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Many studies have been done on elastic transients generated by surface and
buried point sources in an elastic half-space [1]—[9]. In these works, the source
time-dependence was that of a Heaviside step or a delta function. Various types
of singularities were found to occur in the surface displacements. Partly to
investigate the role of the source time-dependence in this connection, the present
Note examines the surface displacements due to a surface, vertical, point force
with a ramp time-dependence.

Cylindrical coordinates 7, ¢, z are used, the origin being at the source, with
the z axis directed downwards. Following the development given by HasxerL [10]
for harmonic waves, the Laplace transformed displacements due to a downward
surface vertical point force of unit magnitude can be shown to be, for z < 0,
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4 and g being the Lame constants, d the source depth, ¢ the density, the bar
denoting the Laplace transform, parameter p, the J’s denoting Bessel functions
of the first kind, and & (t) being the time-dependence of the applied force. As is
seen from (3), branch points arise on the imaginary p axis. The branch cuts are
taken to run parallel to the negative real axis, the resulting branches having the
property that RBy; >0, §=1,2, for Ep > 0, R denoting the real part.

On taking the source time-dependence to be a unit ramp, i.e.,
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and on restricting attention to the surface displacements due fo a surface force
(set 2= —d, d ==0), (1) and (2) give
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The procedure given by PexEris [1] and amplified by AccaARWAL and ABLow
[8] will now be followed. On making the change of variable ¢k = px, and re-
stricting attention to A = u,* (4), for example, becomes, on replacing the Bessel
functions by their Hankel function equivalents,
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1 With this restriction, the roots of the Rayleigh surface wave equation are real, resulting
in somewhat simpler algebra later.
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The integrals in (6) can be further reduced by using contour integration techniques.
When H,® arises, a closed contour consisting of the positive real and imaginary
axes and a large guarter circle in the first quadrant is considered. For H,®, the
contour consists of the positive real axis, the negative imaginary axis, and a large
quarter circle in the fourth quadrant. One gets
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K, is a modified Bessel function of the first kind and I denotes imaginary part.
The last term in (7) stems from identations over simple poles at x = iy
(corresponding to the roots of the Rayleigh equation lying on the branches in
question). The advantage of the current form is that the inverse Laplace trans-
forms, denoted by L~! in the sequel, can be found in tables. In fact from ErpELYI
et al [11]
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where H denotes the Heaviside unit step function.
Using (8), {7} gives, on noting
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and temporarily ignoring the delay factor ¢4, which can be injected later by a
suitable time delay,
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and performing a partial fraction decomposition, (9) yields for @ = .1, on
taking the delay factor e~#¢ into account,
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is the complete elliptic integral of the first kind
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is the complete elliptic integral of the second kind, and
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is the complete elliptic integral of the third kind.
Similarly, u, for @ = .1 is given by
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It should be noted that the sequence in (10) and (11) could be quite different for
different values of . It is interesting that closed form solutions are still obtained,
in common with the results of PExEr1s [1] for a Heaviside step.

The results of numerical computation based on (10) and (11) are shown in
Figs. 1, 2, and 3. The letters indicate the arrival of various events, P being the
pressure wave arrival, § the shear wave arrival, and R the Rayleigh wave arrival.

Shown in Fig. 1 are the vertical displacements as functions of time for several
values of the ramp rise time . It should be noted that no singularities arise at the
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Fig. 1. Vertical displacement versus time for @ = 0.01, 0.1, and 1.0
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Fig. 2. Horizontal displacement versus time for @ = 0.01, 0.1, and 1.0

2 When @ = 0.15, the magnitude of the pulse of the Rayleigh arrival equals that of
the static solution in Fig. 1.
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Rayleigh arrival in contrast to the corresponding solutions given by PrxErris [1]
for a Heaviside step. As @ approaches zero, the Rayleigh event becomes more and
more pronounced. A very interesting item is the maximum amplitude. Shown in
Fig. 3 is the amplitude of u, at the Rayleigh arrival as a function of @. From
Figs. 1 and 3, it can be seen that the maximum magnitude of the pulse occurs at
the Rayleigh arrival for @ < 0.15%2. However, for @ > 0.15, the maximum
occurs at the delayed Rayleigh arrival.
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Fig. 3. Displacement amplitudes at the Rayleigh wave arrival as a function of @

Shown in Fig. 2 are the horizontal displacements as functions of time for
several values of §). Again it is seen that in contrast to Pekeris’ results for a Heavi-
side step, no singularities occur at the Rayleigh arrival. It is interesting that in this
case the maximum magnitude always occurs at the Rayleigh arrival. This maxi-
mum magnitude is shown in Fig. 3. Fig. 2 also shows that a local maximum
occurs between the P and § arrivals, the magnitude decreasing with increasing Q.
Finally, it should be noted that the horizontal displacements are not constant after
the delayed Rayleigh arrival, in contrast to the vertical displacements.
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