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A N  A P P R O X I M A T I O N  T O  I N F I N I T E L Y  
D I V I S I B L E  L A W S  

S. CSORGO* (Ann Arbor) 

Tandori Kdroly professzor hetvened~k sziiletgsnapjdra, tan~tvdnyi tisztelettel 

1. T h e  approximation 

One question Professor Tandori asked at my doctoral defense on Febru- 
ary 2, 1972, was about infinite divisibility. Since he was satisfied, my answer 
probably included that, according to L~vy's formula ([9], p. 84), a distribu- 
tion on the real line R is infinitely divisible if and only if its characteristic 
function ~(t), t C R, is given by 

{ f (  9~(t)=exp l o t -  ~ t 2+ e i i z - 1  
2 

where i is the imaginary unit, 0 C t t  and a => 0 are constants, the func- 
tion L(.) is left-continuous and non-decreasing on ( -oc ,  0) with L( -oc )  = 0 
and the function R(.) is right-continuous and non-decreasing on (0, oo) with 
R(oc) = 0, such that 

/ /0 O x2dL( x) + x2dR(x) < oc for every ~ > 0 .  

Little did I think at the time that I should be able to answer the question 
somewhat more thoroughly twenty-three years later. I hope he will like a 
few late details here. 

For a given quadruple (O,a,L(.) ,R(.))  with the described properties, 
let F0,o,L,R(-) denote the corresponding distribution function, so that ~(t) = 
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222 s. CS6RG6 

oo itx = fr e dFe,~,L,R(x), t �9 R.  Consider the inverse functions 

eL(U) :---- inf { x < 0 :  L(x) > u} 

and 
~/~R(u):= i n f { x < 0 : - R ( - x ) > u } ,  O < u < o c ,  

where the infimum of the empty  set is taken to be zero. These are non- 
decreasing, non-positive, r ight-continuous functions on the half-line (0, oc) 
such tha t  

(1.1) ~2L(U)du + ~b~(u)du < oc for every ~ > 0. 

Let Y1,Y2, . . .  be independent  exponentially dis t r ibuted random variables 
with mean 1, so tha t  P{Yk > x} = e -~,  x > 0, k C N,  and consider the  
corresponding partial  sums Sn := Y1 + "'" + Yn, n C N.  Let Z be a stan- 

dard normal  r andom variable, let { s(L)} ~176 and { S(R)} ~ be distribu- 
n = l  n = l  

5: oo tionally equivalent copies of the sequence { n}n=l such tha t  the sequences 

{ { and Z are i,dependent, consider 

: =  ~)M(U)du, n E N,  M = L ,R ,  
j = l  

and the problem of approximat ing FO,a,L,R(') by the distr ibution functions 

F~,a,L,R(X ) :~- P q- f f Z  - + ~ -  ~L ~- ~R < X , X e R,  n, m E N, 

where 

(1.3) ~01 ~)M(8) ~1 ~176 ~VI (8)  
OM := 1 "+ -~M ( S ) d s - 1 "+ ~M ( s ) d s , U = L , R . 

More precisely, we are interested in seeing how fast the L~vy distances 
On,re(L, R) between F~'mo,~,L,R~'Jt ~ and Fe,~,L,R('), defined as 

inf{E > 0 F s<F0, ,L,R(x)<F n'm : ~,a,L,R( x -- -- = :- 6,a,L,Rk q- ~) q- E 

x E R~ ,  for a l l  
) 

go to zero as n, m ~ oc. As it turns out ,  this depeads  upon how fast the 
functions ~bL(U) and ~bR(u) approach zero as u ~ oc.' 
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AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 223 

For M = L and M = R and any a > 0 consider 

(1.4) 
vM(a) : =  ?fd~ ~.'2M(U)du, 
vM(a)~O as a T a c  , 

so that  I CM(a)l ~ 0 and 

and for a fixed 1/2 < d M  < 2e (~-2)/2 choose a finite a M > 0 so that 

(1.5) 

( ~M(a(M) = 0 if CM(a) -= 0 for some a > 0 

1 1 
vM(aM) < ~ and )~M(a*M) } < = eee/2/dM 

and 

- -  if ~M(a) < 0 for all a > 0, 

and, with log standing for the natural logarithm, for all a = a ~  define 

wM(a ) :=  

)V/1 1 W M ) ( a )  :~- V/~  VM(a og vM(a)' 

4M)( . )  ::  �89 I ~M(a) I log vM(a)lCM(a)l' 

w~M)(a) :-- dM Ir log ' 
]r 

if ~ log ~ = i~yM(a)l, 

V/ 1 ~M__M_(~ > if } log ~ > 1, 
I C M ( a ) l  -~- 

if ~M(~) < l < i : l o g  1 
]~[~M(a)l e v M ( a  ) ' 

where, since dM <= 2e (~-2)/2, the second inequality in the specification of 
w~M)(a) is satisfied because vM(a ) < I~)M(a)l ~ r -ee]2/dM ~ e -r While 

it is understood that  wi(a):---- 0 i f  ~i(a) = O, since otherwise 2w~M)(a) <= 
<= ]o~bM(as a a)l logoc, ( 1M/] ~M(= L,a)])R. Finally, + VM( a)settinglOg ( 1 / VM(a)), it is clear that WM(a) 
---4" 

(1.6) 
{P{Sn < a} + 2wM(a), if CM(') ~ 0 on (0,~c), r(M)(a) := = 

0, if ~bM(.) = 0 on (0, oc) 

for M = L, R and a => a~4 , the main result is the following. 

THEOREM. If aL >= a* L and an >= a~, then D~,.~(L,R) <= r{~L)(aL) + 
+r(2)(aR) for every n ,m e N. 

It will be also clear from the proof (and will be followed in bracketed 

phrases) that  in the case when r < 0 for all u > 0, if wM(a) = w~M)(a) 
for all a >__ 5M and VM(CtM) <[ e -2/e for some hM, aM :> 0 ,  then the choice 
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224 s. cs6aG6 

a ~  = max(aM,~M) i s  permissible, while if wM(a) = w M)(a) for all a >__ aM 
and Ir < 1, vM(aM) < 1 and the product VM(aM)I~'M(aM)I < e -2 
for some tiM, aM > 0, then again we may take a ~  = max(SM, aM), M = 
= L, R. The constant dM enters the threshold a ~  as in (1,5) only if the case 

 M(a) = w M)(a)cannot be e x c l u d e d  for M = L or M = R.  

To use the theorem, one will choose two positive sequences { a (L) : n E 

E N} and { a(R): n ff N} such that  lim sup~_~o~ a~M)/n < 1, M L, R, and 

obtain D~,m(L, R) < r(L)(a~ )) + r (R) (a~  )) for all n and m such that  a (L) >= 

>= a L* and a!~ ) >= a R.* For a~ =_ a (L) or an - a(fl ), the limsup condition is to 
force the gamma probabilities 

32n-1 

( n -  1)! 
- -  e - x  d x  

go to zero as n ~ oc. This convergence is the fastest if a~ = a for some a > 
a~ or a > a ) ,  in which case an expansion of the incomplete gamma function 
([8], p. 135) yields 

an ~ z  ak an 
(1.7) P{Sn < a} = ~. (n + l ) (n + 2 ) . . . ( n  + k) < n! '  h e N .  

k--0 

On the other hand, w M ( a n )  ~ 0 fast for M = L or M = R if an ~ ~c fast as 
n ~ co. For the fastest possible sequence a~ = ~-n, the elementary Lemma 
3.1 in [7] gives 

(1.8) P{Sn <= Tn} =< e -(1-~)2n/2 whenever 0 < r < 1, n e N.  

In a concrete situation a trade-off between the opposing tendencies has to be 
found. 

If the limiting infinitely divisible distribution function FO/,,L,R(') is 
absolutely continuous with density fO,~,L,R(') for which Ko,o,L,R := 
:= sup{fo,~,L,R(x) : x E R} < oc, then by the theorem and a well-known in- 
equality connecting the Kolmogorov and Lfivy distances, for any two positive 

sequences { a ~ ) : n  E N} and { a ( f l ) : n  C N} as above, 

(1.9) n ,m X ~ sup I F0,  L,R( ) - F0, ,L,R(x)I < 
x E R  

* and a ) > a R. tbr all n and m such that  a ) >= a L = 
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AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 225 

Another general corollary is for the case when the Lbvy measure of the 
underlying infinitely divisible distribution is finite, i.e. in our terminology, 
both L(0- )  < oc and R(0+) > - oc. In this case, ~PL(') is zero on the half- 
line [L(0-) ,oc)  and ~PR(')is zero on the half-line [ -  R(0+),c~),  and the 
theorem and (1.7) together yield 

(1.10) Dn,,~(L,R) <- [L(0-)] '~ [ -R(0+) ] '~  n! ~ + m! for all n, m E R .  

A result of the type of the theorem, though somewhat different in na- 
ture, was first proved by Hall [10] for the approximation of stable laws. A 
closer version was derived among other results in [2]. Stable laws are con- 
sidered among the illustrative examples in Section 3, following the proof. 
The theorem above improves the main result in [3], where a special integra- 
bility condition was assumed on the functions eL and ~PR, restricting (1.1). 
The approach here differs from that in [3] in the realization that there is 
no point insisting on the deterministic centering f~ r du instead of the 

present flS~M) zPM(u)du in V (M) in (1.2), M =  L,R, and in the associated 
use of moment generating functions, rather than just moments, resulting in 
faster rates of approximation and no restriction on L(.) and R(.). As ex- 
plained in [3], these approximations are made possible by a probabilistic 
representation of a random variable with a given, arbitrary infinitely divisi- 
ble distribution, obtained in [1]. The sums ~-~jn__l r L)) <= 0 in V (L) and 

- ~ j = l  ~n(5" R)) __> 0 in -V~  (/~) are to be viewed as the asymptotic contri- 
butions of fixed numbers, n and m, of the smallest and the largest terms in a 
sum of independent and identically distributed random variables in the do- 
main of partial attraction of the infinitely divisible law given by the quadru- 
ple (O, cr, L(.),R(.)). (For a recent discussion of such domains the reader is 

referred to [4].) Thus V (L) and -V(m R) themselves are centered versions of 
these asymptotic contributions, presently with random centerings. This is 
why such approximations were called "extreme-sum approximations" in [3]. 

2. P r o o f  of  t h e  t h e o r e m  

On the same probability space (~, .A,P) where the random variables 
Vn,m := Vn,m(0, a, L, R) := V (L) + o'Z - V (R) + 0 - OL + OR are defined, and 

expressed in terms of the same independent sequences { S (L) } ~=1, { Sn(R)} ~=1 
and Z, for a given quadruple (0, a, L, R) let V := V(O, a, L, R) := VL + aZ - 
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V R  ..t[_ 0 - 0 L -Jr- OR, where for the  independent lef t -cont inuous Poisson processes 

(x) 

k=l 

M = L, R, 

with unit intensity, where I{.} is the indicator function, 

~, s! M ) 

Then by Theorem 3 in [1], the distribution function of the variable V = 
= V(O,a,L,R) is the function Fe,a,L,R(') to be estimated. Since 

Dn,m(L,R) <= r(L)(aL)+ r(R)(aR)if  P{  I V -  V~,,~[ > r(L)(aL)+r~)(an)} < 
< v(L)(aL) + r(R)(an), the inequality claimed in the theorem will follow if we 

show that  P{  I V M - V  (M)] > r(M)(a)} < r(M)(a) holds for all n e N a n d a  > 
> a~4 , for both M = L and M = R. Dropping the indices in (1.4)-(1.6), i.e. 
setting v2(a) := f f f  r  du, for some 1/2 < d < 2e (~-2)/2 choosing a* > 0 
so that  

(2.1) 
r  i f ~ p ( a ) = O  for some a > O  and 

1 1 
v(a*) < e2/---- ~ and I~b(a*)] < ~ if r  0 for all a > O, = = eee/2/d 

and for a >__ a*, with the same convention that  w(a) = 0 if r  = 0, defining 

(2.2) 

w(a) := { 
wx(a) := X/~2v(a) 1~  1 ~-~, 

w2(a) := 1 I~(a)  [ log 1 

w3(a) := die(a) 1 log 1 I~-~' 

< if ~ = , 

> >: 1, 

for a non-decreasing, non-positive, right-continuous function r  (0, ~ ) ,  
for which v(a) < oc for all a > 0, we have to show that  for all n E N and 
a ~_ a*, 

(2.3) 

where 
{PISn < a) + 2w(a), if ~b(.) ~ 0, 

rn(a):----  = 
0, if ~b(.) = 0, 
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AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 2 2 7  

and, using that  the jump-points of the Poisson process N(u) := 
:= ~k~__l I{  Sk < u},  0 < u < oo, hit the possible discontinuity points of r  
with probability zero, 

A~ := [ ~ -  N(~)] aV(u) + ~av(~)+ 
1 

+r  ~ r + r d~ = 
j = l  

= [u-N(u)]d~(u)+ E ud~b(u)-j[r + 
n j = l  JSj  

+ ~ dW(~) + ~(1) - r + r  d~ : 

j : l  

/7 /1 /1 sn = [u - N(u)]  d~b(u) + udr + g,(u)du- n~b(S,~) + ~b(1) = 
r t  

= [u-N(u)]dg,(u)+~b(S,~)[S,~-n] 
n 

almost surely. (Throughout  the usual convention f d . . .  d!b := f(c,d] "'" d~b 
applies for all 0 < c < d < cr The integral on the half-line ($1, cr exists 
almost surely as an improper Riemann integral by (1.1), i.e. by the fact that  
v(a) < oc for all a > 0.) 

If ~p(u) = 0 for all u > O, there is in fact nothing to prove. (And here we 
have P{IAnl > O} = 0 since ~n  = 0.) If ~(-) ~ 0 on (0, or two cases are 
distinguished. The trivial case is when r  = 0 and hence r  = 0 for all 
v >= a*. In this case, P{IAnl > rn(a)} 5 P{S,, < a} + p{lAd > r~(a), & > 
> a} = P{S,~ < a} and w(a) = 0 for all a > a*, and so (2.3) follows with 
rn(a) = P{S~ ~ a}. 

For the non-tr ivial case, suppose that r  < 0 for all v > O. F ix  n e 
e N and a ~ a*, and put gn(x) := xn-le-x/(n - 1)!, x > 0, for the density 
function of S~. By the definition of r~(a) in (2.3) and by Markov's inequality 
we have 

(2.4) P{IzX,d>r,~(a)} <=P{S~<=a}+P{~>=2w(a),Sn>a}+ 

+ P { -  An ~= 2w(a),S~ > a} ~= 

P{S~ <= a} +e-2s~(~)E(e~I{S~ > a}) +e-2'~(~)E(e-~a"I{Sn > a}) = 
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= P{Sn _~ a} + e -2sw(a) exp e se(v) - 1 - sr dv gn(x) dx+ 

for every s > 0 and every t > 0, where the last equation for the restricted 
moment generating functions follows by a shght modification of the first part 
of the proof of Theorem 4 in [1]. Actually, the slight modification is just the 
trivial one to account for the restrictive presence of the indicators. Indeed, 
that taken for granted and setting 

L jl A;  := [ v -  N(v)] de(v )+ vde(v)+ 

jfl n + r  dv - (n  - 1 ) e ( S ~ )  + ~ ( : ) ,  

Theorem 4 in [1] directly gives (replacing the it there by u) that for all u E R, 

+u r dv + u dv g~(x) dx +~ 1 + ~2(v) dv - u = 

= ffa~176 exp{ fx ~176 [eUr - u r 1 6 2  ~ n  @(v)dv}gn(x)dx, 

where the second equation is by straightforward algebra. Hence for 

A n -  e ( S n ) -  e (v)dv  = [ v -  N(v)] de(v )+ vde(v)+ 
n n 

+ ~(v) dv - n e ( S n )  + e ( 1 )  = 

= [ v -  N(v)] d~(v) + S ~ ( S ~ )  - ne(S~) = zx~ 
n 

we clearly obtain 

u E l:t, 

Acta Mathcmatica Hungarica 68, 1995 



AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 229 

proving (2.4), where the integrals on the right may or may not be finite at 
this stage. 

To estimate the integrands there, we use the inequality that if c => 0 is a 
constant,  then e ~ - 1 - u <= e%2/2 for all - o c  < u ~ c. For the first integral 
in (2.4), we have - o c  < sr < 0 for all v = a, so that  

~2 

e s~(~)- 1 -s~(v)<= - ~ 2 ( v ) ,  v >  a, for every .s > 0 .  

For the second, since the negative function ~(-) is non-decreasing, we ob- 
viously have 0 < - tr  = tl~b(v)l <= Ir162 =< 1 whenever 0 < t =< 
_-< 1/ l r  and v => a, so that  

et 2 
e-t~(~) - 1 + t~(v )  < T r 

1 
v > a ,  for every O < t < - -  = = l r  

Hence, moving down x to a in the integrals in both exponents, from (2.4) we 
obtain 

(2.5) F{  IAnl > rn(.)} =< 

< P{Sn <= a} + e x p  -~v2(a) - 2sw(a) § exp~--~-v2(a) - 2tw(a) 

for all s > 0 and 0 < t ~ 1/] ~(a)] .  
Using (2.2), for all choices of a __> a* for which w(a) = w2(a) we have 

1W/~ v(a) log 1 W ~  1W ~ 1 w2(a) > ~ ~ v ( a )  v2(a ) -- v(a) v(a) -- wl(a). 

Also, for all a => a* for which w(a) = w3(a) the choice of a* in (2.1) forces 

1 1 e~/2/d ee/d X := > - -  > > _> e2-~- since 
v(a) [~(a)] = 

1 
v(a)< [~(a)} a n d  d > _ - .  

- 2  

This implies that  ~ x > x / ~ / d  or, what is of course the same, v / @ /  

/ ( d ~ )  < 1 and, consequently, x / ~ x / ( d l o g x )  < X / v ~ X .  So, 

1 V ~  ~ x x 1 Y__2__< _ _ <  
log y d log x = v ~ g  x 
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whenever y := 1/l~b(a)l < x, since the function y/logy, y > 0, is increas- 
ing on the half-line [e, oc) and y =  1/[r > e by the choice of a* and 
the upper bound on d. But by (2.2) the inequality y = 1/[~;(a)l < 1Iv(a)= 
= x is equivalent to w(a)= w3(a). Thus, if a => a* and w(a) '=  w3(a), then 
v / ~ y / l o g y  < dx/x/ i~x or, what is the same, 

Ir  a 

1 
< dv(a) r__-:--,V/l~ ~-~) that is, wl(a) < w3(a). 

(We see that  w2(a )>  wl(a) whenever v(a)< 1, Ir < a and w ( a ) =  
= w2(a).) For reference purposes the foregoing may be summarized by saying 
that whenever a >= a*, 

(2.6) if w(a)= wj(a), then wj(a) > wl(a),  j = 2,3. 

s2 v2(a)- 2sw(a), s > O. Then Consider the convex function fa(s) := ~- 
f~(.) is negative on the interval (O,4w(a)/v2(a)) and takes its minimum at 
s. = 2w(a)/v2(a). Hence, choosing s = s.  and using (2.6) twice, the second 
term of the bound in (2.5) is 

exp{fa(S.)}  = exp{ 2w2(a) exp{ 2w2(a) e x p { -  
, v2(a)}--< ~ } =  e l ~  

< v(a) =< Wl(a ) __<~ w ( a ) .  

The inequality before the last holds since v(a) <= e -2/e for all a => a* by (2.1). 
~t2 v2(a) - 2tw(a), t > 0, is also negative on The convex function ha(t) := -~- 

the interval (O,[4w(a)]/[ev2(a)]) and takes its minimum at the point t.  := 
:= [2w(a)]/[ev2(a)]. However, here we also have to satisfy the constraint 0 < 
< t _<_ 1/[r So, choosing to := min{1/I~b(a)[,t. }, the third term of the 
bound in (2.5) becomes exp{h~(to)}. Let a > a*. If w(a) = wl(a),  so that  

2 wl(a) .~_  v-~ < 1 
O < t . -  - -  - 

e v2(a) V e  v(a) = Ir 

we have (whenever v(a) __< e -2/e as above) 

{ 1  } 
exp{ha(to)} =exp{h~(t.)} = e x p  logv(a)  2t.wl(a) = 

{ 1 1}=v(a)<wl(.)=w(a). = exp log v (a) - 2 log v - ~  = 
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AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 231 

If w(a) = wj(a), j = 2,3, then by (2.6) again, 

2~j(~) 2~(a)  . ~  ~-~ 1 
t ,=  ev2(a----- ~ >  - V e  > - - ,  j = 2 , 3 .  ev2(a) v(a) [r 

Hence if w(a) = w2(a), then (whenever v(a) < 1, [r < 1 and v(a)[r <= 
< e-~) 

exp{ ha(to) } = exp{ h=(1/]~(a)]) } = 

e v2(a) 
= exp ~ r ) 

2w2(a) 1 exp{ 2w2(a)l-- 

1 { 
v(a) exp - log 

1} 
v(a)lr = I~(~)! -5 ~2(~) = ~(~) 

by the choice of a*, while if w(a) = w3(a), then 

exp{ ho(t~ } = exp{ ha(1/lr } = 

{e v2(a) 2w~(a)} eo/~ { 2~(~)}  = exp 2 r Ir < exp I~(a)l - 

1 
- w 3 ( a ) =  w(a) 

since 2d ____ 1 and [~(a)[ ~ lie ~/2/d by the choice of a*. Therefore, the in- 
equality exp{ ha(t.)} < w(a) holds for all a ___ a*. 

Thus if a _> a*, then the bound in (2.5)is less than P{Sn <_ a} + 2w(a)= 
= r,~(a). This fact establishes (2.3) in the non-trivial case, and hence the 
theorem. (The collection of bracketed phrases also establishes the remark 
concerning the choice of the thresholds.) 

3. Example s  

The first three examples show, in particular, that all three versions of the 
rate function provided by the three branches of WM(-), M = L, R, defined be- 
tween (1.5) and (1.6), may in fact occur. For simplicity of exposition, we deal 
with spectrally one-sided infinitely divisible distributions, that is, we choose 
L(.) = 0, with the exception of the stable and compound Poisson examples. 
The last four examples are of interest in their own right, the negative bino- 
mial being weird enough to deserve attention in any case. In Examples 2-4, 
the threshold remark beneath the theorem is used without further notice. 
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EXAMPLE 1. If L ~_ 0 and ~R(u) = - e -~,  u > 0, then wL(a ) = O, 
vR(a ) ~ c-a/x/r2 and wR(a  ) -~- w~R)(a)--~-- d a e  -a for all a > 0 for vn(a)/ 
/[~bR(a)l = 1 / ~  < 1. Regardless of 0 e I t  and a >= 0, for the corresponding 

L6vy distance the theorem and (1.8), with an ---- ( 2 -  v ~ ) n ,  give 

Dn,n(0, R)=< 3 d ( 2 - v ~ ) n  fora l l  n > _ m a x (  e'/2 2 d  , ~ l~  
exp{(2 - x/-:~) n} - 2 - V ~  

and each fixed 1/2 <_ d < 2e( ~-2)/2 = 2.86419 . . . .  For d = 2e( ~-2)/2 this holds 
for all n >_ 6 and for d = 1/2 the inequality is true for all n -> 30. 

EXAMPLE 2. If L -- 0 and ~PR(u) = - v / u e  -u/2, then wL(a) = 0, vn(a) = 
= v/-a -+ 1 e -~/2 and wR(a)= w~R)(a)= 2 -1V/-at~-a/2 log (ca[a2--~ - a] -1/2) for 
all a >= 2/(e - 2) = 2 .78442 . . . ,  say. Regardless of 0 E I t  and a >__ 0, for the 
correspondi,g L vy distance the theorem and (1.S), with = n/2, 
give 

D n , n ( O , R ) <  
3V/(3 - yrh) n exp{ n} 

for all n > _ 5 >  
3.35 

n 

EXAMPLE 3: Stable laws. Let F~,Z,v,r ) be the distribution function of 
a non-normal stable law with exponent 0 < a < 2, given by its characteristic 
function 

/ ~ eitXdFa,z,n,r = 

] exp{i~t - r/]t[~ [ 1 -  i/3sgn(t)tan(a~r/2)] } ,  

/ exp{i~'t - r/]tl~ [1 + iflsgn(t)21og]tl] },  

i f a r  1, 

if a =  1, 

with skewness, scale and location parameters - 1  _<_/3 =< 1, ~ > 0 and ~ E R,  
where sgn(t) is the sign function, t E I t .  In L~vy's canonical form at the 
beginning of the paper, this is given by some 0 = 0(a , /3 ,%~),  a = 0 and 
L(-) and R(-) functions such that  ~M(U) = -- CMU -1/~, u > 0, where CM = 
= cM(a,/3, z/, ~) _>_ 0 are some constants, M = L, R, such that  CL(a, 1, ~, ~) = 
= 0 and cL(a,/3,~,~) > 0  for every --1 < /3 < 1, while ca(a,-1,~?,~) = 0 and 
cR(a, /3,~,~) > 0 for every - 1  </3 _<_ 1; cf. [9], [1], [4]. Setting K~,Z,n,r := 
:= sup{f~,z,mr :x  e It} < ~ for the corresponding density function 
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f~,z,v,r := F~,Z,~I,r ) and v~ = O(a,/~,~],~):= O--OL +0t:t, where OL and OR 

P { = x i , x m are given through (1.3), let F~,~,~,~(x):= - + 0 < 

where, in the present situation V~ (M) of (1.2), for M = L, R and n E N, is 
given by 

~ ~ u  (s(M))  ~-__A ~ ~4 if a # 1, Un(M ) = - - C M  E j = I  ( ~ 3 z l ) ) - 1 / a  + a - 1  \ a _ a - l ,  

--CM y~jn___, (S}M))-1 + cMlog S (M), if a = 1. 

Elementary calculation shows that vM(a) = V/a/(  2 -- a ) CM a -(2-~)/(2~), a > 
> 0, and 

wM(a) = w ~ M ) ( a ) -  V f g - -  
2 

forall a >  * = aM 

if CM > O, where, putting p := a / ( 2 -  a), UM := (2/(pe)) log(1/(CMv/-fi)) 
a n d  VM:= 1/(2p2), the threshold a~t may be chosen as a ~ =  
= m a x ( y  c~ie 4p/~, aoM), where a~/is the smallest positive number such that 
a >= UM+VMloga  for all a >= a~M, M = L ,R .  Picking now any r E (0,1) in  
(1..8) and letting n ~  := max(a~t/~- , n~4), where n ~  is the smallest n e N 

for which e x p { -  (1 - r)2n/2} < w~M)(rn), M = L ,R ,  the inequality in (1.9) 
gives that for all n __> n~ and m => n~, 

n~Tt~ sup I F~,f~,~,~(x) - F~,z,,,r < 311 + K~,Z,,,r [w~L)(Tn)+ w~R)(~-m)]. 
xER 

Neglecting thresholds and constants, the qualitative meaning of this is that 

= o - + - -  - 

xER n a  2 / ~  

aS Tt, Tn ~ 0 0 .  

Improving Theorem 2.2 in [2], the latter rate has also been established in 
Remark 1.3 of Janssen and Mason [11] by completely different methods. 

EXAMPLE 4: Limiting St. Petersburg distributions. In a classical St. 
Petersburg game, a player gains 2 k ducats with probability 2 -k, k E N. 
As determined in [5], the class { G~(.): 1/2 < 7 =< 1} of all possible non- 
degenerate subsequential limiting types of distribution functions for the cu- 
mulative gains of a player in a sequence of independent St. Petersburg games, 
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under any deterministic centering and norming, is described by the family of 
infinitely divisible characteristic functions 

eitXdG~(x) = exp iO~t + e i*~ - 1 1 + x 2 

where, with Log standing for the logarithm to the base 2 and, for any y E I t ,  
with [yJ denoting the greatest integer not greater than y, having a fractional 
part (y} = y - [yJ, 

72 1 
0~/ :----- E 7 2 q _ 4  k E l f f - 7 2 4 k  

k=l k=0 
Log 7 

and 

R.y (x )  = - " / 2  -[L~ , x > 0, 

so that  r  ~bn~(u) = -2-[L~ u > 0. Hence by lengthier but 
elementary and quite delicate computat ion through (1.2) and (1.3), 

1 n 1 

2 [Log(Sff'0J 7-i 

where 5(s) = 1 + (Log s) - 2 (L~ 8 > 0, and it can be seen in similarly ele- 
mentary fashion that 0 < 5(s) __< 1 - (1 + log log 2)/ log 2 = 0.08607.. .  for an 
s > 0. (The function 5(-) plays a special role in the theory of the St. Peters- 
burg game, described in [6], and the present example has some motivational 
value at some point there.) Also, since 1/u <= [~bz(u)l < 2/u for all u > 0, for 
the corresponding v~(a) := f ~  ~ ( u ) d u  we obtain 1/v/~ __< vz(a) < V/2/v/-d 
for every a > 0  and 1 / 2 < 7 = <  1. Thus we h a v e v ~ ( a ) < e  -2/~ i fa>__a* :=  
:= 2e 4/~ = 8.71168.. .  and vfa/2 < v.y(a)/]~b~(u)l <= v~d, so 

WR.~(a)=w~R'J(a)= v,y(a)~/log[l/v,~(a)] < ~ - - .w l ( a )  

for all a > 1 and all 1/2 < ? =< 1. Since the densities g~(.) = G.~(.) exist and it 
can be shown that  supl/2<.r=< 1 sup{gz(x) : x C It} < 1/2, for any 0 < r < 1 
in (1.8), finally (1.9) yields 

sup s u p J P { W n  (~) < x} - G ~ ( x ) [  < C ( T ) ~  
�89 x e R  

V ~ f t  foran r~>n  (r), 
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where the bound is a trivial upper bound for 3wl(rn) with 
C(r)  := 9 ~ / 2  and n*(r) := [max(2e4/~/v,n.(r))], where 
[x]:=min{keN:k>x}, x > 0 ,  and n.(r):=min{keN: 
: e x p { - ( 1 - r ) 2 k }  < w2(rk)}. Here, rounding up, C ( 1 ) =  5.24620 is un- 
achievable, and we get C(0.707)= 6.23929, n*(0.707)= 13; C(0.8)= 
= 5.86543, n*(0.8) = 53; C(0.9) = 5.52998, n*(0.9) = 376; C(0.95) = 
= 5.38249, n*(0.95) = 2 107; C(0.99) = 5.27263, n*(0.99) = 86 177 and 
C(0.999) = 5.24883, n*(0.999) = 13 297850. 

EXAMPLE 5: Compound Paisson laws. Let Nx, X1,X2, . . .  be indepen- 
dent random variables such that Na has the Poisson distribution on the 
integers {0, 1, 2, . . .} with mean A > 0 and X1, X2,.. �9 have the same distri- 
bution function G(x):= P{X < x}, x E R. Then L6vy's canonical form of 
the characteristic function of the infinitely divisible compound Poisson dis- 
tribution function F~,G(X):= P{ ~k=11V~ Xk =< x }, x E R, is given by a = 0 
and, with G_(.) denoting the left-continuous version of G(.), 

o = o ,G = d a ( x  L(x)  = aV _(x ) ,  �9 < O, 
l + x  2 

R(x) = A [ G ( x ) -  1], x > 0. 

Hence, letting G+I(.) denote the right-continuous version of the left-con- 
tinuousgeneralized inverse G-~(s) := inf{x e R : G(x) __> s}, 0 < s < 1, the 
usual quantile function, pertaining to G(.), we have 

G ; I ( ~ )  , if 0 < u < AG_(O), 
 r(u) [ 0, if u > AG_(0), 

and 
- G - l ( 1 -  ~) ,  i f 0 <  u < A[1-G(0)] ,  

~bR(u) = 0, if u > A[1 - G(0)]. 

For the L6vy distance D~,m(A,G) between F~,G(.) and its approximation 

P{ F'~, G (X) := -- + OA,G -- OL ~- OR _--< X},  X E R ,  given by  the 
present eL(') and ~R(') through (1.2) and (1.3), by (1.10) we obtain 

D~,,~(A,G) < [AG-(0)]~ [A{1-G(0)}]m 
n! + m! for all n , m ~ N .  

The Poisson law itself, with mean A, is the special case when G(x), x E R, 
degenerates at the point x = 1 and 0A := 0~,G = A/2 for the corresponding 
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quantity. In this case, eL(U)= 0 and ~bR(u)= - I { u  < )~} for all u > 0, 

and enjoyable calculation shows tha t  - V  (R) + O~ + OR = ~j~--1 I{Sj < )~} + 
+ (+k - S~)I{S~ < A} for every n �9 N. If D~()~) denotes the L6vy distance 
between the distr ibution function Fn,~(') of the lat ter  r andom variable and 

the Poisson distr ibut ion function F~(x) := e -~ ~zz=J 1 )~k/k!, x �9 It, of N~, 
with an empty  sum unders tood  as zero as above, then  the result reduces to 
the inequality D,~(A) < ),n/n! for all n � 9  Fur thermore ,  if D*()~) is the 
L@y distance between F~(.) and F*,~(x) := P{~jn=II{S j < )~} = x} ,  x e 
�9 I t ,  then a trivial extra  step based on the triangle inequality for a L6vy 
distance yields D;(A)  < 2 ~ / n !  for all n �9 N.  

EXAMPLE 6: Negative binomial distr ibutions.  For a fixed order l �9 N 
and success probabili ty 0 < p < 1, consider the negative binomial distribu- 
tion function 

: + Ft,p(X) := P{ Vt(p)<x} := E qk-~, x e t t ,  
k----I 

where q := 1 - p. As is well known, it is infinitely divisible and it is a routine 
exercise to show tha t  the L~vy form of the characteristic function is 

? { /0=( eitXdFe,p(X) = exp iOe+t + e it~ - 1 
O(3 

l + x  2 

where 

+r qm 
Oe,p = f + f E l + m 2 and 

m----1 

[xJ qm 
- -  + l l o g p ,  R~,p(x) = ~ E m 

m = l  

So, noting tha t  - ~ l o g p  = ~ ~m=l qm/m, 

x > 0 .  

" k - 1  

c+ { 1 ~ q m  m ~,1 E - ~  - } et,p(U) := ~PR,,p(,u) = - E k I log ~-~ - e - -  < u < log - e 
k - - 1  m = l  m----1 

u > 0 ,  

thus ~t,p(U) = 0 for all u > - f l ogp .  Evaluating (1.2) and (1.3) with this, 
the result is 

W~ 'p := - V (R~'p) -+- 0Cp + 0n~,p = 
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= ~ +  Z kl e - < e - + 

j = l k = l  ~ m-k+1- m m=k m 

m m m 
k=l rn=k rn=k+l m=k 

=:  + 'p + p. 

(Note tha t  P { ' w ~  ~'p = ~} = P { l +  T~ 'p = l}  = pi = P{Y~(p) = l } . )  I f n o w  

Dn(~,p) is the L6vy distance between F~,p(.) and P{  W~ 'p =< �9 } and D*(~,p) 
is the L6vy distance between F~,p(-)and P { ~  + T~n 'p =< �9 },  then (1 .10)and  
an extra  step as above yield 

Dn(e,p) --< [-el~ [-el~ n 
n! and D*(g,p) <= 2 n! for all n C N.  

If * = 1, this is of course a result for the approximat ion of the geometric 
X-~ [xJ q k - 1  distr ibut ion function Fl,p(x) = p z-~k=l x E R.  

I t hank  my daughter  Zsuzsi for checking the numerical  calculations in 
this section. 
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