
Slow Viscoelastic Flow in Tilted Troughs 
By 

A. S. Wineman* and A. C. Pipkin, Brown University, Providence, R. I. 

(Received May 17, 1965) 

Summary. In viscoelastic flow of an incompressible fluid down a straight trough 
of arbitrary cross-section, the normal stress effect produces a distortion of the free 
surface. In slow flow, the shape is given in the lowest order of approximation in 
terms of the axial velocity for Newtonian flow. Equations governing the second-order 
perturbation are derived. 

Zusammenfassung. Beim viskoelastischen StrSmen einer inkompressiblen 
Fliissigkeit entlang ciner geneigten gcraden Rinne beliebigen Querschnittes erzeugt 
der Normalspannungseffekt eine Verzerrung der freien Oberfl/iche. Deren Form ist 
bei langsamer StrSmung in erster N/~herung durch die Axialgeschwindigkeit ffir 
NEWTO~sche StrSmung bestimmt. Die Gleichungen tier N/iherung zweiter Ordnung 
werden hergeleitet. 

1. Introduction 

In  the present paper we consider the slow steady motion of incompressible 
viscoelastic fluids in tilted troughs. The problem is closely related to tha t  
of slow viscoelastic flow in tubes, t reated by  LA~GLOIS and t~IVLIN [1]. 
The principal difference is in the presence of a free surface in the trough 
problem. In Newtonian flow, the free surface remains flat, and the trough 
problem is equivalent to the problem of flow through a tube whose cross- 
section consists of tha t  of the trough and its image in the free surface [2], [3]. 
In  viscoelastic flow, however, the normal stress effect produces a distortion 
of the plane free surface of Newtonian flow. Our main object is to obtain 
an approximate expression for the form of this surface. 

In  slow viscoelastic flow t h r o u g h  tubes [1], the flow is Newtonian 
in the lowest order of approximation, and a first approximation to the 
non-Newtonian normal stresses can be calculated directly from the Newtonian 
axial velocity field [4]. I t  can be anticipated that  the same results will 
apply to flow in troughs. There will then be an unequilibrated normal 
stress on the Newtonian free surface. We can compute the pressure required 
to equilibrate this normal stress, and the rise (or fall) of the free surface 
should then be proportional to this pressure. 

The present paper is simply a verification tha t  the preceding argument 
is correct, to first order. We also obtain a second approximation, mainly 
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in order to identify sources of error in the first approximation and to provide 
a means of estimating the accuracy of it. 

The problem is outlined in Section 2, and the Newtonian approximation 
is briefly described. In Section 3, we introduce dimensionless variables 
suggested by the Newtonian approximation. We also introduce a non- 
Newtonian parameter e = T U/L ,  where U / L  is a typical shear-rate in 
Newtonian flow, and T is a characteristic relaxation time for the fluid. 
The approximate solution is to be obtained by treating e as a small para- 
meter. The constitutive equations for the viscoelastic flow are expanded 
in powers of the parameter e in Section 4. Section 5 deals with the free 
surface conditions. 

In  Section 6 we show how the lowest-order approximation to the shape 
of the free surface is related to the solution of the :Newtonian flow problem. 
Illustrative examples are given in Section 7. 

The more complicated problem of obtaining a second approximation 
is discussed in Sections 8 to 12. We find that  before such an approximation 
can be obtained, it is necessary to calculate the axial velocity perturbations 
which are produced by the surface distortion and by the variation of 
apparent viscosity with shear-rate. I t  is also necessary to obtain a first 
approximation to the transverse velocity field. However, the manner in 
which the physical parameters of the problem enter into the approximation 
can be exhibited explicitly, without carrying out any of these calculations. 

2. Basic Equations. Newtonian Approximation 

We consider the steady motion of an isotropic incompressible visco- 
elastic fluid down a long straight trough of uniform cross-section. The 
trough axis is tilted at  an angle 0 to the horizontal. We use a system of 
Cartesian coordinates xi'  with the x 3' axis parallel to the axis of the trough, 
the xl '  axis horizontal, and the x 2' axis in an upwardly direction. The 
unperturbed free surface of the fluid lies in the plane x2' = O. The level 
of this plane is determined by the general level of the free surface, whose 
form is to be determined. This level must be specified in some way, for 
example, by prescribing the point of intersection of the free surface with 
the trough wall, or by prescribing the total flux down the trough. 

We seek a solution in which the velocity components u / a r e  independent 
of xa'. The continuity equation is then 

~u~'/~x~' = 0, ( 2 . 1 )  

where Greek subscripts have the range 1, 2. We express the stress com- 
ponents ai~. in the form 

(lij = - - p '  6~ § S i / ,  (2.2) 

where the pressure p '  is arbitrary and the extra stress S i / i s  to be specified 
by a constitutive equation. The momentum equations are then 

u j  ~u//~x~' = e g~ - ap'/~x/ + .  ~S~'l~x~', (2. a) 
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where the  components  0 gi of the weight of fluid per uni t  vo lume  are 

(Q g~) : (0, - -  ~ g cos O, e g sin 0). (2.4) 

The conditions u / =  0 are satisfied at  the t rough wall. On the free 
surface, the  veloci ty  field satisfies the  condit ion ui' n~ = 0, where the  
vector  n, is normal  to the  surface. In  addit ion,  the  t rac t ion  air n~- mus t  
reduce to  a uni form normal  pressure on this surface. Because the  fluid 
is incompressible, there  is no loss of general i ty  in taking this pressure to 
be zero, i . e . ,  ai~" nj = 0. The form of the free surface is assumed to  be 
independent  of x3'. 

The  flow can be made  as slow as desired b y  decreasing the t i l t  angle 0. 
I t  is known [1], [5] t h a t  in viscoelastic flows which are sufficiently slow, 
in a sense to  be made  more precise, the  ex t ra  stress S~ / is given approx ima te ly  
by  the  Newtonian  relat ion 

S~/ = ~, ( e u / / e x /  4- Ou//~x/), (2.5) 
where # is the  appa ren t  viscosi ty a t  zero shear-rate.  In  Newtonian  flow, 
the  pressure p '  is the  hydros ta t ic  pressure, - -  x2' ~ g cos 0, p roduced  b y  
the weight  of the fluid. The t ransverse veloci ty  components  u~' vanish,  
and  the axial  ve loci ty  u 3' satisfies the  equat ion  

/~t (~2/~x~'~ 4- ~2/~xe'~ ) u a' : - -  e g sin 0, (2.6) 

which is the axial component  of the m o m e n t u m  equa t ion  (2.3).  The  
condi t ion a~  n~ = 0 is satisfied on the  flat  free surface x~' = 0 p rov ided  
t h a t  ~ % ' / O x ~ ' =  0 on t h a t  surface. Wi th  u 3 " =  0 on the  t rough  wall, 
the  axial veloci ty  is t hen  complete ly  determinate .  We note  t h a t  for flow 
th rough  a tube  for which the plane x2' = 0 is a plane of symmet ry ,  the 
axial ve loc i ty  %'  satisfies Ou3'/~x2' = 0 on the  plane x2' = 0. Thus,  the  
prob lem of Newton ian  flow down a t rough is equivalent  to a problem 
of flow th rough  a tube.  

3. Dimensionless Equations 
Le t  L be a typ ica l  length associated wi th  the  cross-section of the t rough.  

F r o m  (2.6) we then  find t ha t  the axial veloci ty  in Newtonian  flow is of 
the  order  of 

U = (e g L~/#) sin 0. (3.1) 

I t  is convenient  to in t roduce the following dimensionless variables:  

X i = xi ' /L ,  ui = u i ' /U ,  S i j  = ( L / t t  U) ~.~iJ'. (3.2) 

We also express the pressure p '  in the form 

p '  = --  x2' ~ g cos 0 4- (~ U/L)  p (xl,  x~), (3.3) 

where (# U / L ) p  is the  pressure var ia t ion  which will arise as a react ion 
to the  normal  stress effect. 

In  the  m o m e n t u m  equat ions (2.3), we use (3.1) to  (3.3) and (2.4),  
to obta in  

R u p u ~ . p  - -  p ,~  4- S~p.~ and  R u ~ u a .  ~ = 1 4- $3~,~ , (3.4) 
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where R is the REYNOLDS number, ~ U L/# .  The traction condition on 
the free surface is, with (2.2) and (3.1) to (3.3), 

(p -- x 2 ctn 0) ni  ~ S i j  n~. (3.5) 

In dimensionless form, the continuity equation is u~, ~ ~ 0, the kinematic 
free boundary condition is u~ n~--~ 0, and the no-slip condition on the 
trough wall is u~----0. 

In Section 4 we will find that  a new parameter T with the dimensions 
of time arises from the constitutive equation for the extra stress. When 
we speak of slow motion of a viscoelastic fluid, we mean a motion in which 
the typical shear-rate U / L  is small when measured on a time scale intrinsic 
to the fluid. That is, the dimensionless shear-rate defined by 

~-- T U / L  (3.6) 

is small. Because T can vary enormously from one fluid to another, the 
shear-rates U / L  which can be considered small will also vary widely, 
depending on the particular fluid considered. However, in the present 
problem we find from (3.1) and (3.6) that  

--~ sin 0/]c, where ]c --~ #/~ g L T. (3.7) 

Hence, ~ can be made as small as desired by decreasing the tilt angle 0. 
Although 0 is the basic controllable parameter in the problem, it will 

be convenient to treat  ~ as the fundamental parameter, and express all 
other parameters involving 0 in terms of e. In  particular, the REYNOL])S 
number R is written as 

R z ~ R ' ,  where R '  z ~ L2/# T .  (3.8) 

We shall seek a solution valid in the limit ~ -~ 0, with/c and R' fixed. 
The solution will thus become increasingly accurate as the tilt angle 0 
decreases, for a fluid of fixed properties in a given trough. 

As in slow viscoelastic flow through tubes [1], symmetry shows tha t  
each of the unknowns of the problem is either even or odd in its dependence 
on the parameter s [6]. From the results on flow in tubes we can also 
anticipate that  the transverse velocity components u~ will be of order s 3 
in comparison to the axial velocity. On this basis, we write 

u3' : U us ~ U u(x~;  ~2), u~' : U u~ : U ea v~(xp; s ~) (3.9) 
and 

(# U/L)  p ~-- (# U/L)  s P ( x : ;  e~). (3.10) 

In  addition, the equation of the free surface will be of the form 

x~ = ~ F ( x l ;  ~). (3.11) 

Dependence on the parameters /c and R' ,  which is not at issue here, has 
been suppressed from the notation. 
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4. Constitutive Equations 

Because we wish to consider a slow s teady  motion,  i t  is appropr ia te  
= !Si~ I in the to write the const i tu t ive  equat ion  for the  ex t ra  stress S 

RIvLn~-EmCKS~I~ [7] form:  

+ ~ ~ [ ~ m ~ A ~ ' A ~ ' A ~ ' + o ~ ; n ~ A ~ ' t r ( A , / ~ A ' ) ] +  . . .  (4.1) 

The coefficients ,u and  ~ are constants,  wi th  c~ 1 ----- 1. The te rms indicated  
by  dots are of degree four  or higher  in the  k inemat ic  matr ices  A~'. S y m m e t r y  
of S'  requires t h a t  ~ = ~ and ~ m ~  = ~ .  We can also take  
~,,;~v = ~ ; ~ =  wi th  no loss of generali ty.  Reduc t ion  of the  I~IVLIX- 
ERICKSEN equat ion  for an incompressible fluid to a form equiva len t  to 
(4.1) has been discussed elsewhere [8]. 

Wi th  U and L defined as in Section 3, we express A~' in te rms of a 
dimensionless k inemat ic  ma t r ix  A~ through  the  relat ion 

A~'  = ( U / L )  ~ Am. (4 .2 )  

The components  A ~  ~] of As are defined [7] b y  

A~:] = ~,.~ + uj., (4.3) 
and, for n > 2, 

n - - 1  

~,j + + (4.4) '~] , i  tvk,  i ~vk , }  �9 

Here  we use the  no ta t ion  

u(i 1~. = u/ and '~i~ (n) = (D/Dt)  ~ - 1  ui, (4.5) 

where the  dimensionless mater ia l  der ivat ive  D / D t  is of the  form u~ a/ax= 
in the  present  problem. 

The coefficients ~ in (4.1) have dimensions of t ime to  various powers. 
Le t  T be a characterist ic  t ime defined in te rms of these coefficients, for  
example  T = 1~21 if ~ ~= o. Dimensionless coefficients fl are then  def ined b y  

= = , = T ~ ' + n + p - 1  (4.6) ~ 5~T ~-I, ~ flm~T~+~-1 ~ /~ 

By using (4.2) and (4.6) in (4. I), and recalling the definition (3.6) of the 
parameter e, we obtain 

(L/~ ~) S' = S = ~7 ~ n - ~  a~ + 2 7 ~ + ~ - ~  X~a~ + 

+ _ _ ~ 7 2 7 , ~ + ' + ~ - *  [ f im~A~a~A~ + ~ ; ~ X ~ t r ( a ~ A ~ ) ]  + . . .  (4.7) 

Since a~ = 1, i t  follows t h a t  fl~ = i as well. 
I n  the  present  problem, the  t ransverse  veloci ty  components  are weak 

in comparison to the  axial veloci ty  [see (3.9)].  Fo r  this reason,  each 
mater ia l  e lement  in the fluid is a lmost  in a s ta te  of s teady  simple shearing 
motion.  I n  such a motion,  all of the  k inemat ic  matr ices vanish excep t  
A~ and A~. Hence,  in the  present  problem we can expec t  t h a t  S will be 
given to a high degree of approx imat ion  in t e rms  of A~ and A~ alone. 



Slow Viscoelastic Flow in Tilted Troughs 109 

Wi th  (3.9), the  material  derivative is of the form s 3 v~ a /~x~.  Hence, 
with (4.5) we obtain 

(4. 8) 
u~ > = ~ v~, u(~ ~) = ~ ~ (v~ ~ /ax~)~-I  v~. 

Inspect ion of (4.4) then  shows t h a t  A~ ---- 0 (s 8= - 8) for n >/2, wi th  A1 ~ 0 (1). 
If  we neglect terms of order e 5, the expression (4.7) for S does indeed 
involve only A1 and  A s. 

B y  means of (4.3) and (4.4), wi th  (4.8), these matrices can be expressed as 

A1 = B1 _~_ r C and  A s = B,~ ~- 0 (ca), (4.9) 

where the  non-zero components  of the matrices B1, Bs, and  (~ are 

B(1) n(9) _-- 2 u, ~ u, and C~p v~,p + vp, ~. (4.10) 

The matrices B 1 and  B s are the kinematic  matrices for the axial s teady 
simple shearing motion.  (3 is twice the strain-rate mat r ix  for the  transverse 
per turbat ion.  

Because of the special forms of the s teady simple shearing matrices B1 
and  Bs, every symmetr ic  mat r ix  polynomial  in these matrices can be 
expressed as a hnear  combinat ion of 1~1, B~, BlS, and  the un i t  mat r ix  I,  wi th  
scalar coefficients which are polynomials in the invar iant  

~s = t r B12/2 = u , ~  u , ~ ,  (4.11) 

where ~ is the absolute shear-rate [9]. I n  particular,  by  using (4.9) in (4.7), 
and  recalling t h a t  A~ = 0 (s 8 ~ -6) for n >~ 2, we obta in  an  expression of 
the form 

S ---- V B1 -}- s v sBs/2 + s v 1 (B1 s --  BJ2)  + sa l] + 0 (s4).  (4.12) 

The dimensionless apparent  viscosity 7 and the normal  stress coefficients 
vl and  vs are given by  

v~ = ~'11 + (s ~)~ vl~ § 0 (s4), v~ = vsl -4- (~ 7) s vs~ + 0 (~4), 
and 

7 = 1 +  ( e ~ ) s 7 1 +  0(s~), 
where 

~)11 ----- ~11: 

~21 = 2 f12 + ~11, 
and 

~12 = 2 illS1 + fl1111 + 2 ~11; 11, 

~)SS = 4 ~22 + 4 /~112 -~- 4 /~S; 11 2[- /~1111 -4- 2 fl11| 11' 

( 4 . 13 )  

( 4 . 14 )  

( 4 . 1 5 )  

( 4 . 1 6 )  

( 4 . 1 7 )  v l  = 2 ills +/~111 + 2 t~l; 11. 

F r o m  (4.12), wi th  (4.10), we obtain 

S~ ~ = ~ u,  ~ + o (~'), (4.  i s )  

SaB : s [vs u , ~  u ,B  -~ e s (v~.p -]- vp,~) + 0 (ca)], (4.19) 

and  an expression for Sac which will no t  be needed. I t  is wor th  emphasizing 
t h a t  a l though the flow we consider is no t  a viscometrie flow [10], the 
const i tut ive equations involve only the viscometric functions 7, vl, and us, 
to the  indicated order of approximation.  
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5. Free Surface Conditions 

By resolving the free surface traction conditions (3.5) into axial, 
tangential, and normal components, we obtain 

S a w n  ~ =  O, S ~ t ~ n p = O ,  (5.1) 
and 

x~ n~ n~ = tan 0 [p n~ n~ -- Sap n~ n~], (5.2) 

where n~ and t~ are respectively normal and tangential to the free surface 
(3.11): 

n 2 = t  1 =  l, --n1=t 2 = e  2F'(x~). (5.3) 

The three relations (5.1) and (5.2) can be simplified and made more 
explicit by using the expressions (4.18) and (4.19) for S. By using (4.18) 
in (5.1a), and noticing tha t  the apparent viscosity ~ is 0 (1), we obtain 

n~ u, ~ = o (e~). ( 5 . 4 )  

With this result, on using (4.19) in (5. t b), we obtain 

(v~.~ + vp, ~) t~ np = 0 (s~). (5.5) 

Finally, by setting x2 equal to e 2 F(x~) in (5.2), and making use of (3.7), 
(3.10), (4.19), (5.3), and (5.4), we obtain 

F = k (1 -- e 2 lc2) -*1~ [P --  2 e 2 v2,~ @ 0 (e4)]. (5.6) 

We now express the free surface conditions in terms of quantities 
evaluated on the unperturbed free surface x~ = 0, by expanding each 
unknown in powers of x~ and then setting x~ = e2F. The kinematic 
condition n .  v.  --- 0 implies, with (5.3), that  % = 0 (e 2) on x2 = e ~ F. By 
using the expansion procedure just outlined, we obtain 

v.(x.  0) = 0 (~'). (5.7) 

Because we shall seek only a first approximation to v~, (5.7) will be 
sufficiently accurate for our purpose. A condition on the transverse velocity 
component v~ is found by applying the expansion procedure to (5.5), 
and then taking (5.7) into account: 

Vl,2(Xl, 0) = 0 (~2). (5.S) 

The expansion of (5.6) yields 

F / k  = (1 @ s ~ k~/2) [P(x~, O) -t- s 2 F(x~) P ,  2(xl, O) - -  

- 2 ~ v~. ~ ( x .  o) + 0 ( ~ ) ] .  ( 5 . 9 )  

Hence in particular 

F(x , )  = k P (x , ,  0) ~- 0 (s2), (5.10) 

and by using ~his result on the right-hand side of (5.9) we obtain the more 
accurate expression 

F/k = P ( x .  0) + ~ [(~V2) P ( x .  o) + 

-~ k p(x~,  O) .P,.2(x~, O) --  2 %.~(x~, O)] -t- O (e~). (5.11) 
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On applying the expansion procedure to (5.4), and using (5.3) and 
(5.10), we obtain 

u, ~(x. o) + ~ [~ p ( x .  o) u~ ~2(x~, o) - ]~ P, l ( x .  o) u, ~ ( x .  0)]  = 0 (~ ) .  (5.  ]2 )  

6. Solution: First Approximation 

In the momentum equations (3.4), we use (3.8) to (3.10), (4.18), and 
(4.19), to express the axial component as 

(7 u,  ~), ~ = - 1 + 0 (~4) (6.  l )  

and the transverse components as 

P,~ = (v2u,~u,p),Z ~- s 2 lY2Va -4- 0 (~4), (6.2) 

where the viscometric functions ~ and v2 are defined in (4.14) and (4.13), 
respectively. To obtain the solutions of (6.1) and (6.2) to the indicated 
order of approximation, we expand u, P, and v~ in powers of s 2 as 

u = u(~ § s ~ u(1) § 0 (~4), p = p(0) § ~2 p(1) § o (s4), v~ = v~(~ § o (~2). 
(6.3) 

By using (6.3) in (6.1), we obtain in particular 

V 2u( ~  -- 1, (6.4) 

which is the dimensionless form of (2.6), the equation governing the axial 
velocity in Newtonian flow. The condition u(~ ~ 0 is to be satisfied on 
the trough w~ll. With (6.3), the free surface condition (5.12) yields 
u,(~ 0) --~ 0. Thus, u(~ satisfies all of the conditions on the axial velocity 
in Newtonian flow. 

When the expansions (6.3) are used in the transverse momentum 
equations (6.2), and (6.4) is taken into account, it  is found tha t  the equation 
for p(0) can be integrated immediately: 

P(~ = (~2~/2) (7~ - 2 u(O)) + ~o.  ( 6 . 5 )  

Here v21 is defined in (4.16), C o is an arbitrary constant, and Yo is the 
absolute shear rate for the Newtonian flow: 

(o) u (0) (6.6) ~'o 2 ----- U ~  ~ . 

The lowest-order approximation to the shape of the free surface is 
found by using (6.3) and (6.5) in (5.10): 

F(x~) : (k u2~/2) S(xx) ~- k C O + 0 (s2). (6.7) 

The shape factor S(xl) is 

S(x~) = [u0(~ ~ ( x .  0)]2 _ 2 u(~(x. 0). (6 .  s) 

Here we have used the condition ~,~ (o)(~1, 0) --~ 0. The constant Co in (6 .7) 
affects the level of the free surface but not its shape. This constant can 
be determined by specifying the height of a single point on the free surface, 
or by specifying the total flux of fluid down the trough. 
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We note t h a t  a l though the distort ion of the  free surface is a non- 
Newtonian effect, the lowest-order approximat ion to the shape is found 
by  solving only the Newtonian flow problem (6.4). Converting (6.7) into 
dimensional form with  the aid of (3.1), (3.2), (3.6), (3.7), (3.11), (4.6), 
and /4.16), we obtain 

x2' = (~ g L~/#)  (~2 + a1~/2) (sin 0) 2 S (x~ ' /L) .  (6.9) 

Here we have omit ted  the constant  and  the higher-order terms in (6.7). 

7. E x a m p l e s  

In  the following sections we consider the problem of obtaining an 
improved approximat ion to the  shape of the free surface. In  the  present  
section, we il lustrate the results already obtained, with some simp]e 
examples. 

We first consider a t rough in the form of an elliptical arc of semi-axes L 
and h L, whose equat ion in dimensionless form is 

x 2 @ ( y / h )  2 =  1, y < O ,  (7.1) 

where we use the nota t ion  x = Xl and y = x2. The solution of (6.4) 
satisfying u(~ -----0 on (7.1) and u,(2~ 0 on y = 0 is 

u(~ = [1 - -  x 2 - -  (y/h)2]/2 (1 @ h-2). (7.2) 

The shape factor defined in (6.8) is then  

s ( x )  = [(2 + h-2) x2 _ i - h-~]/(1 + h - %  (7 .3)  

Thus, the free surface takes on a parabolic shape. The largest difference 
in level is 

AS = S(1) -- S(0) = (2 + h-~) / (1  + h-~) ~. (7.4) 

In  the ease of a shallow t rough (h -* 0), we obtain A S  _~ h 2. For  a circular 
section (h ~- 1), we obtain A S  = 3/4, and in the case of a deep channel 
(h -~ ~ ) ,  AS = 2. 

The solution for a t rough bounded by the planes x l ' ~  L and x ~ ' =  
- -  x / / ~ / 3  is also especially simple. The solution of (6.4) which vanishes 

on x = 1 and y----- • x / I f 3  is 

u(~ = (1/4) (1 --  x) (x ~ --  3 y~), (7.5) 

and this satisfies the condition ~u(~ = 0 on y = 0. The shape factor 
is then  

S ( x )  = (1/16) x 2 (9 x e -- 4 x -- 4). (7.6) 

The m a x i m u m  difference in level in this case is 

S(1) -- S(2/3) = 59/432. (7.7) 

8. Axial Velocity Perturbation 
Before a second approximat ion to the form of the free surface can be 

obtained, the perturbations u(1), pc) ,  and  v~ ) in (6.3) must  be calculated. 
We begin by  considering the axial velocity per turbat ion u(1). By  using 
(4. II) ,  (4.14), and (6.3) in the  axial m o m e n t u m  equat ion (6.1), we obtain 
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v 2 u(~) = - ~ (to ~ ~,~)),  ~, ( s .  ~) 

where the constant  ~ is defined in (4.17), and  y~ is defined in (6.6). On 
the t rough wall, u(*) is zero. The condition for u(~) on the unper turbed 
free surface is obtained by  using (6.3) in (5.12): 

u,(el)(xl, 0)//c ---- p(o)(x~ ' 0) o~,~(o),~, 0) + P,(~~ O) u,(~~ 0). (8.2) 

Wi th  (6.5) and (6.8), this  condition can be rewrit ten in the form 

U,(21)(XI, 0)/]~ Co a (0)[~ 0)  - -  (?)21/2) I S ( x 1 )  - (0), 0 )  __ r (Xl~ - -  

- -  S'(x~) u,(~~ 0) ] .  ( 8 . 3 )  

For  physical  insight,  it  is helpful to f ragment  uO) into three par ts :  

uO) =- ~h ~ ~-/c C O Fe -~/~ u~ %. (8.4) 

Then (8.1) and (8.3) are satisfied if % satisfies 

~2 ~1 = - -  (~02 ~ (0)), a, ~1.  2(XD 0)  = 0 ,  

~e satisfies 
( 8 . 5 )  

V ~ ~2 = o, ~2.2(x, o) = - ~,22~x1,~ (o)~ 0), (8.6) 

and  ~a satisfies 

v ~ ~ = o, % .  ~ (x .  o) = - (~/2) [~(x~) u , (2 ) (x ,  o) - S ' (x~)  u ,~~ 0)].  ( s .  7) 

Each  of the  functions ~ ,  qz, and  ~3 is to vanish at  the  t rough wall. 
In  the decomposit ion (8.4), qa is the axial velocity per turbat ion which 

would arise from the rate-dependence of the apparent  viscosity, in flow 
through a tube  bounded by  the t rough and its reflection in the plane x2 = 0. 
The te rm q2 is purely a Newtonian effect, which would arise if the Newtonian 
flat  free surface were a t  x 2 ~ e 2 k C o ra ther  t han  at  x 2 ~ 0. The te rm ~3 
is due to the distort ion of the free surface. 

9. P r e s su re  P e r t u r b a t i o n  

The equat ion for p(1) found by  using (4.11), (4.13), and  (6.3) in the 
transverse m o m e n t u m  equat ion (6.2), is 

(o, (o~o, <1> o (~)o.<O), ~ (7o~ (o)~,~0)),~ + v2v~> ,  ( 9 . 1 )  P,~) v~  ~,~, ~,~ + "~,~, ~,~ J,p + ~'2~ 

where  ?)21 and v2~ are defined in (4.16), and 7o ~ is defined in (6.6). By 
making use of (6.4), (8.1), and (8.4) to (8.7), from (9.1) we obtain 

po)  : ~21 ~]1 P1 -~- ?)21 ]~ Co P2 @ ?)~/c P~ @ ?)22 Pa @ (?)2~ ~ -- v22) P~ Jr C~, (9.2) 

where C, is an arb i t ra ry  constant ,  and the functions P~ are given by  

p~ ~ (o) (n 1, 2, 3), P4 ~o4/4, (9.3) 
and 

P5 . (o) i72 (9.4) 

The integrabil i ty condition on (9 4) will yield an equat ion for "(o) . 'Uer ~ 
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10. Transverse  Velocity 

To satisfy the continuity equation .(0) z 0, we introduce a stream ~,~ 
function F : 

v~ ~ ( ~  ~ ~ )  v,~,  = - (10.1) �9 = - -  V(20) (~)21 ~1 - -  ~222) ~/)' 1" 

The factor v21 Vl -- v22 has been introduced in order to simplify the equation 
for W. By eliminating P5 from (9.4) by  cross-differentiation, we obtain 

V ~ V ~ ~ = - ~(u(0), v "~ ~ ) / ~ ( x ~ ,  x~). ( 1 0 . 2 )  

The conditions ,~~ (0) ~ 0 on the trough wall imply that  ~ is constant 
along the wall and that  its normal derivative vanishes. We can take 

= 0 on the wall without loss of generMity. The free surface condition (5.7) 
implies that  ~v is also constant along the free surface, whence F(xl, 0) ~ 0. 
The condition (5.8) yields ~, 22(xl, 0) --~ 0. These are exactly the conditions 
satisfied by  the transverse velocity in flow through a tube whose cross- 
section is bounded by the trough and its image in the plane x 2 --~ 0. 

11. Free Surface: Second Approximation 

In the expression (5.11) for the free surface, we use the expansions (6.3) 
to obtain 

F/k  = P(~ 1, 0) -7 s ~ [P(1)(xl, 0) -7 (kz/2) P(~ O) -7 

-7 k P(~ O) P (~ O) 2 o(~ '2 \ 1, - -  v2,2(Xl ,  0 ) ]  --[- 0 (~4). ( 1 1 . 1 )  

With p(0) given by (6.5), we notice that  P,~(~ 1, 0) = 0 since u,(2~ O) = O. 
This eliminates one of the terms in (11.1). By using (6.5), (6.8), (9.2), 
and (10.1), from (11.1) we obtain 

F / ] c  - -  (1 ~-  F~ 2 ]c2/2) [ C  O ~-  (7)21/2) S ( X l )  ] -~- 

~_ ~2 {~21 ~1 Pl(Xl, 0) ~- ~21 ]~ Co P2(xl, 0) ~- ~221 ]c Pa(Xl, 0) ~- 

+ v22 Pa(x,, O) -7 (%1 ~ --  ~22) [Ps(x~, O) -7 2 V,,2(x,, 0)] -7 C, }-7 

-7 0 (~) .  ( l~  .2) 

All of the function S, P~, and ~v in (11.2) are independent of the physical 
parameters of the problem, and are determined only by  the cross-sectionM 
shape of the trough. In summary, we outline the procedure for obtaining 
these functions. First, u(~ is obtained by solving (6.4). S(xl) and Pa(x~, O) 
can then be evaluated immediately, from (6.8) and (9.3) respectively. 
Second, the problems (8.5) to (8.7) [or (8.1)] must be solved, to obtain 
~v~, ~ ,  and ~v3. The functions P1, P2, and P3 are then given by  (9.3). 
Finally, ~v is found by solving (10.2). The constants C o and C~ in (11.1) 
can then be determined b y  specifying the location of some point on the 
free surface. 
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12. Concluding Remarks 
The  first  a p p r o x i m a t i o n  to the  shape  of the  free surface, g iven b y  

(6.9),  is of an  especial ly s imple form. E v a l u a t i o n  of the  shape  fac tor  S(xl) 
requires  the  solut ion of only  one equa t ion  (6.4). However ,  the  second 
a p p r o x i m a t i o n  (11.2) involves  a v a r i e t y  of effects, and  eva lua t ion  of the  
funct ions  appear ing  in this a p p r o x i m a t i o n  requires  the  solution of two 
more  pa r t i a l  different ial  equat ions ,  which are more  difficult  to solve t h a n  
(6.4) is. We  have  carr ied out  all of the  detai ls  of these solutions in the  
case of a t rough  of semi-circular  cross-section, bu t  since we did no t  f ind 
this exercise to be  par t i cu la r ly  edifying,  we will no t  r epo r t  the  resul ts  here. 
Our  ma in  conclusions are t h a t  the  first  a p p r o x i m a t i o n  is pa r t i cu la r ly  
simple and  t h a t  the  second a p p r o x i m a t i o n  is excessively complicated.  
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