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AN APPROXIMATION TO INFINITELY
DIVISIBLE LAWS

S. CSORGO* (Ann Arbor)

Tandori Kdroly professzor hetvenedik sziletésnapjdra, tanitvdnyi tisztelettel

1. The approximation

One question Professor Tandori asked at my doctoral defense on Febru-
ary 2, 1972, was about infinite divisibility. Since he was satisfied, my answer
probably included that, according to Lévy’s formula ([9], p. 84), a distribu-
tion on the real line R is infinitely divisible if and only if its characteristic
function ¢(t), t € R, is given by

0

2 . 3
w(t) = exp{iﬁt - %—-t2 +/ (e’tx -1- the )dL(z)+

oo 1+ z2

- e

where i is the imaginary unit, # € R and ¢ 2 0 are constants, the func-
tion L(-) is left-continuous and non-decreasing on (—oc,0) with L(—oc) =0
and the function R(-) is right-continuous and non-decreasing on (0, 00) with
R(00) = 0, such that

0 €
/ z2dL(z) +/[ z?dR(z) < oo for every ¢ > 0.
0

—E

Little did I think at the time that I should be able to answer the question
somewhat more thoroughly twenty-three years later. 1 hope he will like a
few late details here.

For a given quadruple (8,0, L(-), R(-)) with the described properties,
let Fy . 1,r(-) denote the corresponding distribution function, so that ¢(t) =

* Partially supported by the National Science Foundation of the U.S.A., Grant DMS-
9208067.
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222 S. CSORGO

= [% e"®dF,, 1 r(2),t € R. Consider the inverse functions
Pr(u) := inf {z < 0: L(z) > u}
and
Yp(u):= inf{z < 0: —R(—2z) > u}, 0 <u< oo,

where the infimum of the empty set is taken to be zero. These are non-
decreasing, non-positive, right-continuous functions on the half-line (0, 00)
such that

(1.1) / P2 (u) du+/ Yh(u)du < oo for every ¢ > 0.

Let Y7,Y,,... be independent exponentially distributed random variables
with mean 1, so that P{Y; >z} = e"’, z >0, k€N, and consider the
corresponding partial sums 5, := Yy —|— -++Y,, n€N. Let Z be a stan-

dard normal random variable, let {S }°° , and {S (R)}oo be distribu-
tionally eqmvalent copies of the sequence {S,}>2 | such that the sequences

{S 2 {SﬁR)}n=1 and Z are independent. Now consider

n'—l’
n )
(1.2) V) .= Z¢M(S§M)) - ]1 dp(u)du, neN, M=L,R,
i=1
and the problem of approximating Fs , 1 r(:) by the distribution functions
o m(@)= Pl 402 -V{P+0-0,+6p <z, z€R, nmeN,

where

o [ uls) o [T _Yls) _
(1.3) Onr = ; 1+¢‘§4(8)d8 /1 1+¢]2\,I(s)ds’ M=LR.

More precisely, we are interested in seeing how fast the Lévy distances
Dy m(L, R) between Fg"") p(-) and Fp o1, p(:), defined as

inf{s >0:F) plz—¢)—e S Foorpr(z) S FJTp plate)te
foral z¢€ R},

go to zero as n,m — o0. As it turns out, this depends upon how fast the
functions #,(«) and r(u) approach zero as u — oo:
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AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 223

For M = L and M = R and any e > 0 consider

(1.4) { vmla) = m’ so that  |¢ar(a)] 1 0 and

vpm(a) [0 as af oo,
and for a fixed 1/2 < dp £ 2e(*=2)/2 choose a finite a}; > 0 so that

(1.5)

Ym(ays) =0 if ¢Yar(a) =0 for some a >0 and

* 1 * 1 .
vpm(ay) < =1 and )@bM(aM)} < Ty if Yar(e) <0 for all a >0,
and, with log standing for the natural logarithm, for all a 2 a}, define

wpr(a) :=

]‘l z . v a
w(a):= /Z vm(a)y/log o, if /% log ooy S ey

= ng)(a) = %lQﬁM(a)I log U-—?—lw_—a_y if \/2log —L— > ngZ! > 1,
, m(a)[¥nr(a)] )

M up{a)
wé )(a) = dy | ¥ar(e)| log m, if I¢Iz‘\l4(a)l <1< ,/%log vM(a

where, since das < 2e(¢2)/2, the second inequality in the specification of
wéM)(a) is satisfied because vp(a) < |¥ar(a)| < e=e*?/dm < e~¢/2, While
it is understood that wM(a) 0 if ¥a(a) = 0, since otherwise 2w( )(a) <

< lqu a)| log (1/]ml a)l + vpr(a)log (l/vM(a)) it is clear that wM(a)
— 0 as @ — oo, M = L, R. Finally, setting

r(M)(q) = { P{S, < a}+ 2wpm(a), if Yar(-)# 0 on (0,00),
n = 0, if %L’M() =0 on (0, 00)

(1.6)

for M = L, R and a 2 a};, the main result is the following.
THEOREM. If ar, 2 aj and ag 2 af, then D, (L,R)< r%L)(aL) +
+r$,1})(aR) for every n,m € N.

It will be also clear from the proof (and will be followed in bracketed

phrases) that in the case when ¥ps(u) < 0 for all u > 0, if wps(a) = w§ )( )
for all a 2 ap and wpr(apr) < e=?/¢ for some apr,apr > 0, then the choice
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224 S. CSORGO

ayy = max(dp,ar) is permissible, while if war(a) = w2 (a) forall @ 2 dapr
and WM((IM)I < 1, vpm(am) < 1 and the product vM(aM)|¢M(aM)| § e ?
for some dpr,d@ps > 0, then again we may take a}j; = max(@nr, an), M =
= L, R. The constant dps enters the threshold a}, as in (1.5) only if the case

wa(a) = ng)(a) cannot be excluded for M = L or M = R.
To use the theorem, one will choose two positive sequences {a%L) ‘mE
€ N} and {a,(lR) :n € N} such that lim sup,,_, a%M)/n <1,M=1L,R,and

obtain Dy, (L, R) £ rg‘) (aﬁf’) + rgf) (asﬂf)) for all n and m such that a(L) >

2 a} and agn) 2 ay. Fora, = a%L) or a, = a'F ), the limsup condition is to

force the gamma probabilities

xn—l

P{S,Sap)= | e
{5, £ a,} /0 (n—l)!e T

go to zero as n — oc. This convergence is the fastest if a,, = a for some a 2
aj or a 2 ay, in which case an expansion of the incomplete gamma function
(8], p. 135) yields

n o0 k

(1.7) P{Spsa}=—ve™* kg (n+1)(n+2)---(n+ "f)

n € N.

:|D

On the other hand, was(a,) — 0 fast for M = L or M = R if a,, — oo fast as
n — oo. For the fastest possible sequence a, = n, the elementary Lemma
3.11in [7] gives

2
(1.8) P{S, Sn} < e =772 ghenever 0<7r<1, neN.
In a concrete situation a trade-off between the opposing tendencies has to be
found.
If the limiting infinitely divisible distribution function Fy, 1 r(:) is
absolutely continuous with density fs, 1 p(-) for which Kj, 1 p:=

:= sup{fs,»,1,r(z) 1 € R} < o0, then by the theorem and a well-known in-
equality connecting the Kolmogorov and Lévy distances, for any two positive

sequences {aSLL) 'n € N} and {aﬁLR) tnE N} as above,

: o V- Fyq <
(1.9) i‘ég‘Fe,a,L,R(”:) b,0L.R(2)] S
[1+KeaLRH( WaP) + P (a (R))]

fora,]lnandmsuchthata )>a anda( )>a

Acta Mathematica Hungerica 638, 1995



AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 225

Another general corollary is for the case when the Lévy measure of the
underlying infinitely divisible distribution is finite, i.e. in our terminology,
both L(0-) < oo and R(0+) > — co. In this case, ¢1(+) is zero on the half-
line [L(O~),oo) and ¥R(-) is zero on the half-line [ — R(0+),00), and the
theorem and (1.7) together yield

(110)  Dpn(L,R) < [L,((:;)Jn + ['Rgr)]m forall n,m e R,

A result of the type of the theorem, though somewhat different in na-
ture, was first proved by Hall [10] for the approximation of stable laws. A
closer version was derived among other results in [2]. Stable laws are con-
sidered among the illustrative examples in Section 3, following the proof.
The theorem above improves the main result in [3], where a special integra-
bility condition was assumed on the functions vz, and g, restricting (1.1).
The approach here differs from that in [3] in the realization that there is
no point insisting on the deterministic centering f,* #pr(u) du instead of the

M
present flsg‘ )sz(u)du in V™ in (1.2), M = L, R, and in the associated
use of moment generating functions, rather than just moments, resulting in
faster rates of approximation and no restriction on L(:) and R(:). As ex-
plained in [3], these approximations are made possible by a probabilistic
representation of a random variable with a given, arbitrary infinitely divisi-

ble distribution, obtained in [1]. The sums 337, ?/JL(S](-L)) < 0in V¥ and

== 1/JR(S§R)) 2 0in -—Vn(lR) are to be viewed as the asymptotic contri-
butions of fixed numbers, n and m, of the smallest and the largest terms in a
sum of independent and identically distributed random variables in the do-
main of partial attraction of the infinitely divisible law given by the quadru-
ple (8,0, L(-),R(-)). (For a recent discussion of such domains the reader is
referred to [4].) Thus Vi and —V{® themselves are centered versions of
these asymptotic contributions, presently with random centerings. This is
why such approximations were called “extreme-sum approximations” in [3].

2. Proof of the theorem

On the same probability space (£2,.A, P) where the random variables
Vi = Vam(0,0,L,R) := VM) 4 62~ V) 4 6 - 0, + 6z are defined, and
expressed in terms of the same independent sequences { 57(LL) :;1 , { SSLR)} f;l

and Z, for a given quadruple (8,0,L,R)let V :=V(0,0,L,R):=Vy +07Z —
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226 S. CSORGO

Vr+0— 01, +0g, where for the independent left-continuous Poisson processes
(o]
Nu(u):= Y 1{8{" <u}, 0Su<oco, M=LR,
k=1

with unit intensity, where I{-} is the indicator function,

] S&M)
V= /9 [w— Nar(u) d¢M(u)+/1\ udyp(u)+vm(l), M =L,R.

(M)
1

Then by Theorem 3 in [1], the distribution function of the variable V =
=V(8,0,L,R) is the function Fy,rr(-) to be estimated.  Since
Dpm(L, R) € v (ar) + v (ar) it P{IV = Vol > il (ar) + v (ag)} <
< r;L)(aL) + ri,f' )(a r), the inequality claimed in the theorem will follow if we
show that P{ )VM - V,SM)I > rgM)(a)} < r,(zM)(a) holds foralln € Nand a 2
2 a}y, for both M = L and M = R. Dropping the indices in (1.4)—(1.6), i.e.
setting v%(a) := [*° ¥%(u) du, for some 1/2 < d < 2e(*~2)/2 choosing a* > 0
so that

P(a*) =0 if ¥(a)=0 for some a >0 and
(2.1) 1

oa) €

and |9(a®)| £ if ¥(a) < 0 for all a > 0,

ee/?/d

and for a 2 a*, with the same convention that w(a) = 0if (a) = 0, defining

wie) = yEo(@)flog oy, if /F ol < e,
w(a) := { wa(a) := §|¢(a)| log ~————v(a)|11/}(a)|, if /2 logﬁ > ﬁ%ﬁ >1,

wa(a) == d|¢(a)| log pfgy,  if /2 log iy > 1> ot

for a non-decreasing, non-positive, right-continuous function #(-) on (0, o0),
for which v(a) < oo for all @ > 0, we have to show that for all n € N and
a2 a*,

(2.2)

LY~

(2.3) P{|Aq| > ra(a)} < ra(a),

where

P{5. & a} + 2w(a), if ¥(-) £ 0,

rola) 1= {0, if () = 0,
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AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 227

and, using that the jump-points of the Poisson process N(u):=
i= Y opeq I{ Sk < u},0 < u< oo, hit the possible discontinuity points of ¥(-)
with probability zero,

A, = / = N(u)] dylu) + /1 7 dp(u)

S1
n Sn
(1) - Y (S + [ w(u)du=
j=1 1

Sjt1
wdp(u) — 5[ ¥(Sj41) — ¥(S;)] }+

:/Sw [u— N(u)] d¢(“)+§{/

3

Sy n Sn
; / wdb(w) +6(1) = S u(S)+ [ vlu)du=

=1
o Sn Sn
= [ = Nl dv+ [ udp+ [ o) du— np(sn) + 601) =
= [ - ) dw(wy+ w58, o]

almost surely. (Throughout the usual convention fcd coedip = f(c’ a7 dY

applies for all 0 < ¢ < d < 0c0. The integral on the half-line (5;, 00) exists
almost surely as an improper Riemann integral by (1.1), i.e. by the fact that
v(a) < oo for all @ > 0.)

I ¥(u) = 0 for all u > 0, there is in fact nothing to prove. (And here we
have P{|A,| > 0} =0 since A, =0.) If )(-) Z 0 on (0,00), two cases are
distinguished. The trivial case is when ¥ (a*) = 0 and hence ¥(v) = 0 for all
v 2 a*. In this case, P{|A,| > rn(a)} £ P{S, £ a} + P{|A,| > rn(a), S, >
>a} = P{S, £ a} and w(a) =0 for all a 2 a*, and so (2.3) follows with
rp(a) = P{S, £ a}.

For the non-trivial case, suppose that ¥(v) < 0 for all v > 0. Fix n €
€ N and ¢ 2 @*, and put g,(z):= 2" te™®/(n — 1), > 0, for the density
function of 5,,. By the definition of 7,(a) in (2.3) and by Markov’s inequality
we have

(2.4)  P{|An|l > ra(a)} £ P{S, L a} + P{A, 2 2w(a),5, > a}+
+P{ - An 2 2w(a), $, > a} <
S P{S, La} +e_2sw(“)E(eSA"I{Sn > a}) +e‘2iw(“)E(e'm"1{Sn >a}) =
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228 8. CSORGO
= P{S, < a} + ¢~ 2v(@ / exp{/ [es‘/’(“) -1- sgb(v)] dv}gn(x) dz+

¢—2tu(a) / exp{ / ~t9(v) ~1+t¢(v)}dv}gn(w)dw

for every s > 0 and every t > 0, where the last equation for the restricted
moment generating functions follows by a slight modification of the first part
of the proof of Theorem 4 in [1]. Actually, the slight modification is just the
trivial one to account for the restrictive presence of the indicators. Indeed,
that taken for granted and setting

Sn

A7 = /5n [v— N(v)] d¢(v)+/1 vdy(v)+

+ /n P(v)dv — (n— 1)(S,) + (1),
1

Theorem 4 in [1] directly gives (replacing the i there by u) that for allw € R,,

E(e“A;I{Sn > a}) = /:o exp{ /:o [e“’l’(”) -1 1—_1:%%()1)—)] dv + up(v)+

, 7 (o) ©  ¢3(v)
i 1+x¢(”)d’”+“/z 3 2(0) " “/1+$1+¢2(v)

- / ” exp{ /x * [0 — 1 — (o) dv + up(z) + / " 1/J(v)dv}gn(x) dz,

n

dv}gn(w) dz =

where the second equation is by straightforward algebra. Hence for

n o0 Sn
— 050 - [ w(oyo= /S [0~ N()] d(v) + / v dip(o)+
Sn

+ [ p(v)dv—ny(Sn) +¥(1) =

- /:’ [v— N(v)] doo(v) + Sn¥(Sn) — n9(Sy) = A

we clearly obtain

E(e“A"I{Sn > a}) = /

a

" exp{ /oo {eW(”) -1- m/)(v)} dv}gn(w) dz,
u € R,
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AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 229

proving (2.4), where the integrals on the right may or may not be finite at
this stage.

To estimate the integrands there, we use the inequality that if ¢ 2 0 is a
constant, then e* — 1 — u < eu?/2 for all —0o < u £ c¢. For the first integral
in (2.4), we have —o0 < s¥(v) < 0 for all v 2 a, so that

52

esP(v) _ 1 s¥p(v) < ?z/; (v), v=2a, forevery s>0.

For the second, since the negative function %(-) is non-decreasing, we ob-
viously have 0 < —#(v) = t|9(v)] £ |[¥(v)|/|(a)] £ 1 whenever 0 <t <
< 1/|¥(a)| and v 2 a, so that

t2 1
et _q 1 typ(v) < §— (v), v2a, forevery 0<t< — .
|(a)|

2
Hence, moving down z to a in the integrals in both exponents, from (2.4) we
obtain

(2.5) P{|An] > raa)} £

2

< P{S, < a}+exp {—— v*(a) — 2sw(a)} + exp{;ﬁ v*(a) — 2m(a)}

forall s > 0and 0 <t < 1/|¥(a)|.
Using (2.2), for all choices of @ 2 a* for which w(a) = wy(a) we have

wy(a) > = f \/Egt 2( [U(a)‘/log = wi(a

Also, for all @ 2 a* for which w(a) = ws(a) the choice of ¢* in (2.1) forces

1 1 e
- e© /2/d

= o(a)  Tela)]

v(a) < Iz/)(a)l and "~ d 2

1\

e/d > & .
> €' 2 e242  since

l\le——‘

This implies that \/logz > /e/2/d or, what is of course the same, Ve/2/
/(d\/iog;c) < 1 and, consequently, Ve/?a:/(dlogz) < z/\/log z. So,

1\/2 v
d QIogg QIOgT Vieg z
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230 S. CSORGO

whenever y := 1/|¥(a)| < z, since the function y/logy, y > 0, is increas-
ing on the half-line [e,00) and y = 1/|¢(a)| > e by the choice of a* and
the upper bound on d. But by (2.2) the inequality y = 1/|¢(a)| < 1/v(a) =
= z is equivalent to w(a) = ws(a). Thus, if @ 2 a* and w(e) = ws(a), then

Vel y/ logy < d:c/\/Iogw or, what is the same,

€ 1 1
= <d , thatis, wi(e) < ws(a).
\/; |4(a)log m v(a),/log EZITJ

(We see that ws(a) > wy(a) whenever v(a) < 1, |P(a)] <1 and w(a)=
= wy(a).) For reference purposes the foregoing may be summarized by saying
that whenever a 2 a*,

(2.6) if w(a)=wj(a), then wj;(a)>wq(a), j=2,3.

Consider the convex function f,(s):= % v¥(a) ~ 2sw(a), s > 0. Then
fu(*) is negative on the interval (0,4w(a)/v*(a)) and takes its minimum at

s« = 2w(a)/v*(a). Hence, choosing s = s, and using (2.6) twice, the second
term of the bound in (2.5) is .

exp{ ful5.)} = exp{f 2@-“%‘;—)} < exp{— 2_;923(2—‘;)} - exp{—elog ;(1&_)} <
<v(a) £ wi(a) £ w(a).

The inequality before the last holds since v(a) £ e~?/¢ for all @ 2 a* by (2.1).
The convex function k,(t) := %- v2(a) 2tw(a),t > 0, is also negative on
the interval (0,[4w(a)]/[ev?(a)]) and takes its minimum at the point t, :=

= [2w(a)]/[ev?(a)). However, here we also have to satisfy the constraint 0 <
<t £ 1/|¥(a)|. So, choosing t, := min{1/|¢(a)}|,t}, the third term of the
bound in (2.5) becomes exp{h,(t,)}. Let a 2 a*. If w(a) = wy(a), so that

+/1og =
0<t, 2w1(a) f v{a) <
€

~ ev¥(a) v(e) T [¥(a)l’

we have (whenever v(a) £ e~%/¢ as above)
exp{ ha(to)} = exp{ha(t.)} = exp{log ;(%5 - 2t*w1(a)} =

1 1
= exp{log —@ — 2log v_(a-)—} = v(a) < wi(e) = w(a).
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AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 231

If w(a) = w;(a), j = 2,3, then by (2.6) again,

2 wj((z) 2 wy(a) f YV log 37 v(c,)

- ev2(a) ev?(a) v(a) W’( Ik

Henc2e if w(a) = wy(a), then (whenever v(a) < 1, [¢(a)| < 1 and v(a)|¥(a)| £
Se”

ji=2,3

exp{ ha(to)} = exp{ha(1/|9(a)])} =

-l ~ Nt ) < s - o) -

= i oxp{ 108 sy | = (@) S walo) = wl)
by the choice of a*, while if w(a) = ws(a), then
exp{ ha(te)} = exp{ha(1/|%(a))} =

=0 g~ e | < {l—ﬁ}

= e[ 9(a)] ™ £ ¢ |9(a)] £ d|$(a)] log s

= wsz(a) = w(a)

Iw( )

since 2d 2 1 and |¢(a)| 1/eeelz/d by the choice of a*. Therefore, the in-
equality exp{h (to)} < w(a) holds for all ¢ 2 a*

Thus if a 2 a*, then the bound in (2.5) is less than P{S, L a}+2w(a)=
= rp(a). This fact establishes (2.3) in the non-trivial case, and hence the
theorem. (The collection of bracketed phrases also establishes the remark
concerning the choice of the thresholds.)

3. Examples

The first three examples show, in particular, that all three versions of the
rate function provided by the three branches of wps(-), M = L, R, defined be-
tween (1.5) and (1.6), may in fact occur. For simplicity of exposition, we deal
with spectrally one-sided infinitely divisible distributions, that is, we choose
L(-) = 0, with the exception of the stable and compound Poisson examples.
The last four examples are of interest in their own right, the negative bino-
mial being weird enough to deserve attention in any case. In Examples 24,
the threshold remark beneath the theorem is used without further notice.
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232 S. CSORGO

Exampre 1. If L=0 and ¢p(u)= —e™*, u>0, then wr(a)=0,
vp(a) = € */v/2 and wgr(a) = ng)(a) =dae™® for all a >0 for vg(a)/
[1Yr(a)| = 1/ V2 < 1. Regardless of 8 € R and o > 0, for the corresponding
Lévy distance the theorem and (1.8), with a, = (2 - \/§) n, give

3d(2—/3)n max( €5, 2 —log v2)
exp{(?—\/g)n} 2—\/§

and each fixed 1/2 < d £ 2e¢=2)/2 = 2.86419. ... For d = 2¢(¢=2)/2 this holds
for all » 2 6 and for d = 1/2 the inequality is true for all n 2 30.

ExAMPLE 2. I L = 0 and ¢p(u) = —/ue /2, then wr(a) = 0, vr(a) =
=+va+1e%? and wr(a) = ng)(a) =2"1/ae"*/?log (e*[a? + a]_lﬂ) for
all @ 2 2/(e —2) = 2.78442 ..., say. Regardless of § € R and ¢ 2 0, for the
corresponding Lévy distance the theorem and (1.8), with a,, = (3 -5 ) n/2,

give
pturys WO ew{n)
o] e i
3.35
3-5

EXAMPLE 3: Stable laws. Let Fy g, ¢(-) be the distribution function of
a non-normal stable law with exponent 0 < a < 2, given by its characteristic
function

D, .(0,R) < forall n2

forall n2>25>

/ eimdFa,ﬁm,C(m) =

00

exp{i(t — glt|*[1 - iBsgn(t) tan(an /2)] }, fa#1,
{ exp{iCt — nlt|*[1 + 18 sgn(t)2log 1t }, ifa=1,

with skewness, scale and location parameters -1 < <1, n>0and ( € R,
where sgn(t) is the sign function, t € R. In Lévy’s canonical form at the
beginning of the paper, this is given by some 8 = («, 3,7,(), 0 =0 and
L(-) and R(-) functions such that ¥as(u) = — ey~ u > 0, where epr =
= em(e, B,1n,{) 2 0 are some constants, M = L, R, such that ¢;(a,1,7,() =
=0and cz(o,5,7,() > 0 for every —1 £ 8 < 1, while cg(e,~1,7,{) = 0 and
cr(o, B,1,() > 0 for every ~1 < 3£ 1; cf. [9], [1], [4]. Setting K, g,¢ =
= sup{fa,8¢(z):2 € R} < 0o for the corresponding density function
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Jo8nc() = Fyg,.(-)and d = 19(a B,1,¢) := 0 — 6, + 0r, where 0, and fr
are given through (1.3), let F 5% (z): P{V(L A <z},z€R,
where, in the present situation Vn( ) of (1.2), for M = L,R and n € N, is
given by
M) ac MN2 ey
Jon _ —ep N0y (ST g e (6(MNTE et ira £,
—enr Y0y (S 7 4 earlog S, ifa=1.

Elementary calculation shows that var(a) = /o /(2 — @) car a3~/ ¢ >
> 0, and

11
da 2

*
forall a2 aj,

if ear > 0, where, putting p := a/(2 — a), upr := (2/(pe)) log (1/(err /P )
and vy :=1/(2p%), the threshold aj, may be chosen as a}; =
= max(p’ cy; 20 gdnle, a$;) , where a$, is the smallest positive number such that
a2 upy+ leoga for all @ 2 af;, M = L, R. Picking now any 7 € (0,1) in
(1.8) and letting n}; := max(a},/7, n3,), where n$, is the smallest n € N
for which exp{— (1 — T)zn/Q} < w§M)(Tn), M = L, R, the inequality in (1.9)
gives that for all » 2 n} and m 2 nj,

$up | 5 () = Fognel(@)] € 3[14 Kapnc] [w1"(7n) + P (rm)]

Neglecting thresholds and constants, the qualitative meaning of this is that

Viog n Viogm
g4 | Fomc(2) = Fapne(e)] = O(CL R

Nna 2 mea

as m,m — 00.

Improving Theorem 2.2 in [2], the latter rate has also been established in
Remark 1.3 of Janssen and Mason [11] by completely different methods.

ExAMPLE 4: Limiting St. Petersburg distributions. In a classical St.
Petersburg game, a player gains 2* ducats with probability 2%, k € N.
As determined in [5], the class {G,(-):1/2 <y £ 1} of all possible non-
degenerate subsequential limiting types of distribution functions for the cu-
mulative gains of a player in a sequence of independent St. Petersburg games,
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under any deterministic centering and norming, is described by the family of
infinitely divisible characteristic functions

oo itx : = itr i
/—ooethy(w):exp{zB,yt-k/(; (et—l T s )dR(x)} teR,

where, with Log standing for the logarithm to the base 2 and, for any y € R,
with |y| denoting the greatest integer not greater than y, having a fractional

part (y) =y — |y,
o0 2 o0
5 1
0., .= — —_—
[P T et

and
Ry(s) = —y2-llostrall 55 q,

so that 1 (u) := Yg. (u) = — 9~ Log(u/7)] /4 4 > 0. Hence by lengthier but
elementary and quite delicate computation through (1.2) and (1.3),

n

1
IR IVRPRIES
J

1 S
SlLog(s; )]~ o8 Sn + 6(7)’
=1

where 6(s) = 14 (Logs) — 2{l°8%) s > 0, and it can be seen in similarly ele-
mentary fashion that 0 < 6(s) £ 1 - (14 loglog2)/log2 = 0.08607. .. for all
s > 0. (The function 6(-) plays a special role in the theory of the St. Peters-
burg game, described in [6], and the present example has some motivational
value at some point there.) Also, since 1/u £ |¥,(u)] < 2/u for all u > 0, for

the corresponding v2(a) := [*° ¥2(u)du we obtain 1/v/a £ v,(a) < V2/\/a
for every a > 0 and 1/2 < v £ 1. Thus we have v,(a) < e ?¢ if a 2 a* :=
1= 2ete = 8.71168. .. and /a/2 < v,(a)/|¥5(u)] £ V24, so

(@) = (@) = |/ w0y fog [1/0n(a] < (/5 Y22 = (o

forall @ > 1 and all 1/2 <4 £ 1. Since the densities g,(-) = GI(-) exist and it
can be shown that sup; 5, <qsup{g,(z):z € R} £ 1/2,forany 0 < 7 < 1
in (1.8), finally (1.9) yields

sup sup]P{W(7)<1¢} G,(z)] < C(1) S

forall n 2z n™(7)
Leqgt 2€R \/_ v
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where the bound 1is a trivial upper bound for 3wy(Tn) with
C(r):=9%/e/(21)/2 and n*(r):= [ max (2¢*/¢ /T, n.(1))]|,  where
[2] := min{k € N:k 2 ¢}, x>0, and  n.(r):= min{k € N:
cexp{—(1 - 7)’k} < wi(rk)}. Here, rounding up, C(1)= 5.24620 is un-
achievable, and we get C(0.707)=6.23929, »*(0.707)=13; C(0.8) =
=5.86543, n*(0.8) =53; C(0.9)=5.52998, n*(0.9)=376; C(0.95) =
= 5.38249, 2*(0.95) =2107; (C(0.99) = 5.27263, n*(0.99) = 86177 and
C(0.999) = 5.24883, n*(0.999) = 13 297 850.

ExaMmpLE 5: Compound Paisson laws. Let Ny, X1, Xs,... be indepen-
dent random variables such that N, has the Poisson distribution on the
integers {0,1,2,...} with mean A > 0 and X3, X3, ... have the same distri-
bution function G(z):= P{X £ z}, z € R. Then Lévy’s canonical form of
the characteristic function of the infinitely divisible compound Poisson dis-
tribution function F) g(z):= P{ ZkN:Al X £ a:}, z€R,is given by 6 =0
and, with G_(-) denoting the left-continuous version of G(-),

o T -
b=0c= A/ﬂ)() 22 dG(z), L(z)=AG_(z), z<0,

R(z) = A[G(z) - 1], z > 0.
Hence, letting G7'(-) denote the right-continuous version of the left-con-

tinuous generalized inverse G~1(s):= inf{z € R : G(z) 2 s}, 0 < s < 1, the
usual quantile function, pertaining to G(-), we have

(% i U _
MU)Z{GJF (&), -f0< < AG_(0),
0, if u 2 AG_(0),
and
drlu) = —G71(1-%), if0<u<A[l-G(0),
SR Y if w2 A[l — G(0)].

For the Lévy distance D, (A, G) between F) o(-) and its approximation
Fro(z):= P{AVIY Vi 10,6 — 0, +0r < 2}, s € R, given by the
present 9r(-) and ¢¥g(-) through (1.2) and (1.3), by (1.10) we obtain

DE-©]" , [M1-cEy"

Dam(A:G) n! m!

forall n,m € N.

The Poisson law itself, with mean ), is the special case when G(z), z € R,
degenerates at the point z = 1 and @, := 0, g = A/2 for the corresponding
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quantity. In this case, ¥p(u) =0 and ¥p(u) = — I[{u < A} for all u > 0,
and enjoyable calculation shows that VB O+ 0= 30 I{S; <A} +
+ (A = S§,)I{S, < A} for every n € N. If D,(A) denotes the Lévy distance
between the distribution function Fj, »(-) of the latter random variable and
the Poisson distribution function Fy(z):=e™* E,Lf:]l Me/k!, z € R, of Ny,
with an empty sum understood as zero as above, then the result reduces to
the inequality D,(A) £ A*/n! for all n €N. Furthermore if D (A) is the

Lévy distance between F)(-) and F,(z):= P{Y5 I{5; <A} £ g}, T €

€ R, then a trivial extra step based on the triangle inequality for a Lévy
d1stance yields D:(A) £ 2A"/n! for all n € N.

EXAMPLE 6: Negative binomial distributions. For a fixed order £ € N
and success probability 0 < p < 1, consider the negative binomial distribu-
tion function

< _ ZLxJ k £
ng(x) ——P{W(p) 517} p Z y iEER,

where ¢ := 1 — p. As is well known, it is infinitely divisible and it is a routine
exercise to show that the Lévy form of the characteristic function is

oo it : * it iz
e dFy () = expq 10yt + ; (e -1- T2 2)ng,p(a:) t€R,

- 00

where
0 qm Lz} qm
p:€+£n;1+m2 and Rgp(x)_ﬁmz_:l—+flogp, z > 0.

So, notingﬂthat —Llogp =1 Efﬁﬂ q/m,

k , k-1
Yep(u) i= ¥R, (u) = Zk[{log £2E§u<logp_£mz_:1;}’
u > 0,

thus 9 p(u) =0 for all w 2 — {logp. Evaluating (1.2) and (1.3) with this,

the result is
Wf;’p = - V;ERZ’P) + 60, + 0R£'p =
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+ik{£i%—b’n] I{ﬁ i %n—gsndiq—;-} =: {4+ TS 4+ REP.

(Note that P{Wi? =} = P{4+ T\" = £} = p* = P{Vi(p) = £}.) If now
D, (¢,p) is the Lévy distance between Fy,(-) and P{ Wir < . } and D3(¢,p)

is the Lévy distance between Fy,(-) and P{{+ ThP < }, then (1.10) and
an extra step as above yield

Da(t,p) < and  D3(6,p) £ 2

[—_ﬁz—?ﬂ— foral n e N.

[—¢logp] "
n!

If £=1, this is of course a result for the approximation of the geometric

distribution function Fy ,(z) = pzkﬂl ¢ 1, z€R.
I thank my daughter Zsuzsi for checking the numerical calculations in
this section.
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