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A topological characterization of the stable and minimal 
model classes of propositional logic programs 

A u d r e y  P. F e r ry  

University of Michigan, USA 

In terms of the arithmetic hierarchy, the complexity of the set of minimal models 
and of the set of stable models of a propositional general logic program has previously 
been described. However, not every set of interpretations of this level of complexity is 
obtained as such a set. In this paper we identify the sets of interpretations which are 
minimal or stable model classes by their properties in an appropriate topology on 
the space of interpretations. Closely connected with the topological characterization, 
in parallel with results previously known for stable model classes we obtain for 
minimal model classes both a normal-form representation as the set of minimal 
models of a prerequisite-free program and a logical description in terms of formulas. 
Our approach centers on the relation which we establish between stable and minimal 
model classes. We include examples of calculations which can be performed by these 
methods. 

1. Introduction 

Let  P be a p ropos i t iona l  general  logic p r o g r a m  over  a finite or  co u n t ab ly  
infinite set U o f  a toms.  Recal l  tha t  an  in te rp re ta t ion  for  P is a subset  o f  U. By a 
mode l  o f  P we m e a n  an  in te rp re ta t ion  S c_ U which  is closed u n d e r  Te; by  a 
minimal  mode l  o f  P we m e a n  a mode l  S o f  P such tha t  no  p r o p e r  subset  S' ~ S 
is a mode l  o f  P; and  by  a stable mode l  o f  P we m e a n  a set S _C U such tha t  S = 
least f ixpoint  o f  T~Ls(t,), where  GLs(P) is the G e l f o n d - L i f s c h i t z  t r a n s f o r m  o f  
p r o g r a m  P with respect  to S defined in [3]. Le t  Mod(P), Min(P), and  Stab(P) 
denote ,  respectively,  the set o f  models ,  min imal  models ,  and  stable mode l s  o f  P.  
F o r  a given p r o g r a m  P, we see tha t  these classes are re la ted by  

Stab(P) c_ Min(P) C_ Mod(P) C_ 2 t:, 

with the first inclusion given by  [3]. 
We refer  to a subset S o f  2 U as a mo d e l  class, min imal  mode l  class, or  stable 

mode l  class if  S = Mod(P), S = Min(P), or  S = Stab(P), respectively,  fo r  some 
p r o g r a m  P. In this pape r  we are conce rned  with discover ing which subsets o f  2 v 
arise as minimal  and  stable mode l  classes. W e  find simple ma thema t i ca l  p roper t i es  
tha t  charac ter ize  these classes. 
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In [4], the important  notion o f " p r o o f  scheme" was introduced. Informally, a 
proof  scheme from P for element u E U consists of: (1) a finite sequence of clauses 
from P, with u as the head of  the last clause, such that every positive literal in the 
body of a clause occurs as the head of some previous clause, and (2) a cumulative list 
of  the negative literals occurring in these clauses, called the "support"  of the proof  
scheme. Using this notion, it was shown that the stable models S of a program P 
could be described by a system of equivalences of the form 

V A aCs 
AEkO u aEA 

for u E U, where the sets A E kVu are the supports of minimal proof  schemes for u. 
Note that each conjunction in this expression is finite, but that the disjunction may 
be finite or countably infinite. In [6] these conditions are called a system of"defining 
equations" for the stable models of P, since the equivalences may be considered as 
Boolean equations which are satisfied by those valuations which correspond to 
stable models. Alternately these conditions may be formulated as a sentence tr = 

A[R(u) V 
uEU AEk~ u aEA 

U of s (in the language s  consisting of a unary predicate symbol R and a 
constant symbol u for each u E U), with the property that (U, S,~u~v) ~ cr if 
and only if S is a stable model. 

From this description, it was shown in [4] that the class of stable models of a 
program P is II ~ in the parameter P. In the same paper, it was shown, by a comple- 
tely different method, that the class of minimal models of  P is also II ~ in P. The 
present author then found an example of a II ~ antichain which cannot be realized 
either as the class of stable models or as the class of minimal models of any program. 
To characterize stable and minimal model classes and to distinguish between them, 
a narrower description of the complexity of  each is needed. 

One such description is given in the paper [5]. There it is shown that the sets of 
Turing degrees realized in stable model classes of recursive programs correspond 
exactly to the sets of  degrees realized in ri o subsets of U u. In this paper, on the 
other hand, we characterize stable model classes not up to Turing degree, but in 
absolute terms. The description which is provided here measures complexity 
however not in the arithmetic hierarchy but rather in the Borel hierarchy of a 
suitable topology on 2 v. Though the results could be translated into recursion- 
theoretic language, the topological language is more direct. 

We recall first the definition of the Cantor topology on 2 U, which is familiar 
from descriptive set theory and other foundational studies. In this space the open 
sets are generated by basis elements of the form {S:  Aa~Aa E S A Ab~sb r S} 
for A and B finite, possibly empty, subsets of U. This is of  course the  product 
topology on 2 u for 2 = {0, 1} under the discrete topology. It is both metrizable 
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and compact. Its Borel and analytic hierarchies are analogous and related to the 
arithmetic and analytical hierarchies of recursion theory. 

As was shown in [4], the model classes of logic programs are easily character- 
ized as the closed sets of 2 t: under the Cantor topology (see Theorem 1.1 below). 
The result that Stab(P) is II ~ in P mentioned above means that every stable 
model class is a G~ subset of 2 re, and similarly for minimal model classes. Examples 
1 and 9 below, which are adaptations to the topological setting of the author's 
earlier example, show that neither stable nor minimal model classes are character- 
ized by the properties of being an antichain and a G~ set in this topology. 

An exact description of these classes can be given, however, in terms of a 
different, coarser topology on 2 t:, which, unlike the Cantor topology or notions 
from recursion theory, is not symmetric with respect to positive and negative infor- 
mation. We take as a basis for this topology all sets of the form {S : Ab~Bb ~ S} for 
B a finite, again possibly empty, subset of U. This turns out to be an instance of the 
inverse-Scott topology encountered in the study of continuous lattices, with 2 t: 
regarded as a lattice under the partial ordering c_. The same topology has been 
investigated in connection with logic programming by Aida Batarekh in her 
thesis [1] and subsequent papers. 

The essential feature of this topology is that open sets are closed under "going 
down" (that is, if ~ is open, S E ~, and S' _c S, then S' E G) and closed sets under 
"going up" (if.T" is closed, S E ~ ,  and S' 3_ S, then S' E ~'). We note that the only 
open set to which U belongs is {S : A b r s} = 2v; equivalently, U belongs to 

b~0 
every closed set except 0. Similarly the empty subset of U is an element of every 
open set except 0; the only closed set to which it belongs is 2 t: itself. Note also 
that {0}, though closed under _c, is not open. 

In contrast to the Cantor space, much about the inverse-Scott space runs 
counter to intuition. For one thing, its Borel hierarchy is not analogous to the 
arithmetic hierarchy; a closed set, for instance, generally is not G~. The situation is 
much worse, however. The space is not Hausdorff--in fact does not even satisfy 
the weaker requirement that singleton sets be closed--so convergence does not 
work as expected. For instance, an increasing sequence So _c $1 C_ $2 c_ . . .  in 2 v 
converges not only to the point U i ~  si, but also to every point S' such that 
Uie~ si c_ s'. Nonetheless the topological representation is natural, and its peculiari- 
ties seem to reflect real difficulties in the logical behavior we are trying to describe. 

We make use of the following notation: The spaces described above will be 
denoted by (2 t:, Cantor) and (2 t:, Scott-I). For S c_ 2 v, we let S represent the 
closure of S in the Cantor topology, and ,~ its closure in the inverse-Scott 
topology. We use rain S for the set of inclusion-minimal elements of S, and S -~ for 
the collection of supersets of elements of S (that is, {S' : S' 3_ S for some S E S}). 
For B a finite subset of U, the symbol/~ represents the sequence (bl, . . .  ,bn) if 
B={bl , . . . ,bn} ,  or the empty sequence if B = 0 ;  likewise ~B represents 
(~bl,...,-~bn) or the empty sequence. An expression of the form 
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.~1,. . . ,  .~n, _~/~1,..., _~ffm represents a concatenation o_f finite ~quences. We some- 
times write a general program clause in the form c ~ A1,. . . ,  A n, --,B1,..., ~ffm for 
A1, . . . ,  A n, B1, . . . , /V finite subsets of U, permitting the possibility that any or all 
of the sets A1, . . . ,  A n, B1, . . . ,  B m might be empty. The unnegated atoms in the body 
of a clause are called prerequisites, and if the set of prerequisites is empty, then 
the clause is called prerequisite-free. A program is called prerequisite-free if it 
consists entirely of prerequisite-free clauses. We follow the convention that 
A cpa = 7- and V ~ a  = ..L. Finally we permit the use of infinitary conjunction or 
a~O a~O 

alternative symbols outside the setting of a formal system as abbreviations for 
saying that all or some of an indicated collection of conditions hold. We use the 
expression/~ ~ S (for S C_ U) to stand for A b r s.  

bEB 

For our purposes, the following result is fundamental: 

Theorem 1.1. (a) [4] A set S C_ 2 v is the model class of some program if and only if 
U E S and S is closed in the Cantor topology. 
(b) A set S C_ 2 v is the model class of  some prerequisite-free program if and only if S 
is nonempty and closed in the inverse-Scott topology. 

Proof 
(a) =~ Let P be a program such that S = Mod(P). Then 

S = {S : for every clause p in P, S ~ p} 

: N{s:s p}. 
pEP 

So it suffices to show that, for any clause p, U ~ p and {S : S ~ p} is closed. 
Suppose that p has the form 

c ~ -  ~ , - ~ / i  

for A, B finite, possibly empty, subsets of U. Then 

{S: S ~ p} = {S:  S ~  ( A  aA A-~b) - ,  c} 
aEA bEB 

V- av Vb vc} 
aEA bEB 

={s: VaCSvVb S v c s s } ,  
aEA bEB 

which is basic closed in the Cantor topology. Since c E U, U ~ p. 
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Suppose that $ = NiE1 Si ,  where, for each i, S i is basic closed and U E Si. We will 
show that for each i there is a program clause pi such that Si = {S : S ~ Pi}. So 
suppose that the basic closed set S/ has the form 

{ S : V a f [ S V V b E S  } 
aEA bEB 

for finite subsets A and B of U. Since U E ~-~i~ B must be nonempty. Let c be any 
element of B, Then 

S'={s:Vacsv V b SvccS} 
aEA bEB-{c} 

V-day V b vc} 
aEa bEB-{c} 

={s:s (AaA A--,b)-,d 
aEA bEB-{c} 

: {s:s pi}, 

where Pi is the clause c ~ ,4, ~/~. Finally let P be the program consisting of 
{Pi : i E I}. Then S = Mod(e). 
(b) The proof of part (b) is similar. �9 

In the remainder of the paper, we extend the perspective of Theorem 1.1 to 
the minimal and stable model classes of programs. Guided by the topological inter- 
pretation, we will show that for every program P there is a prerequisite-free 
program P' with the same minimal models. For programs in this form we are 
able both to characterize their minimal model classes topologically and to describe 
clearly which sets are minimal models in terms of the program clauses. From this 
description we can then explain what additional property distinguishes the stable 
models among the minimal models and, further, describe the relation of stable 
model classes to minimal model classes. Specifically, we obtain for minimal 
model classes a prerequisite-free representation and defining equations similar to 
those for stable model classes, and, for both minimal and stable model classes, a 
characterization theorem. 

2. Minimal model classes 

We begin with general facts about subsets of (2 U, Cantor) and (2 d, Scott -1) 
and their minimal elements: 
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Proposition 2.1. For nonempty S C_ 2 v : 
(a) min S = min S ~-. In fact,  rain S = min ,,V for  any X with S c_c_ 2( c_ S ~- . 
(b) S = min S i f  and only i f  S is an antichain. 

Proof. Straightforward. 

Proposition 2.2. For nonempty S c_ 2 v : 
(a) S -~ C__ S. 
(b) S ~ is closed in the inverse-Scott topology iff  S ~- = S. 

Proof  
(a) As noted above, closed sets in (2 v, Scott -1) are closed under the relation _D. 
Since ,~ is closed and contains S ,  it contains S -~ as well. 
(b) If S-~ is closed, then S c_ S -~ by definition of closure. �9 

Proposition 2.3. I f  ,~ c_ 2 v & closed in the Cantor topology, then 3 ~- is closed in the 
inverse-Scott topology. 

Proof=_Suppose that ~'-~ is not closed in (2 v, Scott-I) .  Let R E ~-~ - U-~. Because 
R E )r_~, there is a sequence S1 ,$2 , . . .  of elements of )r-~ converging in the 
inverse-Scott sense to R. (This requires only that the space be first countable--  
that is, that each point have a countable neighborhood basis.) 

By definition of 5 r-~, each Si has a subset SI with SI E F .  Since (2 v, Cantor) 
is compact and ~" is a closed subset, ~" itself is compact. Therefore the sequence 
S], S~,. . .  in 5 t" has a subsequence which converges in the Cantor sense to a point 
S* E,~'. 

We know that S* g R because R r ~'-~. So there is a point x E U such that 
x E S* and x r R. On the one hand, because Si ~ R in (2 U, Scott -1) and x r R, 
there is a number N such that, for all i > N,  x ~ Si. Then x ~ SI as well, because 
S~ c_ Si. On the other hand, we have that x E S~ for infinitely many i > N, because 
some subsequence of SI converges in (2 U, Cantor) to S* and x E S*. We conclude 
by contradiction that U -~ is inverse-Scott closed. �9 

Though they are not needed directly, we find the following observations 
useful for understanding how the topologies are related: 

Corollary 2.1 
(a) For S r 0, S = (S)~-. 
(b) S -~ is closed in the Cantor sense i f  and only i f  it is closed in the inverse-Scott sense. 

Proof  
- -  D (a) We note that S c_ (S)-_ By Proposition 2.3, (S)-~ is inverse-Scott closed. 

So by the definition of closure, S C (,~)-~. Similarly, since S c_ S and S is closed in 
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the Cantor  topology, S c_ ,~. Hence (S)-~ c (S)-=. By Proposi t ion 2.2(a), (S)~ c__ S, 
so (S) -~ c_ S. 

(b) The "if" direction holds because the Cantor  topology extends the inverse-  
Scott topology. The "only if" direction uses Proposi t ion 2.3. �9 

Lemma 2.1. I f  .T c 2 v is closed in the Cantor topology, then for all X E .T there 
exists X'  C_ X such that X p is a minimal element of  .T. 

Proof. If  ~r = 9, then the conclusion is vacuously true. So assume .T" r 9, and let 
X E .T. We apply Zorn 's  Lemma to the set P = {X' E . T : X  t C_ X} with order 
relation < given by ~. 

Let X1 ~ X2 ~ . . .  be a chain in P. Let Y = r'l xi. Clearly Y 7, xi  for each i, 
and Y c_ X. Since .T is closed, we also have that  Y E .T. So Y is an upper  bound  
(in the sense of  <) for the given chain. By Zorn 's  Lemma,  P has a <-maximal  
element X'. 

X t is then C_-minimal with respect to P. But if S c_ X' for any S E ~', then 
S E P, so X' is a minimal  element of  ~'. �9 

Theorem 2.1 (Characterization of minimal model classes). For nonempty S C_ 2 ts, the 
following are equivalent: 

(i) S is a minimal class. 

(ii) S is an antichain and S ~- is inverse-Scott closed. 

(iii) S = min,~. 

(iv) S = m i n S .  

Proof 
(i) =,, (ii) 
Let P be a program such that  S = Min(P) -- min  Mod(P), and let .T = Mod(P). 
By Theorem 1.1, .T" is closed in the Cantor  topology. By Proposi t ion 2.3, .T -~ 
then is closed in the inverse-Scot t  topology. We show that  S -~ = .T -~ : 
Since S c_ .T', S -~ c_ .T -~. For  the other inclusion, the preceding lemma says that  
.T c_ S -~, which then implies .T -~ c_ S -~. 
Therefore S -~ is an inverse-Scott  closed set. 

That  S is an antichain was shown in [4]; for completeness, we include a p roo f  
here as well. Since S c_ ~" and .T C_ S -~ (by the lemma), Proposi t ion 2.1(a) gives 
min S = min.T.  By definition, min  .T = S. Since then min  S = S, S is an antichain 
by Proposi t ion 2.1 (b). 

(ii) ~ (iii) 
Since ,.q-~ is closed, S = S -~ by Proposi t ion 
min,_q = S by Proposi t ion 2.1 (a) and (b). 

2.2(b). Then min,S = min  8 -~ = 
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(iii) =~ (iv) 
,9 C_ ̀ 9 because ,9 is closed in the Cantor sense. By Proposition 2.3, (,~)-~ is closed in 
the inverse-Scott  sense, so `9 C_ (,~)-~_ Since `9 is sandwiched between ,9 and (S)-~, 
by Proposition 2.1 (a) min ,~ = min S. 

(iv) =~ (i) 
By Theorem 1.1, ,~ U { U) is the collection of models of some program P. Then 
S = min,~ = min(S U { U}) = min Mod(P) = Min(P). �9 

By way of this theorem, we can now present an example to show that the G~ 
and antichain properties mentioned in the introduction are too broad to charac- 
terize minimal model classes: 

Example 2.1. Let S = {{u0}, {Ul ) ,  { U 2 } , . . . } ,  where U = {u0, ul, u2, . . .}.  We note 
that S is both an antichain and a G6 subset in (2 v, Cantor). But condition (iv) of  
the theorem, namely S = min,,q, fails because 0 E ,9, and therefore S is not a 
minimal model class. Alternately, we can check, as in condition (ii), that 

S -z : { S  : u 0 E S V u 1 E S V u 2 E S V . . . }  ~-- 2 v - {0} ,  

which, as observed in the Introduction, is not closed in (2 v, Scott -1). 

From the propositions preceding the theorem, we also get a useful represen- 
tation result for minimal model classes: 

Theorem 2.2 (Prerequisite-free representation). For any program P there is a pre- 
requisite-free program I y which has the same minimal models as P. 

Proof. By Theorem 1.1(a), Mod(P) is a nonempty closed subset O r of  (2 v, Cantor). 
By Proposition 2.3, Or-~ is closed in (2V, Scott-1). By Theorem 1.1(b) then 
Or~- = Mod(P ~) for some prerequisite-free P'. Proposition 2.1(a) says that ~" and 
Or-~ have the same minimal elements. Thus M i n ( P ) = m i n M o d ( P ) =  min.~" = 
min Or-~ = min Mod( P') = Min( lY). �9 

To study minimal model classes, then, it is enough to study the minimal 
models of  programs which are prerequisite-free. According to Theorem 1.1(b), 
this amounts to studying the minimal elements of  sets which are inverse-Scott  
closed. We show next how to describe these minimal elements in terms of  the 
closed-set  structure. 

Proposition 2.4. Let f = ('] C be a nonempty closed subset of 2 u in the inverse- 
H 

C6C 

Scott topology, where each C EC is a basic closed set of  the form 
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C = {S : VyEecy E S} for Pc afinite, nonempty subset ofU. (Wepermit C = 0 in 
order to include Or = 2 tl as a possibility.) Let 

M={s: A[u S  V Ayes]}. 
uEU C~C, Y~PC, 

uEPc y~u 

Then .M is the set of minimal elements of or. 

Proof 
[To show: .M c_ min  or] 
Let S' E .M. 

Case 1. Suppose first that  S' = 0. For  all the equivalences above to hold in this case, 
it must  be that  C = 0, which means that  Or = 2 u. Hence S' E Or. But since S' has 
no proper  subsets, S' E min Or. 

Case 2. So suppose that  S' ~ 0. 
First we check that  S ' E  3 r. It suffices to show that  S ' c  C for each C E C. 
Suppose that  

c = { s :  V 
yEPc 

Let u' E Pc. 
I f  u' E S', then S' E C by definition of  C. 
I f  u' q~ S', then, because 

u' E S' *--> V A yq~S'' 
CEC, yEP C, 

u' EPc y~u' 

we have that  y' E S' for some y' E Pc with y' ~ u', so S' E C in this case as well. 
N ow we show that  no  proper  subset of  S t belongs to O r .  Recalling that  S' ~ 0, let 

C S I" A # Choose a E U such that  a E S' and a ~ A. Since 

a E S ' ~  V A yqgS'' 
CEC, yEP C, 

aEPc y~a 

there is some C E C with a E Pc such that  b ~ S' for all b E Pc with b ~ a. Since 
A c_ S', b q[ A as well, for each such b. Since a was chosen so that  a r A, no 
element of  Pc belongs to A. Thus  A r C, and  hence A ~ ~ .  
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[To show: min )r" _C A4] 
Suppose that S' 9~ .M. Then there is some a E U such that 

[aES'A A V yES']V[a~S'A V AYES']. 
CEC, yEP C, CEC, yEP C, 

aEPc y~a aEPc y~a 

Case 1. I fS '  = 0, then, since the second disjunct must hold, d # 0. Hence ~ # 2 U. 
But ~o is the only closed set to which 0 belongs. So S' q[ ,~. 

Case 2. Suppose then that S' # 0. If S' ~ ~', we are done. So assume S ~ E ,T'. Then 
the second disjunct is false, so the first disjunct holds. We claim that the set 
S ' - { a }  E .T': 
For sets C E d with a q~ Pc, S' E ~" requires that b E S' for some b E Pc. Since 
b # a, b actually belongs to S ' - {a} ,  which means that S ' - { a }  E C. 
For sets C E C with a E Pc, the first disjunct above requires that b E S' for some 
b E Pc with b # a. In this case as well, then, b E S ' - { a} ,  so S~-{a} E C. 
We conclude that S ' - { a }  E ~c~c C = ,T'. Hence S' is not minimal in ~'. �9 

We can now apply this result to get a useful description of  the minimal models 
of  a logic program in terms of a system of  "defining equations:" 

Theorem 2.3 (Defining equations for minimal models). Let P be a general logic 
program over U. For each u E U, there is a countable (possibly empty) collection 
q?u of  finite (possibly empty) sequences A from U, such that 

Min(P)={S: A[uES+-* V Aar 
u~U AE~u aEA 

Proof. Let pc be a prerequisite-free program with the same minimal models as P. 
Fix an expression for Mod(l y) as an intersection of basic closed sets in 
(2 v, Scott -1) corresponding to the clauses of  PP. Then the system of equivalences 
formed as in the preceding proposition characterizes the minimal elements of 
Mod(lY). Following the notation of the preceding proposition, for each u E U, 
let flu consist of  those sets Pc - {u} for which u E Pc. Then 

Min(P) = Min(P ~) = min Mod(P') 

- { s :  V AaCS]} �9 
uE U A E@u aEA 

Just as for the sentence cr in the case of stable models, we may formulate the 
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defining equations for the minimal models of  P as a sentence # = 

AIR(- ) V 
uEU AE~u aEA 

of t: s (in the language s  consisting of  a unary predicate symbol R and a 
constant symbol u for each u E U), with the property that (U, S, fruit:) ~ # if 
and only if S is a minimal model of P. For convenience, we shall often use 
the symbol # to refer to the conditions on a set S entailed by having 
(U, S, fruit:) ~ #. As with stable models, the role of negative information in speci- 
fying minimal models is made particularly apparent by the defining equations. By 
analogy with the stable model case, where the elements of ~u are the supports of 
proof  schemes in P for u, we refer to the elements of �9 u as "supports" of  u in 
the clauses of the associated program P'. 

We illustrate the notion of supports and the formation of  the sentence # 
using a prerequisite-free program of the simplest sort as an example: 

Example 2.2. Let U = {a, b, c, d, e} and let P be the program 

a + - ~ b  

b ~.... .-nc 

c t----- -rid 

d e -  ,-.ne. 

As in Theorem 1.1, we express Mod(P)  as an intersection of sets determined by the 
clauses of P, and recall, because P is prerequisite-free, that each is basic closed in 
(2 ty, Scott -1) : 

Mod(P) = ~'1 n "~'2 N "~3 N Or'4, where 

5rl = {S : a E S V b  E S} 

ffc 2 ~- { S : b E S v c E S} 

2"3 = {S:  c E S V d  E S} 

�9 ~ 4  -~- { S : d  E S V e  E S}.  

For the element a E U, which occurs only in the first clause, the support of a in ) r  1 
is {b}, so the defining equation for a is 

a E S *--~ b ([ S. 

For b E U, the support o fb  in 9rl is {a} and the support o fb  in "~'2 is {c}, so the 
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defining equation for b is 

b E S ~ a q[ S V eq~ S. 

The defining equations for c, d, and e are formed similarly, so the condition deter- 
mining minimal models S is 

(a E S ~--~ b q~ S) 

A ( b E S ~ a f [ S v c f [ S )  

A ( c E S ~ - ~ b ~ S V d ~ S )  

A ( d E S ~ - - ~ c q L S V e q ! S )  

A (eES~--~d(~S) .  

Formally the sentence # in the language/ :v  has the form 

JR(a) ~ -~R(b)] 
A [R(a_) ~ -~R(a) V-~R(c)] 

/x JR(c) ~ -~R(b) V-~R(_d)] 
A [R(_d) ~ -~R(c) V-~R(e)] 
A [R(e) ~ -~R(d)], 

but we will generally bypass the formal statement and display as # the preceding 
conjunction of equivalences. Thus the minimal models of  P are 

.M = {{a,c,d},  {a,c,e}, {b,c,e}, {b,d}}. 

Next we present a pair of algorithms which will allow us to find the sentence 
# and the minimal models for more complicated programs. This will also give us the 
means to find a prerequisite-free program with the same minimal models as a given 
program, or indeed to find a program with some specified set A4 as its minimal 
models, as long as .M satisfies the conditions, as in Theorem 2.1, of  a minimal 
model class. 

We will need the following lemma: 

Lemma 2.2. Let .~ C_ 2 v. Suppose that .~- is expressed in the form 

U{ s: A x s}= U{s:xc_s} 
XEX xEX XEX 

where 2( c 2 v is an antichain. Then 

m i n . T =  {X : X E X} = X. 
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Proof 
(_D) Let Y E X. By Proposition 2.1, min~" = min~  "-~, so it will suffice to 

show that Y E min 9 r-~. First Y E 9 r-= because Y E {S: Y c_ S}. Now suppose 
t h a t Z E Y - ~  andZC_ Y. T h e n X C _ Z  for s o m e X E X .  But s i n c e X C Z C _  Y 
and X is an antichain, X = Y. Hence Y C_ Z, which shows that Y is minimal in 
~.D. 

(c_) Let Y E min.~'. By Proposition 2.1, Y E min.~ "-~. Since Y E ~-~, there is 
some set X E A" such that X c_ Y. But because Y is minimal in .T "-~ and X E ~'-~, 
X =  Y. Hence Y E X .  �9 

The first algorithm contains a method for computing 9 r-~ from a closed set .T" 
in the Cantor topology. From the expression which is arrived at for Y'-~, the minimal 
elements of ~" can be read off directly. 

Algorithm 2.1 (for obtaining Min(P) from P) 
Let P be a program, not necessarily prerequisite-free. Fix an expression for 

the closed set ~" = Mod(P) in (2 u, Cantor) as an intersection of basic closed sets 
determined by the clauses of P. ~" appears then as an intersection of sets defined 
by finite disjunctions. 

(1) If P consists of a single clause, express ~" as a union of sets of the 
form {S : u E S} or {S : u r S} corresponding to the disjuncts of the clause. If 
every clause in P has an empty body, then express 5 r as a single set defined by a 
conjunction (possibly infinite) of the expressions "u E S" for clauses u *-- in P. 
Otherwise, use the distributive property to express Or as a union of conjunctively 
defined sets. 

(2) Simplify by omitting any summand which is empty. 
(3) Since ___ commutes with U, form ~'~ by applying _D to each summand. 
(4) For each summand, evaluate the application of _D by omitting the nega- 

tive conjuncts. 
(5) Simplify by retaining only maximal summands. That is, if $1 and $2 are 

summands, and the conjunction defining S1 is a proper subexpression of the 
conjunction defining $2, omit $2. 

Then 9 v-~ is expressed as a union of sets of the form 

{s: Au,s}={s:xcs}, 
uEX 

where the sets X determining each summand form an antichain. Hence, by the 
preceding lemma, the sets X themselves are the minimal models of P. �9 

Before giving an example, we present the second algorithm, which will be 
used to find prerequisite-free programs under appropriate conditions. Again we 
require a lemma: 
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Lemma 2.3. Let 2, C_ 2 U be given. Let 

Then 

Z = {Z g U : Z is finite and for all X E X, Z N X # 0}. 

n{s:zns#o}. 
Z E Z  

Proof 
(C_) For each Z E Z, 

{s:zns#O}={s: Vu s} 
uEZ 

is a basic closed set in (2V, Scott-1), since the disjunction is finite. Hence 
[']z~z{S : Z n S # 0} is closed. To show that 

x- c_ n{s :zns#o},  
Z E Z  

it will suffice then to show that 

N{s:zns#o}. 
Z E Z  

So let S' E 2"-~, which means that S' _D X' for some X' E 2". Let Z'  E Z. By defini- 
tion of Z, Z' M X' # 0. Hence Z' f'l S' # 0, so S' E {S : Z'  f-I S # 0}, as required. 

(_D) Now let S ' E  N z ~ z { S : Z M S #  0}. Let W be a basic open set in 
(2 v, Scott -1) such that S 'E  W. We must show that there exists some element 
Y E 2"-~ such that Y E IV. 

Suppose then that W is the finite subset of U which defines IV; that is, 

w={s: wns=O}. 

Since S ' E W ,  it is the case that WAS'----0. For every Z E Z ,  however, 
Z f'l S' # 0, so we see that W r Z. Hence, by definition of Z, there exists 
X' E 2' such that W N X' = 0. Then this set X' satisfies the requirements for Y, 
since X' E 2"~- and X' E IV. �9 

Algorithm 2.2 (for obtaining from minimal class .A,4 a prerequisite-free program// 
such that Min(P') = .A,g) 

Let ~A/t C 2 v be a minimal class. By Theorem 2.1, A// is an antichain and A/F 
is closed in (2 ~, Scott-I). 
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If  .M is finite, then .M -~ = Uxe~a{s : x c_ S} is a finite union of  sets each 
defined by a countable conjunction. Use the distributive property to express .M -~ 
as a countable intersection of  sets each defined by a finite disjunction. Since each 
disjunct is positive, this provides an expression for .M z as an intersection of  sets 
which are basic closed in (2 v, Scott-x). 

In general, however, the distributive property does not  suffice to obtain such 
an expression, since the disjunctions arrived at in this way are in general not  finite. 

In this case, we may express .M -~ = .M -= according to the preceding lemma as 

where 

N{s:zns#o}, 
Z E Z  

Z = {Z C_ U : Z is finite and for all X E A//, Z rq X r 0}. 

Again we arrive at an expression for A4 -~ as an intersection of  basic closed sets. 
For  each basic closed set in this expression, form a prerequisite-free clause 

from the disjunction defining the set, selecting one of  its disjuncts (say, the first) 
to be the head. Let P' be the program consisting of  all these clauses. As in 
Theorem 1.1, Mod(t y) = Jr4 -~, so Min(l y) = min .M -~. Then by Proposition 2.1, 
min .M -~ = min.M = .hi, since .M is an antichain. �9 

We now present a range of  examples to illustrate the ideas of  this section: 

Example 2.3. Let P be the program 

q s- -~p 

r*---q 

which is not  prerequisite-free. The collection ~" of  models of  P is ~'x M ~'2, where 

~l  = {S :p E S V q  E S} 

�9 ~ 2  = { S : q  q[ S V r  E S}. 

The key element of  our method is to find an expression for ~-z. We proceed as in 
Algorithm 2.1: 

(1) By the distributive property, 

.T = ~'x M ~'2 

= {S:  (p E S V q E  S) A ( q q [ S V r  E S)} 

= {S :p E S A q  r S} U { S :  q E S A q  f[ S} 

U { S : p E S A r E S } U { S : q E S ' A r E S } .  
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(2) Since the second summand is empty, we omit it: 

. ~ =  {S  :p E S A q  q[ S } U { S  :p  E S A r  E S} U {S : q E S A r  E S}. 

(3) We form .F "-~ by applying _D to each summand: 

~ -  = {S  :p E S A q  f[ S}  ~- U {S  :p  E S A r  E S} -~ U {S:  q E S A r  E S} ~-. 

(4) We evaluate the application of  _~ to each summand by omitting the nega- 
tive conjuncts: 

~'-~ : { S : p E  S } U { S : p  E S A r E  S} U {S : q E  S A t E  S. 

(5) Since the second summand is a subset of  the first, it can be omitted, leaving 
only maximal summands" 

~'-~ = {S :p  E S} U {S:  q E S A t  E S}.  

According to Algorithm 2. t, we can read off the minimal models of  P directly from 
this expression as 

.A4 = {{p), {q,r}}. 

As in Algorithm 2.2, we can proceed further to find an expression for ~'-~ as 
an intersection of basic closed sets: 

(6) Since the union in Step (5) is finite, we can apply the distributive property 
to get the desired form: 

.~=- = {S  :p E S V q  E S} n {S  :p E S V r  E S}.  

Then the clauses 
p +- -~q 

p +- --nr 

constitute a prerequisite-free program P' for which Mod(P')  = ~'-~ and hence 
Min(1 y) = .h4 = Min( P). 

Finally, from the expression in Step (6) we can construct, as in Theorem 2.3, 
the sentence # = 

(p E S ~-* q f[ S V r f[ S) 

A ( q E S ~ p r  

A ( r E S ~ p f [ S )  

defining the minimal models of  P. �9 
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Example 2.4 (More than one entry in body of clause). Let P be the program 

U 2 ~ -'nU�94 

U5 +--- -~//2~ "-nU3~ ~U4" 

Since P is itself prerequisite-free, the set Mod(P) = 

{ S : u  1 E S V u  2 

is closed in (2 ~, Scott-l). 
sentence/~ ~-~ 

[ul E 

A [//2 E 

A [u 3 E 

A [U 4 E 

A [u5 E 

E S} N {S :  U 2 E S V u  3 E S V u  4 E S M U  5 E S}  

By Theorem 2.3, its minimal elements are defined by the 

s ~ //2 r s] 

S +--+//1 r S V  (u 3 ~ SA//4  r S / ~ u  5 ~ S)] 

S <-~ (U 2 r S / k u  4 ~[ S / k u  5 q[ S)] 

S ~  (u 2 r  3 r  5 r S)] 

S ~---~ (u 2 r  3 r S A u  4 ([ S)]. 

To find its minimal models explicitly, we use Algorithm 2.1: 
(1) By the distributive property, Mod(P) -- 

{ S : u 1 E S A //2 E S}  

u { S : u l 6 S A u 4 6 S }  
U { S :  bl 2 E S A U  2 E S}  

U { S :  u 2 E S A u  4 E S}  

U { S : u l e S / ~ u 3 6 S }  

U { S : u l 6 S / X u s s S }  

U { S : u 2 E S A u 3  E S  } 

U { S : u 2 E S A u 5  E S  }. 

Steps (2), (3), and (4) for evaluating (Mod(P)) ~- leave this expression unchanged 
(since P is prerequisite-free). 

(5) Omitting unnecessary terms, we get (Mod(P)) ~- = 

{S : u 2 E S } U { S :  u 1 E S / k u  3 E S}  U 

{S : u~ ~ S/x  u4 ~ S} U {S  : u~ E S/x  u5 ~ S}.  

Thus Min(P) = {{u2}, {Ul, u3}, {Ul,//4}, {Hi, u5}}. 

Example 2.5 (Special case where Min(P) = {~}). Let P consist of the single clause 

Since the set 

q ~ p .  

Mod(P) = { S : p  ~ S V q  E S} 
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is not closed in (2 U, Scott-l), we pass to 

(Mod(P)) ~- = {S: p r S}-~U {S:  q E S} -~ = 2 v. 

Now 2 v is the intersection of an empty collection of basic closed sets (or, in logic 
programming terms, is the set of models of the empty program P'). So according 
to Theorem 2.3, the minimal elements are defined by the sentence 

u =  A(ues- 1) 
uEU 

= A u f l s .  
uEU 

Thus the only minimal model of P is the empty subset of U. 

Example 2.6 (Special case where Min(P) = { U}). Let P be the program consisting of 
all clauses of the form 

U + - -  

for u E U. The set of its models is naturally expressed as a set closed in ( i f ,  Scott -1) 
by 

M o a ( n  = A { S  : u ~ s} .  
uEU 

According to Theorem 2.3, its minimal elements are defined by the sentence 

# =  A(~  e s ~  7-) 
uEU 

= A u E S .  
uEU 

Thus U itself, the only subset of U which satisfies #, is the only minimal model 
of P. �9 

Example 2.7. Let P be the infinite program 

U 1 +-- ~ U  0 

/'13 +'-  ~U2 

U2i+l 4"- ~ / /2 i  

U 2 + - - U  0 
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where U = {u0, Ul, u2,. . .}. Since P is not prerequisite-free, we pass to (Mod(P)) ~-, 
which we can compute according to Algorithm 2.1. To simplify the notation, let 

k~ = {r  E w ~ : r = 2i or r = 2 i +  1}. 

Then [Mod(P)] ~- 

=[{s 

=[{s 

: uo r s v  u: ~ s}  nHts: '-" u2, ~ s v  u2,+~ ~ s)] -~ 
iEw 

: u o C S V u ~ s ) n U { s :  A ~ ( i )  e s}] -~ 
~bEg2 iEw 

O { S : u o c s A A r 1 6 2  ~- 
~bEq) iEw ~bE9 iEw 

= U{S:ulESAu2ESAA~b(i) ES}U 
~bEff t i_>2 

U{S:u' ESAu3ESAA~b( i )  ES}U 
~bE~ i>2 

U { S :  u o E S A u  2 E S A A~b(i) E S}. 
~,E~ i>_2 

Then we can read off from this expression that the minimal elements of  Mod(P)  are 
those sets which consist of Uo and u2 and one element from each pair {u4, us}, 
{u6, UT},..., together with those sets which consist of  ul and either u2 or u3 and 
one element from each pair {u4, us}, {u6, UT}, . . . .  

As a matter of interest, we may proceed further using Algorithm 2.2 to find a 
prerequisite-free program P' with the same minimal models. In this case, however, 
the distributive property applied to the preceding expression for (Mod(P))  ~- doesn't 
produce the proper form, nor is it evident how to factor this expression as a product 
of  finite factors. Instead, as in Algorithm 2.2, we look for those finite sets Z c_ U 
such that every minimal model of P contains some element of Z. There are no 
singleton sets with this property. Among the sets with two elements, every pair 
(U2i, U2i+l ) is of this sort; that is, for all X E Min(P),  u2i E X or u2i+l E X. 
Beyond these, only the pair {ul, u2} has this property. Conditions involving sets 
Z of three or more elements turn out in this instance to be redundant. As in 
Algorithm 2.2, then, 

j~z_ = { S : u 1 E S V u 2 E S }  N A {  S : u2i E S V u 2 i + I  E S},  
i_>o 

where .A4 is the set of minimal models of  P described above. Translating the basic 
closed sets into clauses, we obtain finally the following prerequisite-free program P' 
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with Min( P ~) = .M : 
U 2 +-- ~U 1 

U 1 +-- ~U 0 

U s *-- ~U 2 

U2i+l ~ "aU2i 

Example 2.8. Predicate logic programs can be handled similarly, upon replacement 
of each clause by its set of ground instances. Consider the following predicate logic 
program P, based on the preceding example: 

even(O) 

even(a2(X) ) ~ even(X) 

u( a( X) ) ~ even(X), ~u( X) 

. -  u(0),  

with ground(P) then consisting of 

even(O) 

even(a:(O)) ~ even(O) 

even(aS(o)) ~ even(a(O)) 

even(a 4(O) ) ~ even(a2 (O) ) 

u(a(0)) ~ even(O),~u(O) 

u(a:(X) ) ~ even(a(O) ), ~u(a(0)) 

u(aS(x)) ~ even(a2(O)),~u(a:(O)) 

u(a2(0))  , -  u(0).  

By the method above, we find that the minimal models are those subsets of the 
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Herbrand base which consist of 

even(O), even(o 2(0)), even(a 4(0)),. . .  

and either u(0) and u(a2(0)) and one element from each pair 

{ u( 4 (0)), u(~ 5 (0)) }, {u( ~6 (0)), u(~ 7 (0)) },... ,  

or u(a(O)) and u(o2(O)) or u(a3(O)) and one element from each pair 

{U(O'4 (0)), U(O "5 (0)) }, {U(O'6 (0)), U(O "7 (0)) }, . . . .  

The calculation is similar to that of the last example, though somewhat messier. �9 

3. Stable model classes 

One cannot help but notice the formal resemblance between the sentence/z 
developed here which characterizes the minimal models of a program P and the 
sentence a developed, as mentioned before, by Marek, Nerode, and Remmel, 
which characterizes its stable models. Recall that/z has the form 

A[ u~s~ V ~r 
ue U A e ~  

and a has the form 

A[ u~s~ V ~r 
uEU AEk~ u 

for certain collections e# u and #u of finite sets A c_ U. As concerns/z, the negative 
information pertaining to element u E U comes from the supports of u in the 
clauses of a prerequisite-free program P' associated with P. To give a similar 
description concerning or, we first make explicit a "normal-form" result for 
stable model classes which is implicit in [4] and can also be derived from [2]: 

Proposition 3.1 (Prerequisite-free representation) [4]. For any propositional logic 
program P, there is a prerequisite-free program P* such that Stab(P) = Stab(pt). 

Proof. Let 

A[R(u) ~ V A-~R(~)] 
uE U AE~u aEA 
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be the sentence cr which specifies the stable models of P, so that (U, S, zTu~v) ~ ~r if 
and only if 

A( V 
uEU AE~u 

Recall that kv u is the set of supports of minimal proof schemes for u over program 
P. Let pt  be the program consisting of all clauses 

u+--- ~A 

for u E U and A E ~u. For each u E U, the supports of proof schemes for u in pt  
are exactly the finite sets A E 'Itu. So the sentence o -t which specifies the stable 
models of pt is cr itself. Thus 

Stab(P) = {S: (U,S,~u~V) ~ or} = Stab(Pt). 

For the sentence ~r, then, the negative information pertaining to element 
u E U also amounts to the supports of u in certain prerequisite-free clauses, 
namely those clauses of the associated program pt which have u as their head. 
Suppose that P is itself a prerequisite-free program; then P = P' = pt. For 
each u, the collection g2, (of supports of u in clauses where u is the head) is a 
subset of  ~u (the supports of u in clauses in which u appears as the head or 
in the body). So in this case the sentence cr is actually a subexpression of the 
sentence/~. 

We can use this comparison of defining equations for minimal and stable 
model classes to make a comparison of the classes themselves. Based on the charac- 
terization of minimal model classes in Theorem 2.1, we will then be able to charac- 
terize stable model classes as well. Because we will be comparing classes associated 
with different programs, we use subscript P to identify the defining equations 
associated with program P. 

To begin with, consider an arbitrary minimal model class, say the minimal 
models of program P. Let P' be a prerequisite-free program for which #e = #~. 
Form a new program P~ from/Y as follows: For every clause p in P', include in 
P~ all the clauses formed by rearranging p so that different atoms from p appear 
as the head. Then #e' = cry. So the class of minimal models of P can be realized 
as the class of stable models of a related program P~. By a considerable generaliza- 
tion of this approach, we can prove the following sufficient condition for a class to 
be realizable as the stable models of some program: 

Theorem 3.1. Let P be a general logic program over U. Let S be a nonempty G6 
subset (in the inverse-Scott sense) of  Min(P). Then there is a general logic 
program F over U such that S = Stab(F). 
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Proof. Let U =  {Uk : k <  IUI}. We have that S = M i n ( P )  M~ge~Gk for open 
subsets Gg = {S : Vs~Bk B ~ S} of (2 t:, Scott-I), where each Bk, recall, is a collec- 
tion of finite subsets of U. By Theorem 2.3, for each k < I uI there is a set ~uk of 
finite subsets of U such that Min(e) = {S : Ak<IUI[Uk E S ~ VAcO~k .4 ([ S]}. 

For each k E w, let Fk consist of all clauses of the form 

Uk ~- ._,~,_,~l, . : . ,_,ffk 

for A E ~uk,B 1 E ]31,... ,B k E Bk, i f k  < [U[ and ffuk is nonempty; otherwise, let 
Fg = O. (Note that every clause in Pg has Uk as its head, and that the entries in 
the body are drawn only from the definitions of ~1, . . - ,  Gg and the kth conjunct 
of #e.) 

It may happen that the set Bk of sequences which defines Gg has a finite hit 
set-- that  is, a set {Cl,... ,Cn} such that {Cl,. . . ,cn} NB is nonempty for each 
B E Bg. To make it impossible for a finite set containing such a hit set to be a 
stable model, we form the set E k consisting of all clauses 

Z ~ C l ~ . . . ~ C n ~  

where {Cl , . . .  , Cn} is a minimal finite hit set for Bk and z E U. 
Now let F = Uke~(Fk U Eg). We will show that S = Stab(F). 

(C_) Let S E S. We will show that S E Stab(F) by showing that S =  
T6Ls(r) T w(0). 
(a) First we show that S C_ TGLs(r) T w(O) : 
If S = 0, the statement is true. 
So suppose that S r 0, and let ue E S. Since S E Min(P), according to #e we have 

~ S for some A E ~ue. Since S E Nk~  Gg, we have also B 1 ~ S, B 2 r S , . . .  for 
some B 1 E B1,B 2 E/32, . . . .  
In particular, no element of the sequence ~/~1 .../~e belongs to S. 
Then since the clause 

u~ ~ ~A, __,/~1,..., ..,/~e 

belongs to F, its S-reduct 

Ue 

belongs to GLs(F). So ue E T6Ls(r) T 1 (0). 
(b) Now we show by induction on n that TGLs(r) T n(0) c S : 
Since TGzs(r) T 0(0) = 0, the statement is true for n = 0. 
Now suppose that ue E T6Ls(r) T n + 1 (0). Then ue is the head of some Horn clause 
p in GLs(F) for which every entry in the body belongs to T6Ls(r) T n(0). 

We claim that the clause 
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belongs to GLs(r' ). For otherwise there is a clause 

U~ ~ Cl~. . .~C n 

in I, Jk~ Ek for which {c l , . . . ,  cn} C_ T6Ls(r) T n(~), and hence, by the induction 
hypothesis, {Cl,... ,cn} _c S. Since {c l , . . . ,  Cn} is a hit set for some Bk, S meets 
every B E 13k, which contradicts the assumption that S E ~k. 

Because the clause 

ue~--- 

is in GLs(F), there is a clause 

u, 

in Fe with A E @u~ such that .4 ~ S. Since by assumption S E Min(P) and hence 
satisfies #e, we conclude that ue E S, as desired. 

(_3) Now let S E Stab(F). We will show that S E  S by showing that (a) 
S E I"lk~ ~k and (b) S E Min(P). 

We observe first that for each k there is no finite hit set {Cl,. �9 �9 c,} for Bk for 
which {cl, . . . ,Cn} C_ S. For otherwise every element of U would belong to 
TqLs(r) T ~v(0) = S by virtue of the clauses 

2+-- CI~.. .~C n 

in GLs(F). But TcLu(r) T ~v(0) = 0 ~ U, so U is not a stable model of F, which 
contradicts U = S. 

Because S is a stable model ofF,  it then follows that, for every element uk of 
S, the clause 

uk ~--- 

appears in GLs(F ). 
(a) Let s be given. We show that S E Ge : 
Case 1. If S is infinite, then there exists m > ~ such that Um E S. Since the clause 

Um ~-- 

appears in GLs(F), there is then a clause 

Um ~ ~.~, ~ B I , . . . ,  ~grn 

in ~m for which A r S,/~l ~ S , . . . ,  B ~m r S. In particular, ~ r S for some 
B e E Be. Therefore S E Ge- 
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Case 2. If S is finite, then, because no finite subset is a hit set for/3e, the same prop- 
erty holds for S itself. That is, S M B e = ~ for some Be E Be. So S E Ge. 
(b) Let g be given. We show that S satisfies the eth conjunct 

u ~ S ~  V ~ r  
AE~u e 

of #e : 
Suppose that ue E S. There is then some clause 

u~ ,-- -~i,  -~#~,..., -~P 
in I~e with A E Out corresponding to the clause 

ue~-- 

in GLs(r). In particular, A ~ S for this value of  A E Out. 
,--- Suppose that A r  for some A E Out. From part (a) we know that 
S E Nke~, ~k, so for each k E w there is some B k E Bk such that B k ~ S. Then 
the clause 

u e ~  

appears in GLs(F), corresponding to the clause 

u, ~ - q , - ~ f f , , . . . ,  ~ P  

in Fe. Therefore ue E Tc,.s(r) T w(O) = S, as desired. �9 

Example 3.1. Consider again the program P 

U 2 ~- --aUl 

U 5 ~-- ~U2~ "~U3~ ~U 4 

of Example 2.4 above. As determined earlier, its minimal models are {u2}, {ul, u3), 
{Ul, u4}, and {ul, us}. According to the theorem, any inverse-Scott G~ subset of 
this collection .M is expressible as the set of stable models of an associated 
program r .  Let us check the prescription for r when the subset to be represented 
is .M itself. 

As determined before, the sentence #e which characterizes Min(P) is 

[u~ ~ S ~ u2 r S] 

A [U 2 E S~"~u I r  3 ( [ S A u  4 r  5 ~ S ) ]  

/~ [~3 ~ s ~ (~2 r S /x u4 r S /x us C S)] 
/k [U4 E S ~--~ (u2 r S /ku3 r S /ku5 r 8)] 

A [u 5 E S ~ (u 2 ~ S / ~ u  3 ~ S A u  4 ~ S)]. 
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For  this case, we have S = Min(P) M G, where we take ~ = 2 v. 
we express ~ as {S : Vae0/~ ~ S}. 
Then we form the clauses of  Fk for k E w as follows: 

As in the theorem, 

F 1 = {U 1 ~- -~U2)  

F 2 = {u 2 ~-- ~Ul,  u 2 4-- ~u3,--nu4, ~u5 )  

F 3 = {u 3 +-- --1/,/2 , --nu4, ~u5 )  

r 4 = {U 4 +-- -'nU2 ' ~U3, ~U5} 

F5 = {U5 4"-- ~U2, -'nU3, "nU4} 

Fk = 0 for k > 6. 

There are no finite hit sets for {B : B E {0}), so we form no additional clauses in the 
sets Ek. 
Let F then be U~=l Fk. 
By inspection, Stab(F) = {{u2}, {Ul, U3}, {Ul, U4}, {Ul, US)), as desired. �9 

We consider next whether the condition shown in Theorem 3.1 to be sufficient 
for S to be a stable model class-- that  S be a G~ subset (in the inverse-Scott sense) 
of  a minimal model class--is also necessary. Certainly the set of stable models of  a 
given program P is a subset of  the minimal model class of P itself, and moreover is 
known to be a G~ se t - -but  in the wrong topology. For if 

A( V A aCs) 
uEU AE~u aEA 

is the usual sentence specifying the stable models of  P, then Stab(P) is an intersec- 
tion over u E U of  sets of the form 

m 

{S:  u E S ~ V A ~  Aa~A a ~ S} 

{S:  u ~ S --, Var  A~A a ~ S) n { s :  ( V A ~  A~,~ a r s)  --, u E s )  

{S :u  r SV VAeeu AaeA a ~ S} n {S:  (Aaee,, VaEA a E S) V U E S}. 

In both topologies, the first of  these factors is open and the second closed. The 
second is also a G6 set in (2 v, Cantor), but not in general in (2U, Scott-1). In 
fact, the only closed sets which are also Ge sets in the inverse-Scott topology are 
0 and 2 U. 

Fortunately, the condition of Theorem 3.1 does not require that S itself be a 
G~ subset of (2 U, Scott-l), but only that it be the intersection of  a G6 set with a 
minimal model class. In the following theorem, we use our earlier observation 
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about the relation between G and # for prerequisite-free programs to show that 
every stable model class does indeed have this property. We state this as a charac- 
terization theorem, along with some further equivalences along the line of  
Theorem 2.1: 

Theorem 3.2 (Characterization of stable model classes (I)). For S c 2 t: with the 
inverse-Scott topology, the following are equivalent. 

(i) S is a stable model class. 

(ii) S is a G~ subset of  a minimal model class. 

(iii) S is a G~ subset ofmin,9.  

(iv) S is a G6 subset ofmin,5.  

Proof. If S = 0, then the theorem certainly holds. So we assume throughout  that 
s#0.  

(i) ~ (ii) 
Suppose that S = Stab(P). Pass to the prerequisite-free program pt  which has the 
same stable models as P. Recall that 

~,~'= A[ "~S" V ~s]  
uEU AEkO u 

is a subexpression of 

. ~ , =  A[ u~s~ V Zr 
uEU AE~u 

in the sense that ~2, c_ Ou for each u E U. Then 

Stab(P) 

:{s:(u,s,u.,~.)km.,} n {s: A[ucs-~ 
uEU 

: Min(pt) M N { S  : x f[ SV V .4 q S}. 
uEU AE~. 

We note that each set {S : u q S V VAs~. A q S} is open. 

= { s :  (u,S, uu~v) k o~,} 

:{s: A[ues~ V ~r 
uEU AEtY. 

={s: A[(u~s~ V .~r V ~r 
uEU AE~u AEOlu 

V ~r 
AEO. 
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(ii) =~ (iii) 
Given that S is a G~ subset of  Min(P) for some P, let 3r0 = Mod(P) and 
b r = )r0-~. Then S = (min br)_ n n k ~  Gk, where .T is closed and each Gk is open. 
We will show that S = (min S) n n k ~  Gk. We note first that S c_ ,S C_ b r .  
(C_) Let S E S = (min .7 r) N nkE~ ~k" 
By set theory we get that S E min,~, since S' E ,~ and S' c__ S =~ S' E 3: and 
S' C_ S =~ S' = S. 
Also by assumption S E nks~ Gk. 
So S E (min,5) n n ~ ,  ~k. 
(_D) Let S E (min,~) n n k ~  ~k. 
Since S E ,5 C_ ~', by Lemma 2.1 there exists T C_ S such that T E min Or. Since 
open sets are specified by only negative information, S E n k e , o ~ k ~  
T E n k ~  ~k. Hence T E S. But because S E min,~, we have T = S, so S E S. 

(iii) =~ (iv) 
We are given that S = ( m i n S ) n  nk~o, Gk for open sets Gk. We can show that 
S = (min,~) N nk~o, Gk by the same argument as above (for (ii) =~ (iii)), but based 
on the relation S c_ S c_ S in place of  S c S c ~'. 

(iv) =~ (i) 
We are given that S is a G~ subset of min,~. Since S # 0, min S = min(,S U { U}). 
Since ,5 U {U} is closed in the Cantor topology and has U as an element, by 
Theorem 1.1 there is a program P such that S U { U } = M o d ( P ) ,  hence 
min(,~U {U}) = Min(P). So S is a G~ subset of Min(P). By Theorem 3.1 there 
is then a program F for which S = Stab(F). �9 

From this we can also derive the following characterization of  stable model 
classes which does not mention minimal model classes: 

Theorem 3.3 (Characterization of stable model classes (II)). For S C_ 2 v with the 
inverse-Scott topology, the following are equivalent." 

(i) S is a stable model class. 

(ii) S is an antichain and a G6 subset of  a closed set. 

(iii) S is an antichain and a G6 subset of  S. 

(iv) S is an antichain and a G6 subset of  S. 

Proof. As before, we may assume that S ~ 0. 

(i) =~ (ii) 
Recall that in [4] it was shown that a stable model class forms an antichain. Suppose 
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now that S = Stab(P). Then 

S = 

=N{s 
u~U 

=N s 
u~U 

{s: (v, s, Uu~u) ~ ~e} 

{s: A[ues~ V ~r 
uEU AE~u 

:(V ACs)--'u~s}nN{s:ues--' V ~r 
AEk~ u u~U A ~ u  

:( A Va~s)vu~s}nN{s:ur  sv V ~r 
A~g~. a6A u6U A692 u 

We note that each set {S:u r  is open, and that the set 
nu~v{s : (Aac~,u Va~A a E S) V u E S} is closed (and is in fact Mod(P*)). 

(ii) =~ (iii) 
We are given that S = ~" M ["lk~ ~k for open sets ~k and closed set .T'. We wish to 
show that S = S M n k ~  ~Tk. By definition of closure, S c_ S C_ ~ ,  and by assump- 
tion S _c n k ~  ~k. So 

kEw kEw 

(iii) ~ (iv) 
We are given that S = , ~ N n k e ~ G k  for open sets Gk. We can show that 
S = ,S n nkz~ ~k by the same argument as for (ii) =~ (iii), but based on the relation 
S c S c S in place of S C_ ,~ c_ .,~'. 

(iv) ~ (i) 
We are given that S is an antichain and S = ,~ n Mke~ Gk for open sets !Tk. To show 
that S is a stable model class, by Theorem 3.2 it will suffice to show that 
S = (min S) n Oke~ g*. 
(_3) On the one hand, (min,~) n nke~ gk C_ ,~ n nkEw ~k = S. 
(C_) To show the other inclusion, let S E S. By assumption, S E n k ~  ~k, so it 
remains to show that S E minS.  Let T then be an element of S with T C_ S. 
Since open sets are specified by negative information, S ENke~k=~ 
T E nkEw ~k. Hence T E S. But because S is an antichain, T = S. Therefore 
S E min,~, as desired. �9 

With these results, we can now show by example that the antichain and 
Cantor G~ properties mentioned in the Introduction are not sufficient to charac- 
terize stable model classes: 

Example 3.2. Consider again the set S = {{0}, { 1 }, {2},.. .} of Example 2.1, which, 
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as noted there, is both a Ge set in the Cantor sense and an antichain. We see that 
min,5 = {~}, since 0 �9 S. Previously we applied Theorem 2.1 to show that S is 
not a minimal model class, because S r min,9. But it is also the case that 
S ~ m i n , 9  (in fact S M m i n , 5 = 0 ! )  So by Theorem 3.2, S also cannot be a 
stable model class. �9 

Finally we use the characterization theorems for minimal and stable model 
classes to give an example of a stable model class which cannot be realized as a 
minimal model class: 

Example 3.3. Let 

So = {u2. :n  �9 n # 0} u {u,} 

S 1 = {u2n : 11 �9 w,n 7 ~ 1} U {u3} 

$2 = {U2n: n �9 w, n -Tk 2} U {us} 

S k ~-~ {U2n : n �9 w, n r k} U {u2k+l } 

Let S = {Sk : k E or}. 
Then ,~ = S U {{U2n : n E w}} = minS.  
By Theorem 2.1, S is not a minimal model class, because S r min S. 
However, S is an open subset of min,5 (or ,~), namely 

S =  (minS)N {S : Uo ~ S V u 2  ~ S V u 4  r S V . . . } .  

So, by Theorem 3.2 (or Theorem 3.3), S is in fact a stable model class. 

4. Conclusion 

Our main goal in this investigation was to provide characterization theorems 
for stable and minimal model classes. Along the way we developed defining equa- 
tions and prerequisite-free representation for minimal model classes, similar to 
results already known for stable model classes, which appear to be useful tools in 
their own right. Furthermore, we have developed a point of view which clarifies 
the distinction between stable and minimal models, in particular concerning the 
role of negative information. 

We have recently been able to characterize the supported model classes of 
general logic programs, such as were studied in this paper. We have also obtained 
some further results concerning logic programs with classical negation. 
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