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Summary

The problem of two cracks emanating from the same origin and propagating asym-
metrically at different velocities in an elastic and isotropic solid is treated in this paper.
An unbounded and otherwise undisturbed medium and a constant anti-plane loading
at infinity were assumed. Techniques of self-similar elastodynamics were utilized in con-
junction with analytic-function theory. Since a closed-form solution of such a problem
is impossible we relied in the last steps of the procedure upon numerical analysis.

1. Introduction

Dynamic fracture is a subject which continues to concentrate the interest of
workers of applied mechanics. In this realm also belongs the present work.
Relevant references which review the most basic theoretical studies in this field
were published by Achenbach [1], [2], Freund [3] and Sih and Chen {4]. However,
since then some important contributions also appeared in the literature, e.g.
(5], [6]-

Of course, anti-plane elastodynamic crack problems are considerably simpler
than their counterpart in-plane, since the former involve one wave equation
instead of two wave equations for the latter problems. In spite of the idealization
of the anti-plane case, this may serve both to examine certain qualitative features
common to all types of fracture and to check the efficiency of several numerical
methods utilized in fracture mechanics.

Here, we have analyzed an anti-plane crack problem of the transient elasto-
dynamic type. This involves two rapidly propagating cracks in an elastic, iso-
tropic and homogeneous body. Initially, this unbounded body is under a state of
constant shear stresses at infinity. At a certain instant of time taken as ¢ = 0, two
cruciform cracks emanate from the same internal point taken as the origin of a
Cartesian coordinate system. The cracks propagate along the x and y axes with
constant velocities. In particular, the two branches of the first crack on the
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z-axis run at different speeds vy, v, which also differ, from the common speed of
the branches of the second crack on the y-axis v. Thus, symmetry prevails only
about the z-axis.

The present problem is an idealized case of a class of geodynamical fracture
problems. Indeed, cruciform crack propagation at different velocities of the
several crack branches is common to the fracture of geophysical settings with
preexisting rupture planes. It is noted that anti-plane shear crack propagation in
geophysical settings with preexisting fracture planes has more physical signifi-
cance than fracture of engineering materials since in the first case the basic
assumptions of the theory are very well fulfilled, viz. nearly infinite thickness of
the layer, negligible bending, etc. Of course, the most general case in cruciform
crack propagation is the case of four different tip velocities of the respective four
crack branches. But such a fully asymmetric problem with unequal crack branches
both in z- and y-axis would result to an intractable mathematical problem. In
this paper, we have confined ourselves to study the effect of asymmetry only in
one direction.

Moreover, we have considered that the external stresses at infinity 7,, and 7,
are equal for convenience in the computations. Actually, these stresses may be
not only different from each other but also arbitrary functions of the spatial
variables, without any change in the procedure followed.

The method of solution is based on Chaplygin’s transformation and the
analytic-function theory. After successive conformal mappings a mixed boundary-
value problem in the half-plane was formulated and solved.

2. Governing Equations and Boundary Conditions

As depicted in Fig. 1, we consider a body occupying the whole space under
anti-plane shear at infinity. Assume that this body was disturbed by cruciform
cracks running at different velocities along the z- and y-axes, respectively. The
crack motion produces disturbances such that

Uy =y =0, wu, = wlw, ¥, 1). {v

The w-displacement satisfies the two-dimensional wave equation [7]

1 %w

Vi = — ——
¢ o

(2)
where ¢ = (u/o)V? is the shear-wave velocity in the medium, u the shear modulus
and p the mass density of the material.

It is obvious that the time-derivative of the displacement @ = &w/dt, i.e. the
particle velocity, satisfies also the wave equation
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& o

P2 = 3)
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Fig. 1. Crack propagation in asymmetric cruciform paths

which in polar (r, 6)-coordinates may be written as
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(4)

The only operative anti-plane shear stresses are given by

ow ow sin § ow
Ty = ph— = p[COS O — — —— —

ox or r of
(5)
ow 0 w cos § ow
=y — =pu|sin § — —
v My TH 7 r a0

For convenience, instead of loading at infinity, we consider the loading as
applied to the crack surfaces. Then, the solution of the original problem was
extracted by a trivial superposition. Moreover, because of the symmetry in geom-
etry and loading with respect to the plane y = 0, the problem in the whole
space may be reduced in the upper semi-space. In view of the above and Fig. 1,
the boundary conditions can then be written as

7, 0) =7 for —ut <z <yl (6.1)
7,(0, ¥) = —7 for O<y<wt (6.2)
w(z,0) =0 for —oo < 2z << —u,t, ol << X << 00 (6.3)
Tye = Tye =0 for (22 + )2 > co. (6.4)

The displacement and the particle velocity vanish at the wavefront r = ct
since the externally applied stresses and their time-rates do not contain impulse
or step functions of time. Therefore, the wavefront » = ¢t is not a shock (singular)
wavefront but w and o are continuous functions along it.
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3. Dynamie Similarity and Conformal Mappings

Following the technique presented in [8], [9] we introduce a new variable
o == r/t reducing thus the independent variables from r, 8, { to w, 6. As a con-
sequence, Hq. (4) becomes

) w?\ 0%b 20\ O = P

in the new “velocity” plane. Accordingly, the distances in the (z, y)-physical plane
must be transformed to the pertinent variable in the (2/1, y/f)-“velocity” plane,
as is shown in Fig. 2.

It is advantageous, as it will be seen later, to express the boundary conditions
in terms of W and (6w/80). In view of (5), Egs. (6) become

ow T

— =7 for 0=0,m, —vit<<r <<vyl

o0 u

Ty for G—m2, 0<r<ot (8)
— = —1r for = , r

0 p 7 v

w=70 for 6=0,n, —uit>71 and v, < 7.

Differentiation in Egs. (8) gives automatically the boundary conditions in the
“velocity” plane

ow T
— =—w for 0=0,7n —v,<w<v,
o0 "
ow T
56::_‘[760 fOI‘ 6:76/2, O<w<v (9)
w=20 for 0=0,m, —v,>0 and v, <w
W =0 for o =c¢, 7<0=0.
y/tx
E
w=0
v
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Fig. 2. The “velocity” plane
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The next step is the application of the Chaplygin transformation [8], [9].
According to this, the area inside the half-circle ® = ¢ with the branch cut along
0 =72, 0 < o < v (Fig. 2) is conformally mapped onto the semi-infinite strip
0 < s << 00,0 < 0 < & with a cut in the (s, 0)-plane (Fig. 3) by means of

y = § + 10 = cosh™ (¢/w) - 6. (10)

Under (10), Eq. (7) becomes
o P —0 (11
e )

namely the Laplace equation in the (s, 6)-plane. Methods of analytic-function
theory are therefore applicable. ’

It is interesting to observe that (6w/0§) may be transformed from the (/¢
y/t)-plane to (s, 6)-plane and vice versa, simply by changing the variable w to s
via (10). In the (s, 6)-plane, (84/00) becomes the normal derivative of w(s, §) along
the boundaries § = 0, 0 = /2 and 0 = 7. The boundary conditions (9) are now
expressed by

ow T ¢
0 ; cosh s

w =10 along F@, DEF, CD. (12.2)

along GH, AH,AB,CB (12.1)

The above boundary-value problem has quite unusual boundary conditions.
Conditions (12) are not of the well-known types of Dirichlet, Neumann, or Robin-
Cauchy. However, this problem will treat by means of a new conformal mapping
of the cut strip onto the upper half-plane —oco << & <C 0o, 5 = 0 and then by a con-
venient formulation of a Keldysh-Sedov problem.

We consider the following transformation already utilized in crack problems
of elastic wave diffraction by Achenbach [10] and others [11], [12]

o2 it
{= [1 — (1 — -c—z) tanh? (y — m)] (13.1)
1 — CZ 1/2
p = tanh~1 5 + m. (13.2)
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e
i 4 y-plane
.| F G H
in +
inglE A H
2 B
0 4 »
D C B s

Fig. 3. The semi-infinite strip with a cut in the (s, 0)-plane
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Under the above relations the strip of Fig. 3 maps conformally onto the upper
half-plane of Fig. 4. The new positions of the points of interest are also shown in
the latter figure.

To transform the boundary conditions from the (s, 6)- to the (&, )-plane it
must be considered that

ow  dy ow [1 — (vfe)2]2 ¢ aw 1
ap  dZ a6 [(vfe)r — F (1 — B @0’ 14
Then, the boundary values of the normal derivative (é1/8n) are given as
ow 7C &
— = B .
B (e e g e GREE (D
ow e [1 — (w/e)2P2 & .
— = 1 BA4, AH. 15.2
I (O e T B -
4. The Keldysh-Sedov Problem
Since the w(&, n)-function satisfies Laplace’s equation, we can write
w(, n) = Re ¢(0), (16)

where ¢ is an analytic function of the complex variable = £ -+ . Consequently,
it is valid that

o(Re ¢(0)) oI 4(2)

O =90 == P
(17)
_ ARed(D) HRed(r) ow o
o ot on T8 on
$(0) = [ @) dt + 4, (18)

where the constant 4 may be omitted, since it contributes only a rigid-body
motion to the system.
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Fig. 4. The upper (&, n)-half plane
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Because (&) vanishes in the interval & > v,/c and & < —w,/¢ of the real
£-axis, the derivative (61/8&) vanishes also in the same interval. Thus, the original
crack problem is reduced to a mixed boundary-value problem where the real
part, &w/o&, of an analytic function @(7) is prescribed on an interval of the real
axis of a half-plane, whereas the imaginary part, 0w /0, is given on the remaining
portion of the &-axis.

One may recognize that this problem is the Keldysh-Sedov mixed-boundary
value problem [13], [14]. As regards the type of solution of the problem, we choose
a behaviour of the ¢(¢)-function so that square root singularities of the time-rate
of stress occur at v,/c and —v,/e. This corresponds to integrable singularities of
D({) at the points of division, i.e. at v,/c and —wv,/c

(v1/c)

1 1 ER(0) g(0)
@(C)_% %f?cda+BC+0 (19)
—(vafc)
where
12 o \12
R@) = (c - ”—2) (c ~ —) (20)
c c

_ gef _ %r_c a for (v,/¢) > 0> (v/c) and

glo) = —27 an = P [(v/c)2—02]1/2 (1— 0.2)112 —(v/c) >0 > —(vg/c)
(21.1)

B _1;2_1.0 [1— (0/0)2]1/2 o
f[(v/e) — I (1 — o%)

for  (v/c) > o > —(v/c).
(21.2»

In relation (19) the constant B vanishes due to the obvious additional con-
dition that @(oc) = 0. The remaining constant C is a real one.

5. The Stress Field

From the view-point of fracture mechanics, the determination of the 7,,(x, 0, ?)
and 7,,(0, y, {)-stress is of great importance since the stress intensity factors at the
crack tips may then easily be obtained as

Ky = lim [27(z + v,8)]"? 7,,(2, 0, 1) (22.1)
T—>—vyd

Ky = lim [2n(z — v,) "% 7,,(=, 0, #) (22.2)
vyl

Ky = Hm 27y — v 7,,(0, 9, 8. (22.3)

y—>ut
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Due to the symmetry of the original crack problem in respect to x-axis, the
determination of the 7,,(, 0, f)-stress ahead of the moving crack tips does not
present a particular interest since it may be obtained by a convenient super-
position utilizing the work of Achenbach and Brock [15]. However, the deter-
mination of the 7, (0, y, t)-stress is a novel subject and thus the present analysis
is indispensable for the solution of the problem.

In view of relations (5), (13) and (17) the ,,(0, y, #) time rate of stress may be
evaluated as

.00, 94,8 = 2 m [@(n) (E], ol <y <ct (23.1)
y dy
dr (/e — (1 — £y
@ - [1 _ (’U/C)Z]llz C (23.2)
and consequently the stress itself as
t
70y, ) = [ 40,5, 0d,  (yv) =t = (y)o). (24)

(/h

Time rates of stress and stress itself are therefore obtained as long as @(z) is
calculated. Moreover, stresses at any material point can be determined following
the evaluation of the &(()-function.

Restricting ourselves to the evaluation of the quantities of interest ahead of
the tip moving along the y-axis, it suffices to calculate the following integrals

(vfe)

— ((6 + (”2/0)) (0‘ — (vl/c)) 2 gdo
Il - | ((’U/c)2 —_— 0’2) (1 . 0.2) ] v — “7 (251)
(vfe)
(vfc)
[ lo + (vlo)) (0 — (vife) (1 — (w/e)?) T2 v do
I, = | (’l)/c)2 — o2 :| (O’ — M’]) (1 . 0'2) (252)
—(vfe)
_(u/C)(+(/))( (/))/ J
4 ve/e)) (0 — (vi/e)V]Y2 o do
= f [ ((v/e)® — o?) (1 — o?) ] o —in (25.3)

—(vaf)
The I,- and I,-integrals have the same form which is as follows

b

_ 1/2
1= f £(2) (2_;) da (26)

«
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whereas the I,-integral is of the form
[
* = [ f) [(2 — &) (b — D] da. 27)

Both I- and I'*-integrals are too complicated in our case for a closed-form evalua-
tion. However, one may apply a numerical scheme for their evaluation in order
to have useful results for the praxis. For instance, in Abramowitz and Stegun [16]
the following numerical formulas are suggested for these integrals

I~ (b—o«) ) W,fim) (28)
j=1
my=o+b—ax)k (29.1)
Aj = cog? (;7@ :_ 11 %) (29.2)
W, — 2% 20.3
i 271/ _{_ 1 7 ( b )
and
I* =~ 3] Wif(4s) (30)
i=1
b b—
4= : Ty, (31.1)
2 —1
m; = COS ( o 77:) (31.2)
T
W= (31.3)

In this way, one may obtain the time-rate of the z,,(0, y, f)-stress by the
relation

_ o _ w\"U2 [ o\l -
(0, 9, 1) = ’ Tm H(’”? + _c_) (“? - ?) ((279)
- (2zep U, — 2tep M, + 2renT L)) + C’] (32)

<[(v/e)r — ()] [T — (@)}° [1 — (v]e)?] (Z'T/)_‘J

02 ct i | M2
m=11— |1 — —|} tanh? h=1{—) — — .
i [ ( 62) an [cos (g) 2]] (33)

where
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The constant C can be determined by the boundary condition
points B or H, i.e. for £ = —(v/c) or & = v/c.
A numerical integration again will give the stress via (24).

= 0 at the

6. Conelusions

In this paper we have analyzed the problem of a rapidly extending cruciform
slit under anti-plane shear biaxial loading. The usual assumptions of linear
elasticity were considered and the method of dynamic similarity was employed in
order to apply complex analysis.

It was shown that a closed form solution is impossible and numerical treatment
is thus indispensable. However, the procedure is straightforward and one may
easily take information about the field quantities of the problem by using the
results of the paper.
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