RECENT RESULTS IN TOPOLOGICAL GRAPH THEORY*

By
F. HARARY (Ann Arbor, USA)
(Presented bv A. RENYT)

A graph G is usually defined as a finite collection V of points together with a
collection X of lines, each of which joins two distinct points and no two of which
join the same pair of points. This combinatorial definition asserts nothing about
drawing graphs on surfaces such as the plane, sphere, torus, projective plane etc.
The purpose of this lecture is to explore some of these topological aspects of graph
theory and to describe a few unsolved problems concerning them.

In order to fix the terminology of this lecture, we begin by drawing all the
graphs with four points:
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Reading from left to right and top to bottom, the first of these graphs is called
totally disconnected: it has four points and no lines. The last is the complete graph
K, with four points; every pair of its points are adjacent. There are eleven different
{non-isomorphic)y graphs with four points, six of which are connected. The first
two of these graphs having three lines are #rees. The first of the two graphs with
four lines is a cycle. We note that in none of these graphs does there occur any
loops or parallel lines as shown in Figure 2.

loop Q parallel lines

Fig. 2

* Lecture delivered before the Janos Bolyai Mathematical Scciety in Budapest on June 26,
1963. The preparation of this article was supported in part by the National Science Foundation,
U. S. A, vnder grant NSF GP—207.
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A planar graph is one which can be drawn in the plane in such a way that no
two of its edges intersect, a plane grap#h is already so drawn, In Figure 3 the complete

graph K, is redrawn as a plane graph differently than in Figure 1, so that it is
obviously planar.

Fig. 3

The complete bicolored graph K, , consists of s points of one color, say light,
and n points of another color, say dark, in which two points are adjacent if and
only if they have different colors. In Figure 4, both the complete graph X5 and
the complete bicolored graph K; ; are shown. It is easy to verify that neither of
these graphs is planar.

Ks: Ky M

Fig. 4

Two graphs are isomorphic if there is a 1—1 correspondence between their
sets of points which preserves adjacency. The degree of a point is the number of
lines with which it is incident. Two graphs are homeomorphic if it is possible to
insert new points of degree 2 into their lines in such a way that the two resulting
graphs are isomorphic. A graph homeomorphic with X, is shown in Figure 5.

Fig. 5
With the help of these definitions we may state the first theorem of topological
graph theory, due to Kuratowskr [13].

THEOREM 0. A graph G is planar if and only if it has no subgraph homeomorphic
with K5 or Ky 5.
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We illustrate Theorem O i Figure 6(a) with the graph known as the Peterson
graph. In Figure 6(b), we see that this graph is not planar, since it contains a subgraph
homeomorphic with K ; as shown by the light and dark points. Surprisingly, this
graph which superficially resembles K5 in appearance does not contain any subgraph
homeomorphic with K.
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Fig. 6

If a graph with a given number p of points has a sufficiently large number of
lines, then it is not planar. The nextlittle theorem, described in HARARY [9], states
this precisely.

THEOREM 1. If a graph G has p points, g lines and g = 3p — 6, then G is not planar.

The proof uses Euler’s polyhedron formula ¥—E-+ F = 2. In a triangulated
plane graph each edge is on two faces and each face has three edges, so that 3F =
=2FE. Hence in such a graph 4 = 3p—6. .

COROLLARY la. K5 is not planar.

This is verified at once, since K5 has g=10 and 3p -6 = 9.

The thickness t(G) of a graph G (a term introduced and studied by Turte
[16]) with at least one line is the minimum number of planar subgraphs whose
union is G. For example #{K5)=2 and #(K; 3)=2.

COROLLARY 1b. For any graph G with p points and g lines,

(H g = (3p—6)1(G).

Of course every planar graph with at least one line has thickness 1. It is easy
to verify that #(Kg) =2 by drawing a planar graph G with 8 points whose complement
G is also planar. Only recently it has been shown by exhaustion that #(Ky) =3; see
BatTLE, HARARY and KoDAMA [2], and Turte [15]. The following table, which will
be called Figure 7, lists all the known thicknesses of complete graphs, K, forp=2
to 33.

L b 2-4 | 58 o915 16 | 17-21| 22 | 23-28 | 9-33 | 34
) R vl s | 6 ?
Fig. 7

11 Acta Mathematica XV/3—~4
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The entries for n=13, 14, and 15 cost me one shilling each, since I wagered
L. W. BEINEKE that these thicknesses would be 4 and he was able to construct a
decomposition of each of these three complete graphs as the union of three planar
subgraphs. Of course, knowing in advance that (K;)=3 and #(K,s5)=3, it would
not be necessary to demonstrate that this is the value for p =13 and 14. The smallest
complete graph whose thickness is not yet known is K;4. I would conjecture that
1(K,s) =4, and that it would require an argument similar to that which settled the
thickness of K,, but even more exhausting because of the considerably increased
number of points of the graph. In the next theorem, BEINEXE and HARARY [4], the
thickness of five-sixths of all the complete graphs is determined exactly.

THEOREM 2. The thickness of the complete graph K, is given by

p+7
(2) t(K,) = . for p=0,1,2,3,5(mod6), p#=q.

The entries in Figure 7 starting with n =17 were first obtained from this theorem.

A graph is bicolorable if its points can be colored, using two colors, in such
a way that only two points having different colors are adjacent. It is well known
that a graph is bicolorable if and only if it contains no cycles of odd length. There-
fore, in particular, such a graph contains no triangles and satisfies the hypothesis
of the next little theorem, whose proof is entirely analogous with that of Theorem 1.

THEOREM 3. If G has no triangles and q=2p—4, then G is not planar.
COROLLARY 3a. Kj 3 is not planar.
COROLLARY 3b. If G has no triangles, then

3) ¢ = (2p —4)1(G).

The inequalities (1) and (3) and the concept of thickness are generalized in [5].

Applying the inequality (3) to the complete bicolored graph, which is of course
bicolorable, we obtain the next inequality. Let {x} be the smallest integer not less
than x, and as usual let [x] be the largest integer not exceeding x.

COROLLARY 3c. A lower bound for the thickness of the complete bicolored
graph is given by

mn
(K = {m} .

As reported in BEINEKE, HARARY and MooN [7], one can construct a family of graphs
to show that most of the time the equality in the preceding corollary holds.

THEOREM 4. The thickness of the complete bicolored graph is given by

@ (Ky,) = {Ew—f%i)}
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except possibly when m, n are both odd and there exists a positive infeger k such that

B 2k(m-2)]
Tl mook |

The smallest complete bicolored graph whose thickness is not yet known is
K921+

An orientable surface may be regarded as a sphere with handles on it (or holes
in it); its genus is the number of handles. The genus y(G) of a graph G is defined as
the minimum genus of an orientable surface on which G can be drawn with no
two of its edges intersecting. Thus Theorem 0 says that a graph has genus 0 if and
only if it contains no subgraph homeomorphic with K5 or K; ;. In Figure 8, we
see that y(K5)=7y(Kj;, ;) =1, i.e. that these two graphs are foroidal. In this figure
a torus is represented in the usual way as a rectangle in which both pairs of opposite
sides are identified with each other as indicated by arrows.
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Fig. 8

Nobody knows the generalization of Theorem 0 to graphs of positive genus,
not even for toroidal graphs. The question is: G is toroidal if and only if G does
not contain homeomorphs of which subgraphs? It is not even known whether the
family of such exceptional graphs is finite.

In order to embed graphs (without intersecting edges) in surfaces of large
genus, COHEN, HARARY and Kopama [8] have developed a new method of represent-
ing an orientable surface by identifying appropriate edges of a pair of oriented
polygons. They then illustrate by embedding K, in S, (a sphere with one handle),
Kgin S,, and Ky in S;. An especially interesting problem involved the determination
of »(K,). In a sense, this problem is one-half solved.*

THEOREM 5. The genus of a complete graph is

: —3(n—4
) k) = {2 2e=9)
when n=0,3,4,5,7,10 (mod 12).

* J. W. T. YoUNGS has just informed me that he has also proved equation (3) when n=12s-+1,
so that equation (5) is now 7/12 verifed.

1
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The proof of this result for n=3, 5,7, 10 (mod 12) appears in the work of
RiINGEL [14]. For n=0 (mod 12), the formula (5) was demonstrated by J. W. T.
YounNGs (unpublished) and its validity for n =4 (mod 12) was recently established
by GusTiN (unpublished).

The next result, also found by Youngs et al [1], [17], is interesting because
it relates the genus of a graph with the question of embedding it in a nonorientable
surface. The theorem was proved by constructing an appropriate family of graphs
G,.

THEOREM 6. For any positive integer n, there exisis a graph G, of genus n which
can be embedded in the projective plane.

A cut point of a connected graph is one whose removal results in a disconnected
graph. A block of a graph G is a maximal connected subgraph of G containing no
cut points of itself. The next result, proved only after extensive collaborative efforts,
expresses the genus of a graph in terms of the genuses of its blocks; see BATTLE,
Harary, Kopama and Younas [3].

THEOREM 7. The genus of any graph is the sum of the genuses of its blocks.

A graph is n-connected if it is not disconnected by the removal of any n—1
of its points. Thus a block of a graph is a maximal 2-connected subgraph if it has
more than two points. Recently, the preceding theorem has been generalized slightly
by HararRY and Kopama [12] to the case in which a given graph is the union of
exactly two maximal n-connected subgraphs. Further generalization appears to be
a very subtle problem. '

The connectivity of a graph G is n if G is n-connected but not (n + 1)-connected.
We have recently [10] obtained a formula for the greatest connectivity among all
graphs with a given number of points and lines.

THEOREM 8. The maximum connectivity among all graphs with p points and g

lines, is [27?] provided g=p —1.

For a given graph G, its crossing number ¢(G) is the minimum number of pair-
wise intersections of its edges when G is drawn in the plane. The crossing number
of the complete bicolored graph was determined exactly by ZARANKIEWICZ [18]:

c(Kom,2u) = (m? —m)(n® —n)
(6) C(KZm, 2n+1) = (le —_m)nz

— 22
c(Kams1,2041) = M2A%

However, the crossing number of the complete graph remains an open problem.
It can be shown by an explicit construction that an upper bound for c(K,) is given
by .
1 2

— {(n— —3)2 dd
7 (n—1)>(n—73) n o
D c(K,) = i
‘ —Gzn(nf4) (n—2)? n even



RECENT RESULTS IN TOPOLOGICAL GRAPH THEORY 411

as mentioned in HARARY and HILL [11]. The concensus of opinion is that the con-
jecture, which asserts that this upper bound is the exact value of c¢(K,), is correct.
But it has not even been proved that ¢(K,) approaches n*/64 for large n.

Let Q, be the (graph of the) n-cube, so that Q, has 2” points each being a binary
sequence aqa,...qa, (of zeros and ones). Two points of Q, are adjacent whenever
their sequences differ in exactly one place. We have recently obtained [6] an exact
formula for its genus.

THEOREM 9. The genus of the n-cube is
® (@) = (n—=H2" 3+ 1.

Added in proof. A shrinking of a graph is the result of replacing a line by a single
point. A contraction of a graph is obtained from a sequence of shrinkings. The fol-
lowing criterion for planarity [19] may be readily derived from Kuratowski’s theorem.

Theorem 10. 4 graph is nonplanar if and only if it has Ks or K 5 as a subgraph
of a comntraction.

For example it is immediately apparent that the PETERSON graph shown in
Figure 6(a) has K as a contraction and hence is nonplanar.

THE UNIVERSITY OF MICHIGAN
AND UNIVERSITY COLLEGE, LONDON

(Received 24 October 1963)
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