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Abstract 
Similarity solutions of the viscous transonic equation describing source and 
source vortex Ilows have been found. These solutions contain shock-like 
transitions from the supersonic to the subsonic branch of the corresponding 
inviscid solutions, while the singularity near the sonic point of the inviscid 
solutions is shifted to a smaller radius. It is shown that this similarity 
solu±ion is identical to the transonic viscous compressible source and sink 
flow solutions of Wu (1955) and Sakurai (1958). 

§ 1. Introduction 

Exac t  solutions of the equations of two-dimensional inviscid com- 
pressible flow for source and source vortex or spiral flow contain 
l imiting circles at or near the sonic point where the velocity gradient  
becomes infinite El, 2, 31. No solutions exist inside these l imiting 
circles. The transonic flow near these lirniting circles, where velocity 
gradients are large, clearly can no longer be described by  an inviscid 
theory.  Application of a viscous transonic theory  [4, 5, 6, 71 to the 
flow in the neighborhood of these l imiting circles forms the subject 
of the present paper. 

Two- and three-dimensional  source and sink flows of a viscous 
compressible fluid have previously been invest igated by  Wu [81, 
Sakurai  [91, and Levey  El0, 111. Wu  and Sakurai  found closed 
form solutions of the one-dimensional Navier-Stokes equations 
valid in the region of transonic flow. In the present paper the 
eonnection between the general viscous transonic theory  and the 
special solutions of Wu and Sakurai  is shown. 

§ 2. The viscous transonic equation 

I t  has been shown [51 tha t  in two-dimensional viscous transonic 

- -  3 5 6  - -  
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flow the perturbations to the sonic velocity taken in the ~ direction 
satisfy the equation 

U x x  --  2 U U x  + V r  = 0 (1) 

Uv : Vx ,  (2) 

which has been called the viscous-transonic or V-T equation. The 
dimensionless quantities in (1) and (2) are related to the dimensional 
coordinates (~, 3?) and corresponding velocity components (ü, ~:) by 

X = AX/n a/a* = 1 + eU 

Y = A~/(½)(?~ + 1)#Y/V (3) 

~S/a* = e~x/(½)(r + 1) V, 
where 

A = (½)(~ + 1)[1 + (~ -- 1)/Pr"~ -1. 

The characteristic dimension ~ is taken as la*"/(ea*p*) which is of 
the order of the thickness of a weak shock wave, where #*'% a*, 
and p* are the longitudinal or compressive viscosity, the speed of 
sound, and the density, all evaluated where the speed is sonic or 
critical; e is a small parameter proportional to the deviation of 
ü/a*, i.e. M*, flora the sonic value of unity. Except for the choice 
of the characteristic length ~7 and the use of the Iull Navier-Stokes 
equations the derivation of (1) and (2) is identieal to the derivation 
of the inviscid transonic equation. In fact, as noted previously [5J, 
Eq. (1) reduces to the inviscid transonic equations if the term U x x  
is deleted. 

In the present case it is more convenient to use a dimensionless 
stream function ~p and potential Ó as independent variables with w, 
the speed, and O, the streamline angle, as the dependent variables. 
With q~ and ~ (barred quantities are dimensional) defined by 

ü = q:~, ~ = q~~ (4) 

~~ = ~~; ~~ = - ~ ~  ( s )  

it can be shown that 

¢~ = ( 4 A / u « )  = X + O(e) 

V = ~~~A~/i½)(Y + 1)/(p*a*w) = Y + O(e 2) (6) 

to the same order of approximation as (1) and (2). Defining 0 as 
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the streamline angle with respect to the undisturbed sonic velocity 
a* along the 2-axis we have from (3) 

0 = tan -1 (e/ü) ~ e~~/i½)( ~ + 1) V. (7) 

At the same time since ü = ~ cos 0 it follows that  

w=~/a*----- 1 + e W =  1 + eU 

so that  W =  U. 
Upon eliminating V from (1) and (2) and introducing ¢ and ~0 

as independent variables the V-T equation can be written in the 
form 

W,~~ - (W2),¢ + W s ,  = 0. (8) 

If a dimensionless angle O is defined by 

0 = e~4(~) (y  + 1) 0 

the irrotationality relation (2) becomes 

W 0 = O «  (9) 

In the inviscid case, that  is without the term W,¢6, Eq. (8) reduces 
to the equation considered by Tomotika and Tamada [12~ in their 
study of inviscid transonic nozzle and spiral flow. 

§ 3. Similarity solution for spiral flow 

The transformation 
W =/ (S) ;  S = ¢ + 2~ (10) 

introduced in [12] leads to an exact solution of the inviscid transonic 
equation which may be interpreted as a spiral flow. The arbitrary 
parameter ~ determines the eirculation of the souree vortex or 
spiral flow while S is a coordinate in the direction of the radius 
from the source eenter. The transformation (10) is also successful 
in the viscous case and reduces the partial ditferential equation (8) 
for W to the ordinary differential equation 

f,, _ (/2),, -t- ,~2/,, - -  0 (11) 

for the function/ .  Equation (11) is readily integrated twice yielding 
the Riccati equation 

]' __ /2 -Jr- ~2/ = _ _ C 1  S -Jr- C2, (12) 

where C1 and C2 are constants of integration, and the minus sign 
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ahead of C1 is chosen for later convenience. Combination of (9), 
(1 0), and (1 2) yields the expression 

O = ~/(S) q- Cl~0 -1- Ca (13) 

for the angle O, which is valid for both the viscous and inviscid 
cases; C3 is again a constant of integration. 

The interpretation of the solution (10) as spiral flow requires 
further discussion. From the definition of S in (10) and (3) and (6) 
it follows that  the angle between streamlines, ~o = const, and the 
S-axis is constant and equal to --,~e½{½(y + 1)}~. With S taken as 
a radial coordinate the streamlines then will be logarithmic spirals 
described by the equation 

in (¢/~*) --~ -- (D -- D*)/(~e'}x/(~~ + 1)). (14) 

The polar angle D is measured with respect to a fixed axis while 
D* and ¢* are the particular values of ~ and £2 at the sonic point 
of the streamline of interest. With a given streamline chosen for 
reference the angle 0, on the other hand, is measured with respect 
to the velocity vector at the sonic point. Fig. 1 shows the distinction 
between 0 and D. It  should be mentioned that  the solution of (8) 
presented here describes a family of similar solutions in the same 
sense as discussed by [13] in eonnection with viscous transonic 
nozzle flow. In this latter case 35 ,-~ e-~ for corresponding stream- 
lines while d35/d£, the streamline slope, is O(#). Rather similarly, 
in the present case while the angle between the streamline and the 
radius is O(e½) the deviation angle 0 is only 0(#).  

B/ /  ,, 

Fig. 1. The geometry for spiral flow. Angles exaggerated for clarity. 
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\ \  ~ ~/=0 

Fig. 2. Radial flow; X is takert in the direction of the ~b = 0 streamline 
at the sonic reference point. 

Purely radial flow corresponds to ~ = 0. Then choosing ~0 = 0 
when 0 = 0 we have that  the constant Ca in (13) will be zero so 
that  with X taken in the direction of the ~0 = 0 streamline at the 
sonic point as shown in Fig. 2, the deviatiort angle 0 will be 

0 = e~a/(½)(W -~ 1) O = e~~,/i½)(), + 1) C1M. (15) 

Since 0 ~ 1 it follows that  in the neighborhood of the sonic reference 
poillt, shown in Fig. 2, 0 ~ y/~'. Assuming Y ~-~ O(1), C1 ~ O(I) 
it then follows from (15) that  tor the present theory to be valid 
the radius ~', or distance from the source point, must be O(~/e2). 

Essentially the spiral flow solution deseribes the flow in the 
neighborhood of the sonic point on any streamline ~ = const in 
terms of perturbations to the sonic conditions. With ~ and ¢ as 
coordinates the solution may be interpreted as deseribing the flow 
for any arbitrary ~ in a two-dimensional radially symmetrie flow. 
With X and Y as independent  variables the solution describes the 
flow only near that  particular streamline with the X-axis tangent 
at the sonie point. 

In the ease of radial flow it is instructive to develop (12) directly 
from the Navier-Stokes equations. Then it will be seen that  the 
integration constant C1 is related to the source strength. The 
continuity, momentum, and energy equations for purely radial 
flow, with ü the radial velocity, are 

õü« = p*a*r*  (16) 
[ dü 

dü dB d 2# + (fi" -- 2fi) × 
P ü - ~  + de -- de -d)- 

~~(d~ 
× ( ~ - - +  ü ) l - } -  , \ d ,  u )  ,17) 
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dT _ d~ d (~ dT'~ 
puCp-di- -- u de -- d e \  d e / +  ~/7 × 

x d7 e + + -~~) õ - +  " 
(18) 

To develop approximate equations valid in the transonic regime 
ü, õ, and T are expanded in the form 

/7, = L*(1 + eL(l) + e2L(2) + . . . )  (19) 

while ~ is expanded as 

P =  p*a*2(l  + @(1) -t- dp(2) + . . . ) ,  (20) 

Cp, /7, fi", and ]~ are assumêd constanl. If a balance between con- 
vection and dissipation is the basic mechanism involved in the 
flow, it appears reasonable to streich the ¢-coordinate according to 

de = ~ d z. (21) 

As the region of interest lies near the sonic radius r* it is expedient 
to express the radial coordinate in the form 

e ,1 
r-- r* -- I + Z r-Z-. (22) 

Derivation of an equation for u(1) parallels the original derivations 
of the V-T equation [5] in that  substitution of the expansions 
(19) and (20) and equations (21) and (22) in the conservation 
equations (16)-(18) yields a set of redundani  first order equations 
and second order equations from which p(~), u(2), p(2), and T(2) can 
be eliminated, leading to an equation for u(1). The expansion 
scheine above will be consistent only if r*~,~ O(~/e2), otherwise 
unbalanced terms oecur in the first order equations. This result 
agrees with the conclusion reached above that  e ~-o O(V/e2). Lett ing 
r* = Ô~/e 2 with fl ~-o O(I), algebraic reducti0n leads to the following 
equation for u(1): 

( y - - 1  )d~u(1) d 1 
-~- 1 dx 2 ½(y + 1) -d-; (u(~~2) + ~ -  = 0. (23) 

Lett ing S = AZ, u(1) -~/(S), we find that  one integration reduces 
(23) to 

]' - -  12 -- --S/{(½)(y + 1)flA} -k C» (24) 
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Comparing equations (12) and (24) and using the definition of fi 
it can now be seen that  

C1 = 2~/{(y q- 1)r*e2A}, (25) 

so that C1 is inversely proportional to r* which in turn is pro- 
portional to the source strength. The failure of the present theory 
when r* ~~7/s 2 implies that  in this case the balance between 
convection and dissipation may not be the dominant mechanism 
so that  ~7 is no longer the proper characteristic length. 

§ 4. Closed form solution for f(S) 
To actually describe the spiral flow, equation (12) for / must be  
solved. For later comparison, the inviscid solution for spiral and 
radial flow will be obtained firstly. Without the viscous term (12) 
reduces to the algebraic equation 

_/2 + 22/= _C1S + C» (26) 

The constant C2 sets the origin of the S coordinate system and is 
chosen as zero for convenience. Then the inviscid solution, which 

! 
x~ 

--"l  4-d, 

~ iral Flow 

. . . , . , .  , , . - "  

ù. 1 1  "~"--Radial Flow 
(X=o) 

7 tr~.r- Sonic Point 
I 1 1 I S 

Fig. 3. The  inviscid solution (eq. (27)) for spiral flow and radial  Ilow. 
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ig shown in Fig. 3, becomes 

The inviscid solution has two branches. Starting at S = --7L4/4C1, 
/ = 12/2, the velocity either eontinues to aceelerate with increasing 
S or decelerates, reaching the sonic value / = 0 at S = 0 and being 
subsonie for S > 0. The velocity gradient is infinite at S = --~t4/4C1 
while no solution exists for S < --24/4C1. Thus, S = --14/4C1 
represents a limiting circle in the sense discussed in Section 1 
above. In the case of radial flow ~ = 0 and the sonic and limiting 
circles eoincide so that the solution consists of a subsonic and a 
supersonic branch. It  can be shown that in the transonic regime 
the inviscid solution (27) is identical to that  of [1]. 

In the viscous case it is convenient to introduce the new variables 

~~. --,14 (28) 
f = l  2 '  $ = s  + 4c: 

for then (12), with C2 taken equal to zero, becomes 

df f2 = -C1~. (29) 
d t  : 

The Riccati equation (29) is independent of the parameter ~ so 
that  solutions of (29), upon transforming back to / and S, describe 
both spiral and radial flow. 

The additional transformation 

f _  l d r  (30) 
T d~: 

followed by the transformation $ = C~~ changes (29) to the linear 
second order equation 

T" -- S T - -  0 (31) 

which is Airy's equation, and has the solution [14] 

T = C4Ai($) + C~B,($), (32) 

where Ai and Bi are Airy funetions of the first and second kind 
while C4 and C5 are constants of integration. From (30) and (32) 
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it follows that 

KA;(C~~) + B~(C~~) (33) 

where the arbitrary constant K has been substituted for the ratio 
C~/C5, while the primes indicate differentiation. It  is thus possible 
to find the solution for spital and radial viscous transonic fJow in 
closed form. From the asymptotic behavior of the Airy functions 
[]4J, it is readily shown that  as ~ ~ co 

f = / - ~ - c t ~  ~ = - Cm S + q C T )  " (34)  

-2.0 

/ 
/ 

? 
"~'73 

(3= 

2.0- 

1.0. 

/ -2.0. 

-5.0' 

-4.C 

-5.C 

Inviscid solution for 
/ 2-D radial flow 

~ - ~  
7"~K-" I0 K = 100 ~ " 

3.0 k 5.0 B.O 
ù .  i'., l~, i ~ 1 

" - , i . o ' ,  2 . 0 ~  ., 4 . o ~  ,I' 

2 \ 

'Viscous-Tronsonic solutions t for 2-D rodiol f low 

Fig.  4. The funct ion ,f of the  viscous case, for var ious  values  of K.  
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A comparison of (27) and (34) shows the interesting result that  as 
S -~ co the viscous solutions all approach the subsonie branch of 
the inviscid solution. 

The behavior of [ for several values of K is shown in Fig. 4. For 
large values of K the solution [ firstly approaches the supersonic 
branch of the inviscid solution, then after passing through a shock- 
like compression [ al?proaches the subsonic branch of the inviscid 
solution, as also indicated by the asymptotic solution derived above. 
From Fig. 4 it is evident that inclusion of the viscous term in the 
equations for radial flow has eliminated the singular behavior near 
the sonic point; however, the solution still diverges at some point 
inside the sonic circle. This can also be seen from the fact that  as 

-+ --oo,  [ has the asymptotic behavior 

[ ~ ~ ~ [ - - ( l + K ) + ( 1 - - K ) t a n { ~ ( - - C ~ ~ ) ~ + ~ ~ } ]  
= --C1(--C1~) (1 - - K ) +  (1 + K) tan{~(--C~~)~ + ~~} 

(35) 

so that  [ has numerous singularities for large negative values of ~. 
Fig. 4 also represents the function/(~) for radial flow. From (28) 

it follows that the behavior of/(~) for spiral flow (i.e. 2 =# 0) can 
be ascertained from Fig. 4 by simply shifting the origin a distance 
22/2 in the minus [ direction and a distance 24/4C~ in the positive 
direction. 

§ 5. Discussion 

The solution developed above provides another  indication that  a 
viscous transonic theory can resolve the singular behavior some- 
times encountered in the inviscid theory. As in the case of nozzle 
flow [13, 15] the viscous transonic solutions contain shock-like 
transitions between the supersonic and subsonic branches of the 
inviscid solutions. The inviscid singularity at the sonic radius 
disappears; however, a new singularity occurs at a somewhat 
smaller radius. 

As mentioned above, the present paper is not the first analysis 
of viseous spiral and souree flow. Both Wu [8] and Sakurai [9] used 
an approximate form of the Navier-Stokes equation to find source 
and sink solutions in the transonic flow regime. This approximate 
equation was developed by using the expansion 
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with 

ü I 
4" - - u =  1 q - ~ U  (36) 

in r* R #  ~ = l n  lff- ~ß- 1 (37) 

where Re is a Reynolds number defined as p*a*r*/iF. It  has already 
been shown that  the V-T solution developed above will be con- 
sistent only if 

¢¢ t t  I z 
. . . . .  O (e2). (38) ~'* p*g*Y*E 

Since generally #*"/#* ~ 0 (1) equation (38) implies that  e ~ 0 (Re-~) ; 
then if e/r* -- 1 ~ 1, it follows that  the expansion and stretching 
of (19) and (22) and (36) and (37) are eqnivalent. 

The approximate equation obtained by [8, 91 is essentially the 
same as (29) above, and, of course, Wu and Sakurai also found 
closed form solutions in the transonic case. The signifieance of the 
present paper thus lies not in the development of new cylindrical 
shock solutions, but in showing the connection between the viseous 
transonic equation (1), which applies to a broad class of two- 
dimensional flows, and the earlier one-dimensional transonic radia] 
flow solutions of E8, 91. 

A viscous transonic radial flow solution was also obtained by 
Axford and Newman E16~ for the spherically symmetrical radial 
flow of an ideal gas in a gravitational field. Their interest was to 
establish the nature of shock transitioi1 in solar wind and steUar 
aceretion problems. Axford and Newman's analysis also leads to a 
Riccati equation for which solutions are obtained in closed form. 
It  is perhaps worth remarking that many problems involving the 
structure of weak shoek waves lead to the solution of a Riccati type 
equation. The classic example is, of course, the Taylor structure of 
a weak normal shock wave which is the solution of the equation 
(Hayes El71) 

u 2 
u ' - -  ~-~=Fconstant .  (39) 
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