficient finite-difference 
method known as Keller-box method developed by Keller and Cebeci [14]. Solutions of  the 
velocity and enthalpy distributions are obtained f rom which estimates of  the skin friction 

coefficient and local Nusselt  number  can be obtained. 

2 Basic equations 

We consider the steady laminar compressible boundary  layer formed over a thin cylinder of  
infinite length and radius a which moves with a constant  velocity U in a fluid at rest as shown 

in Fig. t. We assume that  the properties of  the fluid vary as ~ ~ T -1 and # ~ T ~. It is also 
assumed that  the external flow is homentropic,  that  the surface of  the cylinder is maintained 
at a constant  temperature T~ and that  the external flow has the uniform temperature T~. 

Under  these assumptions the governing equations can be written as 

0(~ru) 0(pry) 
- -  - 0, (1) 

Ox Oy 

u~z+ v - -  (2) 

( OT OT) 1 0 (krOT~  N+vN =TN\ N)' (a) 

subject to the boundary  conditions 

u(x, 0) = U,  v(x, 0) = 0, T(x,  0) = T~, 

~(x, oo) = O, T(x, ~)  = T~, (4) 

~(0, y) = 0, v(0, y) = 0, T(0, y) = T~. 

Here x measures the distance along the axis of  the cylinder f rom the extrusion slot, y measures 
the normal  distance f rom the surface of  the cylinder, and r = a + y is the normal  distance 
f rom the axis of  the cylinder, u and v are the velocity components  in the axial and normal  
direction, respectively, T is the fluid temperature,  and k is the thermal conductivity of  the 

fluid. 
Further,  introducing the new variables (see Choi [12]) 

2 = x ,  Y = Y + 2 a '  u = u ,  ~ =  v,  (5) 

r 

l J  tY 

Fig. 1. Physical model and coordi- 
nate system 
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the equation of continuity is satisfied if the stream function ,r is defined as 

= _ ~ . . . .  ( 6 )  
a ~ ' a 05 

Using (5), Eqs. (2) and (3) can be cast into a quasi-two-dimensional form, 

~ + ~  : N  1 + ~  ~ , (7) 

oC~ ~b-~+~ =b~ 1+-~a k , (8) 

subject to the same boundary conditions (4). 
Equations (7) and (8) are further transformed into a nondimensional form by introducing 

the variables 

Y 2 

= \Ua  2} ' Y=Ya' r]=l  s 
o (9) 

h g# 
-- Ua[f(~, rl), h = CpT, g = ~ , N - . 

Thus, we have after some manipulations 

0~ ( 1+2Y)  S -!  0r/2 j + f ~ = ~  O~Orl O~ Orl2J ' 

1 0 I 091 Og { ~ 0 9  Of 09) (11) 
Pr0r]  ( 1+2Y)  S - 1 N  + I N =  ~ 0~ 0 ~ N  

Y = ~ f g d v  (12) 
0 

subject to the boundary conditions 

f = 0 ,  --=0f 1, g = gw at r / = 0 ;  --=0f 0, g = 1 as ~---,ec, (13) 
0~ Or] 

where 

(14) 
Q he 9, P~ 

Here h is the specific enthalpy and Pr = #Cp/k is the Prandtl number which is taken as a 
constant across the boundary layer because its variation in the boundary layer for most atmo- 
spheric flight problems is less than 5 per cent (see Wortman et al. [13]). 

Equations (10) and (11) can be reduced to two limiting cases: (i) constant property formu- 
lation is obtained if g = 1 (i.e., g# = constant). In this case Y = ~r] and Eq. (10) reduces to 
that of Karnis and Pechoc [5]; (ii) if Y = 0, Eqs. (10) and (11) reduce to the following ordinary 
differential equations: 

(9~-1f  ") + ff" = 0,  (15) 

(gW-lg ') -t- Pr fg' = 0 (16) 

along with the boundary conditions 

f(0) = 0, f '(0) -- 1, g(0) = g~; f '(oc) -- 0, g(oc) = 1. (17) 
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This case can be realized physically of 6/a << 1 which is equivalent to the condition ~ --+ 0, 
where 6 is the boundary layer thickness. Thus, by taking ~ sufficiently small the solution for 
the axisymmetric compressible boundary layer flow along a thin moving cylinder can be 
matched to its two-dimensional counterpart. This limiting case is characterized by the com- 
pressible boundary layer flow on a moving semi-infinite flat plate. 

The skin friction coefficient and the local Nusselt number are defined as 

--Tw Nu - -  Cp2q~ 
Cf - oeU2 , ke(he - hw) ' (18) 

where ~-w and q~ are the skin friction and heat transfer from the surface of the cylinder, and 
they are given by 

: ' : N ( 1 9 )  
~9=0 ~=0 

Using the variables (9), we obtain 

CI Re~/2 = g~-i ( _  02 f~ (20) 
Or/2} ~:0' 

gn ~w -1 {091 
(21) Re~/2 l-g~ ]~ ~=0' 

where Rex = U~/~e is the local Reynolds number. 

3 Results and discussion 

Equations (10) and (1 l) along with the boundary conditions (13) have been solved numeri- 
cally using the Keller-box scheme [14]. To test the accuracy of the present method, we have 

compared the initial slope of i f (0)  for cJ = 1 from this work with the value from Na and 
Pop [15]. The present method gives i f (0)  = - 0 . 6 2 7  557, while that of Na and Pop [15] is 

i f (0)  = -0.627 559. We are therefore confident that the present results are very well done. 
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Fig. 2. Local skin friction coefficient for Pr = 0, 7, gw = 0.2 
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Fig. 3. Local  sk in  fr ict ion coefficient for Pr  = 0.7, ~ : 0.5 
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The var ia t ion of  CfRelx/2 and Nux /Re  1/2 is shown in Figs. 2 5 versus { for Pr  = 0.7 and 

different values of  co and g~. The results for an incompressible fluid (w = 1) were also included 

in Figs. 2 and 4 for the sake of  comparison.  

We notice f rom these figures that  the variable fluid propert ies  affect significantly the skin 

friction and heat  transfer rate. Thus, both  Cf and N u  decrease with the increase of  the para-  

meters a; and g~. The deviat ion of  variable proper ty  solutions against  the constant  p roper ty  

case is believed to be the result of  fluid proper ty  interactions rather  than the result of  the indi- 

vidual  role played by each property.  I t  is found, however, that  a solution does not  exist for 

the thermal  bounda ry  layer equat ion (11) subject to the boundary  condit ions (13) when the 

wall enthalpy 9w = 1 and a: • 1. 

I t  is also seen from these figures that  the axial nondimensional  parameter  { affects the skin 

friction coefficient and Nusselt  number  more  significantly only near the slot. F a r  downst ream 

Cy and N u  remain almost  constant  with ~. 
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