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Summary. In viscoelastic flow of an incompressible fluid down a straight trough
of arbitrary cross-section, the normal stress effect produces a distortion of the free
surface. In slow flow, the shape is given in the lowest order of approximation in
terms of the axial velocity for Newtonian flow. Equations governing the second-order
perturbation are derived.

Zusammenfassung, Beim viskoelastischen Strémen einer inkompressiblen
Flissigkeit entlang einer geneigten geraden Rinne beliebigen Querschnittes erzeugt
der Normalspannungseffekt eine Verzerrung der freien Oberfliche. Deren Form ist
bei langsamer Stromung in erster Niherung durch die Axialgeschwindigkeit fiir
NewroNsche Stromung bestimmt. Die Gleichungen der Niherung zweiter Ordnung
werden hergeleitet.

1. Introduction

In the present paper we consider the slow steady motion of incompressible
viscoelastic fluids in tilted troughs. The problem is closely related to that
of slow viscoelastic flow in tubes, treated by Lawerois and Riviiw [1].
The principal difference is in the presence of a free surface in the trough
problem. In Newtonian flow, the free surface remains flat, and the trough
problem is equivalent to the problem of flow through a tube whose cross-
section consists of that of the trough and its image in the free surface [2], [3].
In viscoelastic flow, however, the normal stress effect produces a distortion
of the plane free surface of Newtonian flow. Our main object is to obtain
an approximate expression for the form of this surface.

In slow viscoelastic flow through tubes [1], the flow is Newtonian
in the lowest order of approximation, and a first approximation to the
non-Newtonian normal stresses can be caleulated directly from the Newtonian
axial velocity field [4]. It can be anticipated that the same results will
apply to flow in troughs. There will then be an unequilibrated normal
stress on the Newtonian free surface. We can compute the pressure required
to equilibrate this normal stress, and the rise (or fall) of the free surface
should then be proportional to this pressure.

The present paper is simply a verification that the preceding argument
is correct, to first order. We also obtain a second approximation, mainly
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in order to identify sources of error in the first approximation and to provide
a means of estimating the accuracy of it.

The problem is outlined in Section 2, and the Newtonian approximation
is briefly described. In Section 3, we introduce dimensionless variables
suggested by the Newtonian approximation. We also introduce a non-
Newtonian parameter ¢ = 7" U/L, where U/L is a typical shear-rate in
Newtonian flow, and 7T is a characteristic relaxation time for the fluid.
The approximate solution is to be obtained by treating & as a small para-
meter. The constitutive equations for the viscoelastic flow are expanded
in powers of the parameter ¢ in Section 4. Section 5 deals with the free
surface conditions.

In Section 6 we show how the lowest-order approximation to the shape
of the free surface is related to the solution of the Newtonian flow problem.
Ilustrative examples are given in Section 7.

The more complicated problem of obtaining a second approximation
is discussed in Sections 8 to 12. We find that before such an approximation
can be obtained, it is necessary to calculate the axial velocity perturbations
which are produced by the surface distortion and by the variation of
apparent viscosity with shear-rate. It is also necessary to obtain a first
approximation to the transverse velocity field. However, the manner in
which the physical parameters of the problem enter into the approximation
can be exhibited explicitly, without carrying out any of these calculations.

2. Basic Equations. Newtonian Approximation

We consider the steady motion of an isotropic incompressible visco- -
elastic fluid down a long straight trough of uniform cross-section. The
trough axis is tilted at an angle § to the horizontal. We use a system of
Cartesian coordinates x;,” with the z;" axis parallel to the axis of the trough,
the w,’ axis horizontal, and the z,” axis in an upwardly direction. The
unperturbed free surface of the fluid lies in the plane z,” = 0. The level
of this plane is determined by the general level of the free surface, whose
form is to be determined. This level must be specitied in some way, for
example, by prescribing the point of intersection of the free surface with
the trough wall, or by prescribing the total flux down the trough.

We seek a solution in which the velocity components «,;” are independent
of z;’. The continuity equation is then

ou,’ [om,’ = 0, (2.1)

where Greek subscripts have the range 1, 2. We express the stress com-
ponents o;; in the form

05 = — P 0;; + 8, (2.2)

where the pressure p’ is arbitrary and the extra stress S, is to be specified
by a constitutive equation. The momentum equations are then

o u, ou'/on, = gg, — 0p'jox, +- 88,/ [ow,, (2.3)
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where the components g g, of the weight of fluid per unit volume are

(0g9:) = (0, —pgcos b, pgsin b). (2.4)
The conditions u,” = 0 are satisfied at the trough wall. On the free
surface, the velocity field satisfies the condition wu, n; = 0, where the
vector », is normal to the surface. In addition, the traction o,; n; must
reduce to a uniform normal pressure on this surface. Because the fluid
is incompressible, there is no loss of generality in taking this pressure to
be zero, i.e., o,;n; = 0. The form of the free surface is assumed to be
independent of ;.
The flow can be made as slow as desired by decreasing the tilt angle 6.
It is known [1], [5] that in viscoelastic flows which are sufficiently slow,
in a sense to be made more precise, the extra stress §,,'is given approximately
by the Newtonian relation

8:i" = p (0w [ox;” + ouy'[ox)), (2.5)
where 1 is the apparent viscosity at zero shear-rate. In Newtonian flow,
the pressure p’ is the hydrostatic pressure, — x,’ ¢ ¢ cos 0, produced by

the weight of the fluid. The transverse velocity components u,’ vanish,
and the axial velocity u,’ satisfies the equation

W (?ox? - 0%/ow,?yuy’ = — pgsin 0, (2.6)
which is the axial component of the momentum- equation (2.3). The
condition o;; n; = 0 is satisfied on the flat free surface x,” = 0 provided
that ouy'/ox,” = 0 on that surface. With ;" = 0 on the trough wall,
the axial velocity is then completely determinate. We note that for flow
through a tube for which the plane z,” = 0 is a plane of symmetry, the
axial velocity u,’ satisfies ou,’/0x,” = 0 on the plane x,” = 0. Thus, the
problem of Newtonian flow down a trough is equivalent to a problem
of flow through a tube.

3. Dimensionless Equations

Let L be a typical length associated with the cross-section of the trough.
From (2.6) we then find that the axial velocity in Newtonian flow is of
the order of

U = (p g L*u)sin 6. {3.1)
It is convenient to introduce the following dimensionless variables:
x; = x//L, w;= /U, 8= (LjuU)S; (3.2)
We also express the pressure p’ in the form
P = — &y 0gcos b+ (u U/L)p (2, @), (3.3)

where (u U/L) p is the pressure variation which will arise as a reaction
to the normal stress effect.

In the momentum equations (2.3), we use (3.1) to (3.3) and (2.4),
to obtain

Ruﬁ%a,ﬁ: —p,a—Q—S“ﬂ,ﬂ a;nd ‘R?‘{'a%3.a:1+‘s’3c€;d5 (3.4)
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where R is the REyNorLDs number, ¢ U Lju. The traction condition on
the free surface is, with (2.2) and (3.1) to (3.3),

(p — z,ctn O) »; = S;; n,. (3.5)

In dimensionless form, the continuity equation is u,,, = 0, the kinematic
free boundary condition is u,n, = 0, and the no-slip condition on the
trough wall is u, = 0.

In Section 4 we will find that a new parameter 7' with the dimensions
of time arises from the constitutive equation for the extra stress. When
we gpeak of slow motion of a viscoelastic fluid, we mean a motion in which
the typical shear-rate U/L is small when measured on a time scale intrinsic
to the fluid. That is, the dimensionless shear-rate defined by

¢e=TU/L (3.6)

is small. Because 7' can vary enormously from one fluid to another, the
shear-rates U/L which can be considered small will also vary widely,
depending on the particular fluid considered. However, in the present
problem we find from (3.1) and (3.6) that

¢ =sin O/k, where k= ufogLT. (3.7)

Hence, ¢ can be made as small as desired by decreasing the tilt angle 0.

Although 6 is the basic controllable parameter in the problem, it will
be convenient to treat ¢ as the fundamental parameter, and express all
other parameters involving 6 in terms of e. In particular, the REYNOLDS
number £ is written as

R =¢R', where R = L?uT. (3.8)

We shall seek a solution valid in the limit ¢ — 0, with k and R’ fixed.
The solution will thus become increasingly accurate as the tilt angle 6
decreases, for a fluid of fixed properties in a given trough.

As in slow viscoelastic flow through tubes [1], symmetry shows that
each of the unknowns of the problem is either even or odd in its dependence
on the parameter ¢ [6]. From the results on flow in tubes we can also
anticipate that the transverse velocity components u, will be of order &
in comparison to the axial velocity. On this basis, we write

uy' = Uy = Uulx,;e), u, = Uu, = U & v,(ng;&?) (3.9)
and
(4 U/L) p = (1 U/L) & Pla,; ). (3.10)

In addition, the equation of the free surface will be of the form
xy = & Fxay; &2). (3.11)

Dependence on the parameters £ and R’, which is not at issue here, has
been suppressed from the notation.
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4. Constitutive Equations

Because we wish to consider a slow steady motion, it is appropriate
to write the constitutive equation for the extra stress § = I8;,'| in the
RivuiN-Ericrsew [7] form:

Sl =2 g Ay -+ 3 3 omn Ay Ay +
+ 33 X tmnn A A Ay + Cnn A/ t7 (A AN+ o (£.1)

The coefficients y and « are constants, with «, = 1. The terms indicated
by dots are of degree four or higher in the kinematic matrices A,’. Symmetry
of §" requires that «,, = &un and Xp,, = &,u,. We can also take
Cminp = Om;pn With no loss of generality. Reduction of the Riviin-
ErICcKSEN equation for an incompressible fluid to a form equivalent to
(4.1) has been discussed elsewhere [8].

With U and L defined as in Section 3, we express A, in terms of a
dimensionless kinematic matrix A, through the relation

A, = (U/L)y" A,. (4.2)
The components AY) of A, are defined [7] by
A(ilj) = Wy, T Uy, (4.3)
and, for n > 2,
#n—1
AW = oy 21’(;;) u®) u; P, (4.4)
pryan
Here we use the notation
u = u; and Wl = (D/Dty—1 u,, (4.5)

where the dimensionless material derivative D/Dt is of the form u, 8/ox,
in the present problem.

The coefficients « in (4.1) have dimensions of time to various powers.
Let T be a characteristic time defined in terms of these coefficients, for
example 7' = |,|if &, + 0. Dimensionless coefficients § are then defined by

“n:ﬂnTn_la “mn:fgmnTm+n_1, (anp:/gminm+n+p—l_ (46)

By using (4.2) and (4.6) in (4.1), and recalling the definition (3.6) of the
parameter &, we obtain

Lp0)8 =8 = e =18, A, + 2 X em+n=18, A, A, +
+ 22 et By A A Ayt B s A (An AT+ ... (4.7)

Since «, = 1, it follows that 8, = 1 as well.

In the present problem, the transverse velocity components are weak
in comparison to the axial velocity [see (3.9)]. For this reason, each
material element in the fluid is almost in a state of steady simple shearing
motion. In such a motion, all of the kinematic matrices vanish except
A, and A,. Hence, in the present problem we can expect that 8 will be
given to a high degree of approximation in terms of A; and A, alone.
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With (3.9), the material derivative is of the form & v, 8/0%,. Hence,
with (4.5) we obtain

ud) = u, u) = B#n=3 (v, 8/ox,) ' u,
uP = S, wP = 8" (v, 8/0x,)" v,
Inspection of (4 .4) then shows that A, = 0 (" ~%)forn > 2, with A; = 0 (1).
If we neglect terms of order &% the expression (4.7) for 8 does indeed
involve only A; and A,
By means of (4.3) and (4.4), with (4. 8), these matrices can be expressed as
A,=B,4+8C and A,=B,-+ 0(sd), (4.9)
where the non-zero components of the matrices B;, B,, and C are
BY =wu,,, BE =2u,u,, and C,p=10,,+ V5. (4.10)

The matrices B, and B, are the kinematic matrices for the axial steady
simple shearing motion. C is twice the strain-rate matrix for the transverse
perturbation.

Because of the special forms of the steady simple shearing matrices B,
and B,, every symmetric matrix polynomial in these matrices can be
expressed as a linear combination of 8,, B,, B;?, and the unit matrix I, with
scalar coefficients which are polynomials in the invariant

YV2=1trB22 =wu,,u,, (4.11)
where y is the absolute shear-rate [9]. In particular, by using (4.9)in (4.7),

and recalling that A, = 0 (27 ~%) for n > 2, we obtain an expression of
the form

S=9B, +ev,B,/2 ¢, (B2 —By2)+&C-0(). (4.12)

The dimensionless apparent viscosity 4 and the normal stress coeificients
v, and v, are given by

vi =1+ (VP v+ 0 (&), vy =1y 4 (69)2 vy + 0(eh), (4.13)

(4.8)

and

=1+ (P m+ 0, (4.14)
where
Y1 = B, Vig = 2 iz + B + 2 ﬁn;n» (4.15)

Vor = 2 s + Br1s Vee = 4 a2 + 4 Birz + 4 Bay11 T Brann + 2 Bi1;1,  (4.16)

and

Ny = 2 Byp + Brux + 2 B1:11- (4.17)

From (4.12), with (4.10), we obtain
S3a=nuaa+0(84)9 (4:18)
Suﬂ=8[v2u:mu’ﬁ+82 (va,ﬂ+vﬁ,a) +0(64)]’ (4‘19)

and an expression for S;; which will not be needed. It is worth emphasizing
that although the flow we consider is not a viscometric flow [10], the
constitutive equations involve only the viscometric functions %, »;, and »,,
to the indicated order of approximation.
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5. Free Surface Conditions

By resolving the free surface fraction conditions (3.5) into axial,
tangential, and normal components, we obtain
SSQ’)?,“:O, Saﬂtan‘gzo, (5.1)
and
Xy Ny Ny =ta0 0 [P0y 0y — 8,50, 1], (5.2)

where n, and ¢, are respectively normal and tangential to the free surface
(3.11):
ng =1t =1, —ny =1t =eF(x). (5.3)

The three relations (5.1) and (5.2) can be simplified and made more
explicit by using the expressions (4.18) and (4.19) for 8. By using (4.18)
in (5.1a), and noticing that the apparent viscosity » is 0 (1), we obtain

Ny Uy 6 == 0 (£2). (5.4)
With this result, on using (4.19) in (5.1b), we obtain
(Va.p + Vg.a) ta g = 0 (7). (5.3)
Finally, by setting x, equal to &* F(z;) in (5.2), and making use of (3.7),
(3.10), (4.19), (5.3), and (5.4), we obtain
F=k(l —&k) P[P —2guv,,+ 0] (5.6)
We now express the free surface conditions in terms of quantities
evaluated on the unperturbed free surface z, = 0, by expanding each
unknown in powers of z, and then setting @, = ¢*F. The kinematic
condition 7, v, = 0 implies, with (5.3), that », = 0 (¢?) on z, = & F. By
using the expansion procedure just outlined, we obtain
Va(g, 0) = 0 (&) (5.7)

Because we shall seek only a first approximation to v,, (5.7) will be
sufficiently accurate for our purpose. A condition on the transverse velocity
component », is found by applying the expansion procedure to (5.5),
and then taking (5.7) into account:

vy, 5(25, 0) = 0 (&2). (5.8)
The expansion of (5.6) yields
Fik = (1 4 & B[2) [P(;, 0) + & F(2;) P52, 0) —
— 288 0y,5(%;, 0) + 0 (¢9)]- (5.9)
Hence in particular
F(x;) = k Py, 0) 4+ 0 (&%), (5.10)

and by using this result on the right-hand side of (5.9) we obtain the more
accurate expression

F/k = P(xl’ 0) _|_ 82 [(k2/2) P(xp 0) +
+ & P(x,, 0) P, (2, 0) — 20, ,(zy, 0)] + O (&%). (5.11)
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On applying the expansion procedure to (5.4), and using (5.3) and
(5.10), we obtain

U, 5(®1, 0) +- & [k P(xy, 0) u, 22(®1, 0) — & P, (%1, 0) %, 1(24, 0)] = 0 (¢%). (5.12)

6. Solution: First Approximation

In the momentum equations (3.4), we use (3.8) to (3.10), (4.18), and
(4.19), to express the axial component as

(nuau)>a:*1+0(34) (61)
and the transverse components as
Pux:(Vzusau:ﬂ)aﬁ+82[727)&—1"0(84)3 (62)

where the viscometric functions # and », are defined in (4.14) and (4.13),
respectively. To obtain the solutions of (6.1) and (6.2) to the indicated
order of approximation, we expand %, P, and v, in powers of ¢ as

w=u® + 2y® + 0(4), P= PO 4 & PO 1+ 0 (&Y, v, = v,® + 0 (&2).
(6.3)
By using (6.3) in (6.1), we obtain in particular

pRu® = —1, (6.4)

which is the dimensionless form of (2.6), the equation governing the axial
velocity in Newtonian flow. The condition u(® = 0 is to be satisfied on
the trough wall. With (6.3), the free surface condition (5.12) yields
w, (2, 0) = 0. Thus, u® satisfies all of the conditions on the axial velocity
in Newtonian flow.

When the expansions (6.3) are used in the transverse momentum
equations (6.2), and (6.4) is taken into account, it is found that the equation
for P® can be integrated immediately:

PO = (3,/2) (F — 2u0) + O, (6.5)

Here v, is defined in (4.16), C, is an arbitrary constant, and y, is the
absolute shear rate for the Newtonian flow:

vt = u, w0, (6.6)

x T

The lowest-order approximation to the shape of the free surface is
found by using (6.3) and (6.5) in (5.10):

F(a,) = (kvy/2) 8(x) + & Cy + 0 (). (6.7)
The shape factor S(z,) is
8(@,) = [, (21, 0)F — 2 u®(a;, 0). (6.8)

Here we have used the condition u.(x,, 0) = 0. The constant C, in (6.7)

affects the level of the free surface but not its shape. This constant can
be determined by specifying the height of a single point on the free surface,
or by specifying the total flux of fluid down the trough.
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We note that although the distortion of the free surface is a non-
Newtonian effect, the lowest-order approximation to the shape is found
by solving only the Newtonian flow problem (6.4). Converting (6.7) into
dimensional form with the aid of (3.1), (3.2), (3.6), (3.7), (3.11), (4.6),
and (4.16), we obtain

@y = (09 L2p) (%y + 01/2) (sin 0)* § (' /L)- (6-9)
Here we have omitted the constant and the higher-order terms in (6.7).

7. Examples
In the following sections we consider the problem of obtaining an
improved approximation to the shape of the free surface. In the present
section, we illustrate the results already obtained, with some simple
examples.
We first consider a trough in the form of an elliptical arc of semi-axes L
and % L, whose equation in dimensionless form is

a2t 4 (y/h)p =1, y <0, (7.1)

where we use the notation z == z, and y = %,. The solution of (6.4)
satistying «©® = 0 on (7.1) and #,5” =0 on y = 0 is

w® = [1 — o* — (y/hPY/2 (1 4 h~2), (7.2)
The shape factor defined in (6.8) is then
S(@) = [(2 + k222 — 1 — h=)/(1 + A2 (7.3)

Thus, the free surface takes on a parabolic shape. The largest difference
in level is _
A8 = S(1) — S(0) = (2 + A2)/(1 + h2), (7.4)

In the case of a shallow trough (h — 0), we obtain 48 =~ k2. For a circular
section (b = 1), we obtain A8 = 3/4, and in the case of a deep channel
(b —> oo), AS = 2.

The solution for a trough bounded by the planes z," = L and z,” =
= - :c{/]/g is also especially simple. The solution of (6.4) which vanishes
onx=1and y= + x/)/3 is

w® = (1/4) (1 — @) (22 — 3 ), (7.5)

and this satisfies the condition ou(®/9y = 0 on y = 0. The shape factor
is then

S(z) = (1/16) 22 (9 2> — 4« — 4). (7.6)
The maximum difference in level in this case is
S(1) — 8(2/3) = 59/432. (7.7)

8. Axial Velocity Perturbation

Before a second approximation to the form of the free surface can be
obtained, the perturbations »®, P®, and + in (6.3) must be calculated.
We begin by considering the axial velocity perturbation »®. By using
(4.11), (4.14), and (6.3) in the axial momentum equation (6.1), we obtain
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V2 ul) = — 3% (7(2) u,f,?)), @ (8.1)

where the constant #, is defined in (4.17), and 9 is defined in (6.6). On
the trough wall, «® is zero. The condition for «® on the unperturbed
free surface is obtained by using (6.3) in (5.12):

w2y, 0)/k = — PO(xy, 0) u,9(xy, 0) + Pz, 0) u. (2, 0). (8.2)

With (6. ) and (6.8), this condition can be rewritten in the form

xl’ 0)/k = — C, u}f‘z%)(wla 0) — (v2/2) [S(zy) .5y (2,0) —
— 8 (2y) w P (y, 0)]. (8.3)
For physical insight, it is helpful to fragment «(V into three parts:
u® =9, 91 + k£ Co @y + kvyy @ (8.4)
Then (8.1) and (8.3) are satisfied if ¢, satisfies

PP o= — (b w)es  @ral®, 0) = 0, (8.5)

@, satisfies
VPgs =0, @55, 0) = — u,53(%,, 0), (8.6)

and ¢, satisfies :
Pres =0, gy (g, 0) = — (1/2) [S(xy) w53(x1, 0) — 8'(2,) w{"(2y, 0)]. (8.7)

Each of the functions ¢,, ¢,, and p; is to vanish at the trough wall.

In the decomposition (8.4), ¢, is the axial velocity perturbation which
would arise from the rate-dependence of the apparent viscosity, in flow
through a tube bounded by the trough and its reflection in the plane z, = 0.
The term g, is purely a Newtonian effect, which would arise if the Newtonian
flat free surface were at x, = & k C,, rather than at z, = 0. The term ¢,
is due to the distortion of the free surface.

9. Pressure Perturbation

The equation for P®, found by using (4.11), (4.13), and (6.3) in the
transverse momentum equation (6.2), is

P’( ) = vy, ( (0) \1) + u(l) kO)) P 4 vy, (Voum) (0)) + Vz (0) (9.1)

where v,, and »,, are defined in (4.16), and y; is defined in (6.6). By
making use of (6.4), (8.1), and (8.4) to (8.7), from (9.1) we obtain

P(l):”21771P1‘|“7’21k00P2+V§1kP3+V22P4+(V21771—”22) P;+Cy, (9.2)
where (, is an arbitrary constant, and the functions P, are given by
P, (0)(pna_q9n (n=1,2,3), P4:Vé/47 (93)

and

(0)

Py = u,y V2@ 4 W 1y — vae) L 2 ”(0) (9.4)

The integrability condition on (9.4) will yield an equation for v+,
Acta Mech. I/ 8
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10. Transverse Velocity

To satisfy the continuity equation oY), = 0, we introduce a stream
function w:

77(10) = (Va1 1 — Va2) Vs as 2720 = — (Va1 1 — Va2) Y1 (10.1)
The factor vy; 7; — v,, has been introduced in order to simplify the equation
for . By eliminating P; from (9.4) by cross-differentiation, we obtain

PRy = — o(u®, 2 ¢,)/d(z,, x,). (10.2)

The conditions »” = 0 on the trough wall imply that v is constant
along the wall and that its normal derivative vanishes, We can take
1 = 0 on the wall without loss of generality. The free surface condition (5.7)
implies that y is also constant along the free surface, whence y(z;, 0) = 0.
The condition (5.8) yields v, ,5(2,, 0) = 0. These are exactly the conditions
satisfied by the transverse velocity in flow through a tube whose cross-
section is bounded by the trough and its image in the plane z, = 0.

11. Free Surface: Second Approximation

In the expression (5.11) for the free surface, we use the expansions (6.3)
to obtain

Flk = PO(x,, 0) + & [PO(z;, 0) + (/2) PO(x,, 0) +
+ kPO, 0) PO(w,, 0) — 208 (m, 0] + 0 (). (11.1)

With P© given by (6.5), we notice that P,{(x,, 0) = 0 since u,9(z,, 0) = 0.
This eliminates one of the terms in (11.1). By using (6.5), (6.8), (9.2),
and (10.1), from (11.1) we obtain

Fik = (1 + & k/2) [Cy + (v5,/2) S(@1)] +
&2 {vy m Py(2y, 0) - vy, k O Py(,, 0) -+ 951 k Py, 0) -+
+ vay Pyl@1, 0) + (va1 71 — va0) [Ps(@y, 0) + 29, 152y, 0)] + Oy }+-
+ 0 (e%). (11.2)

All of the function S, P,, and pin (11.2) are independent of the physical
parameters of the problem, and are determined only by the cross-sectional
shape of the trough. In summary, we outline the procedure for obtaining
these functions. First, »(® is.obtained by solving (6.4). S(x,) and P,(x;, 0)
can then be evaluated immediately, from (6.8) and (9.3) respectively.
Second, the problems (8.5) to (8.7) [or (8.1)] must be solved, to obtain
®1, Py and g, The functions P,, P,, and P, are then given by (9.3).
Finally, vy is found by solving (10.2). The constants €, and C; in (11.1)
can then be determined by specifying the location of some point on the
free surface.
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12. Concluding Remarks

The first approximation to the shape of the free surface, given by
(6.9), is of an especially simple form. Evaluation of the shape factor S(z,)
requires the solution of only one equation (6.4). However, the second
approximation (11.2) involves a variety of effects, and evaluation of the
functions appearing in this approximation requires the solution of two
more partial differential equations, which are more difficult to solve than
(6.4) is. We have carried out all of the details of these solutions in the
case of a trough of semi-circular cross-section, but since we did not find
this exercise to be particularly edifying, we will not report the results here.
Our main conclusions are that the first approximation is particularly
simple and that the second approximation is excessively complicated.
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