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Abs t rac t .  An analysis is made of the laminar natural convection of incompressible fluids over 
a slender, hollow circular cylinder with the inner surface at a constant temperature of Tb. The 
temperature of the outer surface must be solved from the coupled conduction of the cylinder and the 
natural convection of the fluid over the cylinder. The objective of this paper is to investigate the effect 
of conduction on the heat transfer characteristics of the natural convection boundary layer of the 
fluid. A wall conduction parameter, p, is introduced which is a measure of the heat conductivities of 
the solid and the fluid and the thickness of the cylindrical shell. The governing differential equations, 
being non-similar, are solved by a finite-difference method. Numerical results are generated for a 
series of values o f p ' s  and Prandtl numbers. 
The present analysis shows that the overall effect of conduction of the cylinder is to reduce the 
heat transfer. Any calculation of the heat transfer rate based on the assumption of a constant wall 
temperature overestimates this quantity. The effect increases for large values of p. 

Nomenclature 

G'p = specific heat 
f ,  9 = similarity variables 

= gravitational acceleration 
Gr = Grashof  number 
k = heat conductivity 
L = length of cylinder 
p = axial conduction parameter 

defined in Eq. (19) 
Pr = Prandtl number  
q = heat transfer 
r = coordinate in the r-direction 
r i ,  r0= inner and outer radii of 

the hollow cylinder 
R = ratio of adjacent interval in ~-direction 
Re = Reynold number  
Tb = temperature at the inner surface 

of the hollow cylinder 
T = temperature of the fluid 
Ts = temperature of the cylinder 

uc = reference velocity 
vr = velocity component in r-direction 
v.  = velocity component in z-direction 
z = coordinate along the axis 

Greek symbols 
p = density 
v = kinematic viscosity 
a = thermal diffusivity 
/3 = bulk modulus 
0 = dimensionless temperature 

= stream function 

Subscripts 
b = condition for x < L 
to = condition at infinity in y-direction 
f = fluid 
s = solid 
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Introduction 

It is well known that when convective heat transfer rate depends strongly on the 
thermal boundary condition, it is necessary to consider the problem as a conjugate 
problem between the solid and the surrounding fluid. An example of such cases 
is the natural convection over an external surface, as treated in [1-8]. Unlike the 
classic solutions of natural convections where the thermal boundary condition on 
the wall is specified in the form of either a specified wall temperature or a specified 
heat flux, the nonlinear boundary layer equations of the natural convection flow 
must be solved simultaneously with the energy equation of the conduction heat 
transfer through the solid. Despite its importance, this class of problems has not 
received its proper share of attention since the pioneering work of [1] due mainly to 
the complexity in matching a nonlinear solution of the natural convection boundary 
layer equations in the fluid with a linear conduction solution in the solid body at the 
solid-fluid interface. Recently, renewed interest in the conjugate natural convection 
problems led to some fundamental works on both external [6-8] and internal [9, 
10] natural convection problems. For the external conjugate natural convection 
problems, the emphasis in these works is concentrated on the problem of natural 
convection over a flat plate where one side is exposed to a given temperature or a 
given heat flux while heat is transferred to the other side by conduction and then 
from the solid-liquid interface to the fluid by natural convection. Miyamoto et al. [6] 
formulated the problem by considering a two-dimensional conduction in the plate 
and a matching scheme was introduced in which the plate temperature was solved 
by Fourier series and the natural convection of the fluid by local similarity and 
the two solutions were matched at the interface. An iterative process was required 
and the solution was complicated. A major simplification was made recently in 
which the axial conduction term in the energy equation of the plate was neglected 
even though the plate temperature was a function of both x- and y-directions. Not 
only the solution process became considerably simplified, the results were found 
to be very close to the ones using two-dimensional conduction equation of the 
plate. Using this simplification as a basis, Timma and Padet [7] made an extensive 
analysis and a family of solutions was generated. Pozzi and Lupo [8] recently made 
a study of the solution of the equations in [7] by the method of perturbation and 
the radius of convergence of the series solution was sought. 

In this paper, a similar analysis is made of the conjugate problem of the natural 
convection flow over the outside surface of a slender hollow circular cylinder, as 
shown in Fig. 1. The temperature at the inner surface of the cylinder is kept at Tb 
and the temperature of the outer surface is determined by the conjugate solution of 
the energy equation of the solid and the boundary layer equations of the fluid. If the 
heat conductivity of the hollow cylinder is infinity, the temperature of the cylinder 
is expected to be equal to Tb for the entire hollow cylinder and the solution of the 
natural convection boundary layer equations based on a constant wall temperature 
will be applicable. Such is not the case in reality where the heat conductivity of the 



NATURAL CONVECTION OVER A CIRCULAR CYLINDER 41 

Fig. 1. 
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plate is finite and a conjugate conduction-convection interaction will therefore be 
present. It is the purpose of this paper to investigate the effect of heat conduction 
on the heat transfer rate. 

The analysis will follow the lead in [6-8] in that the axial conduction terms in 
the energy equation of the cylinder is omitted even though the solid temperature 
is a function of both r and z. Analysis based on this assumption can be expected 
to be very close to the solutions obtained with two-dimensional conduction terms 
present [7]. The partial differential equations of the fluid in the boundary layer, 
being non-similar, will be solved by a finite-difference method. Numerical solutions 
are generated for a set of values of Prandtl numbers and a conduction parameter, 
p. 

Analysis 

The governing differential equations for the laminar natural convection flow of 
an incompressible fluid with constant physical properties except the density and 
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under Boussinesq approximation over a vertical circular cylinder (see Fig. 1) can 
be written as 

o(Tvz) O(Tv ) 
0- - - -~  + 0 ~  -- 0, (1) 

Ovz oo_ O IrOVz I 
Vz O---z- + vr -- T Or [ Or J + ~/~(T - T ~ ) ,  (2) 

OT O T _  a 0 ~TOT 
vz 0---/+ vr Or r Or [ ~ J" (3) 

Before the boundary conditions can be given, let us make an analysis of the 
conduction through the cylinder. The two-dimensional heat conduction equation 
of the hollow circular cylinder can be written as 

1 o o2Ts 
r Or \ OT ] + OZ 2 --0" (4) 

If equation (4) is normalized by introducing the dimensionless quantities 

T z Ts - T ~  
= - - ,  ~ = -  0 s -  (5) 

ro L '  T b - T ~ '  

equation (4) becomes 

\ - - - ~ - ]  + _  _ - 0 .  (6) 

Since the ratio r o l L  is small, a simplification was introduced [7, 8] by omitting 
the axial conduction term in equation (6). This is a major simplification from the 
mathematical point of view since it eliminates the iterative process in matching 
the convective part of the solution. The solution using this simplification was 
found in general accurate [7]. It should be emphasized that the omission of the 
axial conduction term does not mean that the temperature of the solid cylinder is 
independent of z. Simplifications of this type are abundant in engineering analysis. 
A well-known example is the solution of incompressible boundary layer equations 
over an external body in which the solution of the potential flow is solved over a 
solid body by assuming no boundary layer. The velocity of slip over the body is 
then used as the velocity of the mainflow at the edge o f  the boundary layer. 

Under this simplification, the solution of equation (6), subject to the boundary 
condition: r = ri: Ts = Tb; T = T0: Ts = T(z ,  r0), can be written as 

In r / r i  
T~ = Tb + {T(z ,  ro) - T b } l n r o / r  i . (7) 

We therefore get the thermal boundary condition on the outside surface of the 
cylinder as 

r = ro : - k s  OTs(r°) - k f  OT(z 'r°)  
Or Or (8) 



NATURAL CONVECTION OVER A CIRCULAR CYLINDER 43 

Substituting the equation of the temperature of the cylinder, equation (9), into 
equation (10), we get 

y = 0 • - k s  [T(z, ro) - Tb] 
ro In ro/r i  

where y is defined as y = r - r0. 
The rest of the boundary conditions are 

y = 0 : vz (z ,O)  = O;v~(z,O) = O; 

OT(z, to) 
= - k f  Or ' (9) 

(10) 

y = o o  "v z ( z ,  o o ) = O ;  T ( z ,  o o ) = T ~ .  ( l l )  

Let us introduce the following dimensionless quantities: 

z Y v ~  v~. V ~ v ~  r 
= - - ;  9 = - -  ; ~z = - ,  ~ r = - -  ; ~ = - - ;  

7"0 TO Uc Uc TO 

T - T ~  . i ~  Ucro 
0 - -  T b  - -  T o  ' uc = /3(Tb -- T~o)ro ; Re - - - u  - v/-G-r" (12) 

Equations (1)-(3) become 

o(e~) off~,.) 
- - - -  + - -  - o, (13) 

O~ 09 

1 o 
~z--~- + ~r O y  - ~ 09 I. 09 J + 0, (14) 

O0 00 1 1 0 ~ 00~ (15) 

~ z ~ - ~ + ~ r 0 9 -  Pr ~ 0 9 l  0 9 J '  

subject to the boundary conditions 

9 = 0  ~z(~,o)=o; ~(~,o)=o; (16) 

o0(e,o) 
o(~, o) - 1 = p - -  ; (17) 

o9 

9 = ~ • ~z(~ ,  ~ )  = o; o(~ ,  ~ )  = o, (18)  

where 

kf ro 
P = ~-s In--ri Grl/4" (19) 

Inspection of equations (13-18) shows that the solution of this problem now 
depends on two dimensionless parameters, namely, the Prandtl number Pr and the 
conduction parameter p, respectively. In the limit when p becomes zero, the thermal 
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boundary condition on the wall becomes that of a constant wall temperature. The 
parameter p therefore is a measure of deviation from the constant wall temperature 
solution. From the definition of the conduction parameter, p, it is seen that a constant 
wall temperature solution is accurate only if the ratio of the heat conductivity of 
the fluid to that of the solid is small and/or the thickness of the tube is thin. Another 
point that needs to be emphasized is that for this problem, the Blot number is no 
longer adequate since it does not include all the physical parameters involved in 
this problem. 

Let us next introduce the Mangler Transformation 

dz* = d~; dy * = ~df] (20) 

and the stream function, ~, defined by 

0 ¢  0¢  
ffJz = Of] rvr 05 (21) 

Equation (13) is satisfied identically and equation (14) becomes 

02  02@ 0~02@ _ 0 1 + - -  + 0 .  (22) 
Oy* Oz*Oy* Oz*Oy .2 Oy* v / ~ ]  Oy *z 

In a similar manner, equation (15) can be reduced to 

Oy* Oz* Oz* Oy* - P r  Oy* __  ~ e e J  ~ y ,  _ (23) 

subject to the boundary conditions 

y* = 0 • O(~(z*, 0) _ 0; O~(z*, 0) _ 0; (24) 
Oy* Oz* 

oo(z*,o) 
O(z*, O) - 1 = p ; (25) 

Oy* 

o(b ( z * , ) 
y * = o o  • - 0 ;  O(z*,ec)=O. (26) 

Oy* 

Finally, let us introduce the following transformation: 

2z*(1/5) y* 
( -- ~ , 7/= z*(US) ' f ( ( , r / ) =  z,(4/5 ) , 

0 
9 ( ~ ,  rl) - z , ( ~ / 5  ) . (27) 

Equations (22) and (23) and the boundary conditions, equations (24)-(26), 
become 

{ ( l + f f ~ ) f " } ' + 5  _ 5 { f , } 2 + g = 5  f oq - J - ~  ' (28) 
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1 4 1 ~{  ,Og ,Of'] 
p--r { ( l + QI )9'}' +-5 Y 9 ' - 5  i '9= _f - ~ - g - - ~  ] 

subject to the boundary condition 

r / = 0  : f ( ~ , 0 ) = 0 ;  f ' ( C , 0 ) = 0 ;  

2 @(if,0) - 1 =pg ' ( f f ,0 ) ;  

~ ? = o o  : f ' ( ~ , o o ) = 0 ;  9(ff, o o ) = 0 .  

45 

(29) 

(30) 

(31) 

(32) 

Solutions and Results 

To solve the system of partial differential equations, equations (28) and (29), subject 
to the boundary conditions, equations (30)-(32), the finite-difference method is 
used. The system of partial differential equations are first written as a first-order 
system. The derivatives are then approximated by centered-difference gradients 
and averages centered at the mid-points of the net rectangles defined by 

@ = = 0 ,  ~n=Cn_l+kn; n = l , 2 , . . . , N ,  

rio = = 0 ,  Vj=~lj-l+hj,  j = l , 2 , . . . , J ,  

?] j  = ? ] ~ .  (33) 

A non-uniform grid hj defined by 

flj = Rflj_l, (34) 

where the ratio of adjacent intervals, R, is a constant. The distance from the surface 
to the j - th  station is then given by 

R j -- 1 
~j = h j - h - S T  , j = 1 , 2 , . . . ,  or. (35) 

The @direction grid kn is arbitrary. Linearization is achieved by the method of 
quasilinearization and the resulting system of algebraic equations are then solved 
by a block-tridiagonal factorizatiorl technique described, e.g., in [11]. Details of 
the method are identical to the one used in [1 l] and are therefore omitted here. 

Numerical solutions are generated using the above scheme for three values 
of Prandtl numbers (0.72, 5 and 20) and for three values of the wall conduction 
parameter, p (0.1, 0.2 and 0.3). A variable grid with h0 and R chosen to be 0.01 
and 1.01, respectively. The ratio L/ro is selected to be 20 for all the numerical 
solutions. The solutions presented are for a Grashof number of 1.25 x 105. At 
these values of Gr and L/ro, the flow remains laminar for the entire length of the 
cylinder. 
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Fig. 2. O(zlro, 0) versus zlro (Pr = 5). 

Let us first consider the dimensionless temperature of  the fluid on the surface 
of  the cylinder which, in terms of  ~ and 9(4, 0), can be written as 

Grl/4 
0(~,0)  -- 2 @(~ '0 ) '  (36) 

where the coordination along the axis of  the cylinder, ff is related to ~ by the 
equation 

z { ~ G r l / 4 }  5 
- - . (37) 

r0 2 

For a hollow cylinder where the temperature on the inner surface (r = ri) 
is maintained at a constant value of  Tb, the temperature on the outer surface of  
the cylinder (r = r0) depends on the coupled solution of  the conduction through 
and the natural convection of  the fluid over the circular cylinder. Intuitively, if 
the heat conductivity of  the hollow cylinder is very large, its temperature can be 
expected to be approximately uniform at Tb and therefore a solution of  the natural 
convect ion based on a constant wall temperature will be acceptable. An inspection 
of  the definition of  the conduction parameter p reveals that the same conclusion is 
true if the heat conductivity of  the fluid is very small and/or if the thickness of  the 
hollow cylinder is very thin. 

Figure 2 shows the dimensionless wall temperature of  the fluid, O(z/ro, 0), as a 
function of  the coordinate along the axis of  the cylinder, i.e., 5, for a Prandtl number 
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of 5 and three values of the conduction parameter, p. To demonstrate the effect 
of wall conduction, it is necessary to point out that the solution of the basic case 
(p = 0) where the wall temperature is assumed to be uniform at Tb is represented 
by a horizontal straight line in Fig. 2 since for this case 

O(zlro, o) = 1 (38) 

for all z's. 
The deviation of the temperature of the fluid on the surface from the straight 

line, equation (38), as shown in Fig. 2, therefore represents the effect of conduction. 
The behavior of the solution depends on two dimensionless parameters, namely, p 
and Pr. Figure 2 shows that the effect of p on the temperature of the outer surface 
of the cylinder for a given Prandtl number to be a decrease in the outer surface 
temperature from the constant value in equation (38) in the basic case. The surface 
temperature is lowest at the leading edge and increase along the outer surface until 
it approaches to the constant value of the basic case at very large z. 

Let us next consider the effect of conduction on the rate of heat transfer. First, 
the local rate of heat transfer is given by 

_ k s O T ( z , O )  Tb - 
Ow(z) Oy -- k f  ro Grl /4[ -g ' ( ( ,  0)]. (39) 

Let us define the overall local heat transfer coefficient, hz, as 

Ow(z) = hz(Tb - (40) 
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Fig. 4. O(z/ro, 0) versus z/ro (p = 0.3). 

I I I 

and the local Nusselt number is defined as 

hzz 
Nuz = ky (41) 

we therefore get 

Nuz 
",,, I/4 - ff,1/4[_gt(~, 0 ) ] ,  ( 4 2 )  
t.Jrz 

where 

Gr~ = gf l (Tb -- Teo)z  3 
/ /2 (43) 

Figure 3 is a plot of  equation (39) for Pr = 5 and three values of p, namely, 0.1, 0.2 
and 0.3, respectively. The basic solution of constant wall temperature case (p = 0) 
is also plotted in Fig. 3 as a dotted line. The general trend is a decreases of local 
Nusselt number as compared with the basic solution of constant wall temperature 
case. The decrease is seen increase for larger values of p. 

Figures 4 and 5 show the effect of Prandtl number. The value of the parameter p 
is taken to be a constant at 0.3 with three Prandtl numbers, namely, 0.72, 5 and 20, 
respectively. Figure 4 shows that for a given p, the effect of heat conduction of the 
temperature of the fluid on the outer surface of the cylinder is more significant for 
larger values of Pr, as compared with the basic solution (p = 0) of the constant wall 
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TABLE I. Representative solutions (Pr = 5) 

z/ro p = 0 . 1  p = 0 . 2  p = 0 . 3  

0.043 0.5907 0 .5175  0.4601 
0.111 0.6104 0 .5471 0.4952 
0.271 0.6280 0.5739 0.5279 
0.678 0.6439 0 .5981 0,5580 
1.694 0 .6588 0 .6203  0.5857 
4.230 0.6734 0 .6411 0.6115 

10.555 0.6881 0 .6611  0.6359 

temperature case. Lower  surface temperatures therefore result in lower Nusselt  
numbers,  as shown in Fig. 5. Again, the basic solutions of  the constant wall 
temperature case for each Prandtl number  are plotted as dotted lines. The difference 
between solid and dotted lines for each Prandtl number  is larger for larger values 
of  Prandtl numbers  which means the effect of  conduction is more pronounced for 
larger Prandtl numbers.  

Table 1 gives some representative solutions of  the problem for future refer- 
ence. 
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Conclusions 

An analysis is made o f  the natural convect ion over  a slender, hollow circular 
cyl inder  with the inner surface at a constant temperature Tb but the temperature of  
the outer surface must be solved from the coupled conduction of  the cylinder and 
the natural convect ion of  the fluid over  the cylinder. The objective is to investigate 
the effect  o f  conduct ion on the heat transfer of  the natural convect ion boundary 
layer of  the fluid. A wall conduction parameter, p, is identified which is a measure o f  
the heat conductivit ies of  the solid and the fluid and the thickness of  the cylindrical 
shell, as defined by equation (19). 

The present analysis shows that the overall effect of  heat conduction is to 
reduce the rate o f  heat transfer. Any calculation of  the heat transfer rate based 
on the assumption of  a constant wall temperature of  Tb over  the entire surface 

of  the cyl inder  overestimates this quantity. Consider, e.g., the problem of  natural 
convect ion of  water over  a hollow steel cylinder with ri  = 0.025 m and re = 

0.035 m. The value o f p  then equals to 0.1. From the present analysis, the effect of  
conduct ion cannot  be neglected. On the other hand, if  the solid cylinder is made 
of  aluminium, the conduct ion parameter  becomes 0.02. For  such a small value of  
p, neglecting the wall heat conduction becomes an acceptable assumption. The 
magnitude o f  the decrease depends on the value of  the parameter p and the Prandtl 
number. The effect  increases for larger values of  p and/or Pr. 
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