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A graph G is usually defined as a finite collection V of points together with a 
collection X of lines, each of which joins two distinct points and no two of  which 
join the same pair of  points. This combinatorial  definition asserts nothing about  
drawing graphs on surfaces such as the plane, sphere, torus, projective plane etc. 
The purpose of this lecture is to explore some of these topological aspects of  graph 
theory and to describe a few unsolved problems concerning them. 

In order to fix the terminology of this iecture, we begin by drawing all the 
graphs with four points: 
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Reading f rom left to right and top to bottom, the first of  these graphs is called 
totally disconnected: it has four points and no lines. The last is the complete graph 
K 4 with four points; every pair of  its points are adjacent. There are eleven different 
(non-isomorphic) graphs with four points, six of  which are connected. The first 
two of these graphs having three lines are trees. The first of  the two graphs with 
four lines is a cycle. We note that in none of these graphs does there occur any 
loops or parallel lines as shown in Figure 2. 

loop ~ ~  parallel lines 

Fig. 2 

* Lecture delivered before the Jgnos Bolyai MathematicaI Society in Budapest on June 26, 
1963. The preparation of this article was supported in part by the National Science Foundation, 
U. S. A. under grant NSF OP--207. 
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A planar graph is one which can be drawn in the plane in such a way that no 
two of  its edges intersect, a plane graph is already so drawn. In Figure 3 the complete 
graph K4 is redrawn as a plane graph differently than in Figure 1, so that it is 
obviously planar. 

Fig. 3 

The complete bicolored graph K, ..... consists of  m points of  one color, say light, 
and n points of another color, say dark, in which two points are adjacent if and 
only if they have different colors. In Figure 4, both the complete graph Ks and 
the complete bicolored graph K3,3 are shown. It is easy to verify that neither of 
~hese graphs is planar. 

K j) : 

Fig. 4 

Two graphs are isomorphic if there is a 1--1 correspondence between their 
sets of points which preserves adjacency. The degree of  a point is the number of  
lines with which it is incident. Two graphs are homeomorphic if it is possible to 
insert new points of degree 2 into their lines in such a way that the two resulting 
graphs are isomorphic. A graph homeomorphic with K 4 is shown in Figure 5. 

Fig. 5 

With the help of  these definitions we may state the first theorem of  topological 
graph theory, due to KURATOWSKr [13]. 

THEOREM O. A graph G is planar i f  and only if it has t7o subgraph homeornorphic 
with Ks or K3,3. 
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We illustrate Theorem 0 in Figure 6(a) with the graph known as the Peterson 
graph. In Figure 6(b), we see that this graph is not planar, since it contains a subgraph 
homeomorphic with K3.3 as shown by the light and dark points. Surprisingly, this 
graph which superficially resembles K5 in appearance does not contain any subgraph 
homeomorphic with Ks. 

aj b) 

Fig. 6 

If a graph with a given number p of  points has a sufficiently large number of 
lines, then it is not planar. The next little theorem, described in HARARY [9], states 
this precisely. 

THEOREM 1. ] f  a graph G hasp points, q lines and q > 3p - 6, then G is not planar. 

The proof  uses Euler's polyhedron formula V - E +  F = 2. In a triangulated 
plane graph each edge is on two faces and each face has three edges, so that 3 F =  
=2E.  Hence in such a graph q = 3 p - 6 .  

COROLLARY la. Ks is not planar. 

This is verified at once, since Ks has q = 10 and 3 p - 6  = 9. 
The thickness t(G) of a graph G (a term introduced and studied by TUTTE 

[t6]) with at least one line is the minimum number of  planar subgraphs whose 
union is G. For  example t ( K s ) = 2  and t(Ka,3)=2.  

COROLLARY lb. For any graph G with p points and q lines, 

(1) q <= ( 3 p - 6 ) t ( G ) .  

Of course every planar graph with at least one line has thickness 1. It is easy 
to verify that t(Ks) = 2 by drawing a planar graph G with 8 points whose complement 
G is also planar. Only recently it has been shown by exhaustion that t (K9)= 3; see 
BATTLE, HARARY and K O D ~ A  [21, and TUTTE [15]. The following table, which will 
be called Figure 7, lists all the known thicknesses of  complete graphs, Kp, for p = 2 
to 33. 

P I 2 - 4  

t(G) 1 

5 - 8  I 9 - 1 5  16 I 17-21 22 2 3 - 2 8  

2 3 ? 4 ? 5 

29 -33  I 34 

6 F? 

1t Acta Mathematica X V / 3 - 4  

Fig. 7 
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The entries for n =  13, 14, and 15 cost me one shilling each, siace I wagered 
L .W.  BEINEKE that these thicknesses would be 4 and he was able to construct a 
decomposition of each of these three complete graphs as the union of three planar 
subgraphs. Of course, knowing in advance that t (Kg)= 3 and t(Kt5 ) = 3, it would 
not be necessary to demonstrate that this is the value fo rp  = 13 and 14. The smallest 
complete graph whose thickness is not yet known is/s I would conjecture that 
t(K16) = 4, and that it would require an argument similar to that which settled the 
thickness of K 9, but even more exhausting because of the considerably increased 
number of  points of the graph. In the next theorem, BEINEKE and HARARY [4], the 
thickness of five-sixths of all the complete graphs is determined exactly. 

THEOREM 2. The thickness of the complete graph Kp is given by 

(2) t(Kp)= IP+67- ] for p=_O,l,2,3,5(mod6),p~q. 

The entries in Figure 7 starting with n = 17 were first obtained from this theorem. 
A graph is bicolorable if its points can be colored, using two colors, in such 

a way that only two points having different colors are adjacent. It is well known 
that a graph is bicolorable if and only if it contains no cycles of odd length. There- 
fore, in particular, such a graph contains no triangles and satisfies the hypothesis 
of  the next little theorem, whose proof  is entirely analogous with that of Theorem 1. 

Tr~EOREM 3. If" G has no triangles and q > 2 p -  4, then G is not planar. 

COROLLARY 3a. /(3,3 is not planar. 

COROLLARY 3b. I f  G has no triangles, then 

(3) q <= (2p-4)t(G). 

The inequalities (1) and (3) and the concept of thickness are generalized in [5]. 
Applying the inequality (3) to the complete bicolored graph, which is of course 

bicolorable, we obtain the next inequality. Let {x} be the smallest integer not less 
than x, and as usual let [x] be the largest integer not exceeding x. 

COROLLARY 3C. A lower bound for the thickness of the complete bicolored 
graph is given by 

>l mn 
t (Kin,.) = t2  (m 47 - 251" 

As reported in BEINEKE, HAR~Y and MOON [7], one can construct a family of graphs 
to show that most of  the time the equality in the preceding corollary holds. 

THEOREM 4. The thickness of the complete bicolored graph is given by 
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except possibly when m, n are both odd and there exists a positive integer k such that 

[2k(m--2)] 
n = [  m - - 2 k  ]" 

The smallest complete bicolored graph whose thickness is not yet known is 
K17,21 �9 

An orientable surface may be regarded as a sphere with handles on it (or holes 
in it); its genus is the number of handles. The genus 7(G) of a graph G is defined as 
the minimum genus of an orientable surface on which G can be drawn with no 
two of its edges intersecting. Thus Theorem 0 says that a graph has genus 0 if and 
only if it contains no subgraph homeomorphic with Ks or / (3 ,3 .  In Figure 8, we 
see that y(Ks)=7(K3,3)----1, i. e. that these two graphs are toroidaL In this figure 
a torus is represented in the usual way as a rectangle in which both pairs of  opposite 
sides are identified with each other as indicated by arrows. 

/ 
\ 

\ 
/ 

a) 

Fig. 8 

Nobody knows the generalization of Theorem 0 to graphs of positive genus, 
not even f o r  toroidal graphs. The question is: G is toroidal if and only if G does 
not contain homeomorphs of which subgraphs? It Js not even known whether the 
family of  such exceptional graphs is finite. 

In order to embed graphs (without intersecting edges) in surfaces of large 
genus, COHEN, HARARY and KODAMA [8] have developed a new method of represent- 
ing an orientable surface by identifying appropriate edges of a pair of oriented 
polygons. They then illustrate by embedding/(7 in $1 (a  sphere with one handle), 
K 8 in $2, and/ (9  in S 3 . An especially interesting problem involved the determination 
of  y(K,). In a sense, this problem is one-half solved.* 

THEOREM 5. The genus of  a complete graph is 

/ (n - 3) (n - 4) ! (5) ~,(K.) = [ 1~ f 

when n = 0 ,  3, 4, 5, 7, 10 (rood 12). 

* J. W. T. YOUNGS has just  informed me that he has also proved equation (5) when n = 12s + 1, 
so that equat ion (5) is now 7/12 verifed. 

11' 
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The proof  of this result for n ~- 3, 5, 7, 10 (rood 12) appears in the work o f  
RINGI~L [14]. For  n - 0 ( m o d  12), the formula (5) was demonstrated by J . W . T .  
YOUNGS (unpublished) and its validity for n - 4  (mod 12) was recently established 
by GtJSTI~ (unpublished). 

] h e  next result, also found by YOUNGS et al [1], [17], is interesting because 
it relates the genus of a graph with the question of embedding it in a nonorientable 
surface. The theorem was proved by constructing an appropriate family o f  graphs 
Gn. 

THEOREM 6. For any positive integer n, there exists a graph G~ of genus n which 
can be embedded in the projective plane. 

A cut point of a connected graph is one whose removal results in a disconnected 
graph. A block of a graph G is a maximal connected subgraph of G containing no 
cut points of itself. The next result, proved only after extensive collaborative efforts, 
expresses the genus of  a graph in terms of the genuses of its blocks; see BATTLE, 
HARARY, KODAMA and YOUNGS [3]. 

THEOREM 7. The genus of any graph is the sum of the genuses of its blocks. 

A graph is n-connected if it is not disconnected by the removal of any n -  1 
of its points. Thus a block of a graph is a maximal 2-connected subgraph if it has 
more than two points. Recently, the preceding theorem has been generalized slightly 
by HARARY and KODAMA [12] to the case in which a given graph is the union of  
exactly two maximal n-connected subgraphs. Further generalization appears to be 
a very subtle problem. 

The connectiviCv of a graph G is n if G is n-connected but not (n + 1)-connected. 
We have recently [10] obtained a formula for the greatest connectivity among all 
graphs with a given number of points and lines. 

THEOREM 8. The maximum connectivity among all graphs with p points and q 

lines, is [ ~ ] ,  provided q>=P - t .  

For a given graph G, its crossing number c(G) is the minimum number of pair- 
wise intersections of its edges when G is drawn in the plane. The crossing number 
of the complete bicolored graph was determined exactly by ZARANKIEWlCZ [18]: 

[ = (m -n )  
(6) | c(K . = -m)n  

I c(K2m+l 2,+~) = mZnZ. 

However, the crossing number of the complete graph remains an open problem. 
It can be shown by an explicit construction that an upper bound for c(K,) is given 
by 

] ~ 4  (n -- 1) 2 (n -- 3) 2 n odd 

(7) (K.) <= / 1 
. ~ - n ( n - 4 )  ( n - 2 )  2 n even 
to,+ 
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as men t ioned  in HARARY and  HILL [11]. The  concensus  o f  op in ion  is t ha t  the con-  
jecture ,  which asserts  t ha t  this  uppe r  b o u n d  is the  exact  value  o f  c(K,) ,  is correct .  
But it  has  no t  even been p roved  tha t  c(K,,) approaches  n4/64 for  large  n. 

Le t  Q,  be the (graph  o f  the) n-cube,  so tha t  Q,  has  2" po in t s  each being a b ina ry  
sequence alaz. . .a  n (of  zeros and  ones). Two po in t s  o f  Q,  are  ad jacen t  whenever  
their  sequences differ in exact ly  one place.  W e  have recent ly  ob ta ined  [6] an exact  
f o rmu la  for  its genus.  

THEOREM 9. The genus o f  the n-cube is 

(8) y(Q,)  = ( n - 4 ) 2 " - 3  + 1. 

Added & p r o @  A shrinking of  a graph is the resul t  of  rep lac ing  a l ine by  a single 
poin t .  A contraction of  a g raph  is ob ta ined  f rom a sequence o f  shr inkings.  The  fol-  
lowing cr i te r ion  for  p l ana r i t y  [19] m a y  be readi ly  der ived f rom K u r a t o w s k i ' s  theorem.  

Theorem 10. A graph is nonplanar i f  and only i f  it has Ks or K3, ~ as a subgraph 
o f  a contraction. 

F o r  example  it is immedia te ly  appa ren t  tha t  the PETERSON graph  shown in 
F igure  6(a) has  Ks as a con t r ac t ion  and hence is nonp lana r .  

THE UNIVERSITY OF MICHIGAN 
AND UNIVERSITY COLLEGE~ LONDON 

(Received 24 October ]963) 
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